Axions, on the other hand, are amenable to direct detection [109
], although it is challenging to fully
explore the whole of the theoretically available parameter space. Among particles proposed to
solve the CP violation problem, the axion comes in two varieties, which have fairly well defined
properties [74]. Axions can be converted completely into photons in what is essentially a two-photon
interaction. In experiments to detect galactic dark-matter axions the second photon is provided by an
intense ambient electromagnetic field. The photon created has an energy equal to the total
energy of the axion (rest mass plus kinetic energy). As noted earlier, the dark matter energy
density at the position of the Earth is about
. The preferred mass range for the
axion is between
and
, although there is a second window between
and
[138]. The lower limit of the preferred mass range keeps
, while the upper limit
prevents excessive energy-loss mechanisms in stars and supernovae due to axion production and
loss. If the galactic dark matter is axions, then their local density is between
and
. With a virial velocity distribution (
), the flux through a terrestrial detector is
enormous, but unfortunately the two-photon conversion process is very weak. In an ambient 6
Tesla field each axion has a conversion probability around
per second, and the photon
produced has an energy in the microwave region (2 – 200 GHz). Such an experiment requires a
tuned high-Q cavity, tunable over the projected axion mass/energy range, with a sensitivity of
around
. Two early experiments of this type [92, 108, 63] have been followed by
a number of second generation instruments [109], and the preferred axion mass window has
been closed over a very small range at its lowest end (
to
) at
the 90% confidence level for KSVZ axions [62]. A variant on the tuned cavity technique is to
incorporate Rydberg atoms into the cavity where the
to
transition is also resonant with
the cavity [145]. In addition to the direct dark matter axion searches, there are a number of
experiments looking for evidence of axion existence, such as axion telescopes pointed at the Sun [86]
and torsion balance instruments looking for short-range weak force spin-coupling interactions
of the type mediated by the axion [122, 97, 114, 134]. These have yet to achieve sufficient
sensitivity.
Neutralinos have received by far the most attention and there are an enormous range of techniques being used to search for these particles [119, 132, 6]. The basic questions that need to be addressed to assess the feasibility of detection of WIMPs in the halo of our Galaxy are:
Each of these three issues are dealt with in some detail for the neutralino of the MSSM in the following sections.
| http://www.livingreviews.org/lrr-2002-4 |
© Max Planck Society and the author(s)
Problems/comments to |