add https://www.uber.com/en-US/blog/engineering/rss - sfeed_tests - sfeed tests and RSS and Atom files
 (HTM) git clone git://git.codemadness.org/sfeed_tests
 (DIR) Log
 (DIR) Files
 (DIR) Refs
 (DIR) README
 (DIR) LICENSE
       ---
 (DIR) commit 7e4d0985d3e5f0e28b89bd2e8fdc80083c575b20
 (DIR) parent 26ea2fc71d836f8cca823b3a69d79211e2efcd20
 (HTM) Author: Hiltjo Posthuma <hiltjo@codemadness.org>
       Date:   Fri, 31 Jan 2025 11:09:11 +0100
       
       add https://www.uber.com/en-US/blog/engineering/rss
       
       quirks: requires the HTTP request header "Accept: text/html" to be set.
       Otherwise there would be a "406 Not Acceptable" status (even Accept: */* does
       not work).
       
       The XML data contains many unnecesary CDATA sections.
       
       Timestamp format is incomplete, but should be parsable by sfeed.
       
       Either way a good quirky test to add.
       
       Diffstat:
         A input/sfeed/realworld/uber.com_eng… |     321 +++++++++++++++++++++++++++++++
       
       1 file changed, 321 insertions(+), 0 deletions(-)
       ---
 (DIR) diff --git a/input/sfeed/realworld/uber.com_engineering.rss.xml b/input/sfeed/realworld/uber.com_engineering.rss.xml
       @@ -0,0 +1,320 @@
       +<?xml version="1.0" encoding="utf-8" ?>
       +<rss version="2.0">
       +  <channel>
       +    <title>
       +      <![CDATA[Engineering | Uber Blog]]>
       +    </title>
       +    <link>https://www.uber.com</link>
       +    <description>
       +      <![CDATA[]]>
       +    </description>
       +    <lastBuildDate>Fri Jan 31 2025 10:04:42 GMT+0000 (Coordinated Universal Time)</lastBuildDate>
       +    <language>en</language>
       +    <item>
       +      <title>
       +        <![CDATA[MySQL At Uber]]>
       +      </title>
       +      <link>
       +        <![CDATA[https://www.uber.com/blog/mysql-at-uber/]]>
       +      </link>
       +      <pubDate>
       +        <![CDATA[2025-01-30 14:00:00]]>
       +      </pubDate>
       +      <category>
       +        <![CDATA[Backend]]>
       +      </category>
       +      <description>
       +        <![CDATA[<p>How does Uber achieve 99.99% availability across 2,000+ MySQL® clusters? Learn how we manage our MySQL fleet at scale, from architecture to control plane optimizations.</p>
       +]]>
       +      </description>
       +    </item>
       +    <item>
       +      <title>
       +        <![CDATA[How Uber Uses Ray® to Optimize the Rides Business]]>
       +      </title>
       +      <link>
       +        <![CDATA[https://www.uber.com/blog/how-uber-uses-ray-to-optimize-the-rides-business/]]>
       +      </link>
       +      <pubDate>
       +        <![CDATA[2025-01-09 14:00:00]]>
       +      </pubDate>
       +      <category>
       +        <![CDATA[Backend]]>
       +      </category>
       +      <description>
       +        <![CDATA[<p>Large-scale computation is a major back end and infrastructure challenge for Uber to solve as we scale. We applied a compute engine called Ray® in Uber’s marketplace to improve computation efficiency and engineering productivity.</p>
       +]]>
       +      </description>
       +    </item>
       +    <item>
       +      <title>
       +        <![CDATA[Serving Millions of Apache Pinot™ Queries with Neutrino]]>
       +      </title>
       +      <link>
       +        <![CDATA[https://www.uber.com/blog/serving-millions-of-apache-pinot-queries-with-neutrino/]]>
       +      </link>
       +      <pubDate>
       +        <![CDATA[2024-12-11 14:00:00]]>
       +      </pubDate>
       +      <category>
       +        <![CDATA[Data / ML]]>
       +      </category>
       +      <description>
       +        <![CDATA[<p>At Uber, we serve 500 million Pinot queries every day. Learn how we optimized and built an internal fork of Presto to support query features like window functions and sub-queries, all while supporting sub-second latencies at thousands of QPS.</p>
       +]]>
       +      </description>
       +    </item>
       +    <item>
       +      <title>
       +        <![CDATA[Introducing the Prompt Engineering Toolkit]]>
       +      </title>
       +      <link>
       +        <![CDATA[https://www.uber.com/blog/introducing-the-prompt-engineering-toolkit/]]>
       +      </link>
       +      <pubDate>
       +        <![CDATA[2024-11-26 14:00:00]]>
       +      </pubDate>
       +      <category>
       +        <![CDATA[Data / ML]]>
       +      </category>
       +      <description>
       +        <![CDATA[<p>LLM iteration can happen with speed and safety! Explore how Uber launched a prompt toolkit for LLMs that helps engineers create, manage, and evaluate prompts with dynamic contextualization, batch generation, and robust safety checks.</p>
       +]]>
       +      </description>
       +    </item>
       +    <item>
       +      <title>
       +        <![CDATA[The Accounter: Scaling Operational Throughput on Uber’s Stateful Platform]]>
       +      </title>
       +      <link>
       +        <![CDATA[https://www.uber.com/blog/the-accounter/]]>
       +      </link>
       +      <pubDate>
       +        <![CDATA[2024-11-21 14:00:00]]>
       +      </pubDate>
       +      <category>
       +        <![CDATA[Backend]]>
       +      </category>
       +      <description>
       +        <![CDATA[<p>Uber slashed operational costs using The Accounter—an intelligent state manager that orchestrates large-scale tasks across our entire infrastructure, optimized for time and resources.</p>
       +]]>
       +      </description>
       +    </item>
       +    <item>
       +      <title>
       +        <![CDATA[Unified Checkout: Streamlining Uber’s Payment Ecosystem]]>
       +      </title>
       +      <link>
       +        <![CDATA[https://www.uber.com/blog/unified-checkout/]]>
       +      </link>
       +      <pubDate>
       +        <![CDATA[2024-11-14 14:00:00]]>
       +      </pubDate>
       +      <category>
       +        <![CDATA[Backend]]>
       +      </category>
       +      <description>
       +        <![CDATA[<p>From payment chaos to calm: Discover how Uber&#8217;s game-changing Unified Checkout System powers payment methods across every product line, worldwide.</p>
       +]]>
       +      </description>
       +    </item>
       +    <item>
       +      <title>
       +        <![CDATA[Presto® Express: Speeding up Query Processing with Minimal Resources]]>
       +      </title>
       +      <link>
       +        <![CDATA[https://www.uber.com/blog/presto-express/]]>
       +      </link>
       +      <pubDate>
       +        <![CDATA[2024-11-07 14:00:00]]>
       +      </pubDate>
       +      <category>
       +        <![CDATA[Data / ML]]>
       +      </category>
       +      <description>
       +        <![CDATA[<p>Slow Presto® queries can hinder data-driven operations. At Uber, we designed Presto express to achieve a 50% improvement in the end-to-end SLA for 70% of queries using query analysis, real-time insights, and resource isolation.</p>
       +]]>
       +      </description>
       +    </item>
       +    <item>
       +      <title>
       +        <![CDATA[Enabling Infinite Retention for Upsert Tables in Apache Pinot]]>
       +      </title>
       +      <link>
       +        <![CDATA[https://www.uber.com/blog/enabling-infinite-retention-for-upsert-tables/]]>
       +      </link>
       +      <pubDate>
       +        <![CDATA[2024-10-31 13:00:00]]>
       +      </pubDate>
       +      <category>
       +        <![CDATA[Data / ML]]>
       +      </category>
       +      <description>
       +        <![CDATA[<p>With contributions from Uber and others, Apache Pinot™ now supports deletion with upsert tables! Learn how Uber drove these advancements and how you can benefit from cost-efficient infinite retention.</p>
       +]]>
       +      </description>
       +    </item>
       +    <item>
       +      <title>
       +        <![CDATA[Streamlining Financial Precision: Uber’s Advanced Settlement Accounting System]]>
       +      </title>
       +      <link>
       +        <![CDATA[https://www.uber.com/blog/ubers-advanced-settlement-accounting-system/]]>
       +      </link>
       +      <pubDate>
       +        <![CDATA[2024-10-24 13:00:00]]>
       +      </pubDate>
       +      <category>
       +        <![CDATA[Backend]]>
       +      </category>
       +      <description>
       +        <![CDATA[<p>Discover how Uber’s cutting-edge settlement accounting system processes over 1.2 billion transactions monthly, ensuring precise financial tracking, preventing fraud, and managing regulatory compliance with unmatched efficiency.</p>
       +]]>
       +      </description>
       +    </item>
       +    <item>
       +      <title>
       +        <![CDATA[Open Source and In-House: How Uber Optimizes LLM Training]]>
       +      </title>
       +      <link>
       +        <![CDATA[https://www.uber.com/blog/open-source-and-in-house-how-uber-optimizes-llm-training/]]>
       +      </link>
       +      <pubDate>
       +        <![CDATA[2024-10-17 15:30:00]]>
       +      </pubDate>
       +      <category>
       +        <![CDATA[Engineering]]>
       +      </category>
       +      <description>
       +        <![CDATA[<p>Exploring beyond third-party LLMs, Uber leverages in-house LLM training to embed domain-specific knowledge and support GenAI applications. Embracing open-source solutions unlocks top-tier training throughput and GPU utilization.</p>
       +]]>
       +      </description>
       +    </item>
       +    <item>
       +      <title>
       +        <![CDATA[Genie: Uber’s Gen AI On-Call Copilot]]>
       +      </title>
       +      <link>
       +        <![CDATA[https://www.uber.com/blog/genie-ubers-gen-ai-on-call-copilot/]]>
       +      </link>
       +      <pubDate>
       +        <![CDATA[2024-10-10 13:00:00]]>
       +      </pubDate>
       +      <category>
       +        <![CDATA[Data / ML]]>
       +      </category>
       +      <description>
       +        <![CDATA[<p>Explore how Uber is leveraging Genie, its Generative AI-powered On-Call CoPilot, to transform on-call operations and empower engineering teams.</p>
       +]]>
       +      </description>
       +    </item>
       +    <item>
       +      <title>
       +        <![CDATA[Making Uber’s ExperimentEvaluation Engine 100x Faster]]>
       +      </title>
       +      <link>
       +        <![CDATA[https://www.uber.com/blog/making-ubers-experiment-evaluation-engine-100x-faster/]]>
       +      </link>
       +      <pubDate>
       +        <![CDATA[2024-10-03 13:00:00]]>
       +      </pubDate>
       +      <category>
       +        <![CDATA[Backend]]>
       +      </category>
       +      <description>
       +        <![CDATA[<p>Learn how Uber was able to reduce evaluation latencies by a factor of 100x in their Experimentation platform, which is used to empower decision making across the company by processing over 10 million evaluations per second.</p>
       +]]>
       +      </description>
       +    </item>
       +    <item>
       +      <title>
       +        <![CDATA[Preon: Presto Query Analysis for Intelligent and Efficient Analytics]]>
       +      </title>
       +      <link>
       +        <![CDATA[https://www.uber.com/blog/preon/]]>
       +      </link>
       +      <pubDate>
       +        <![CDATA[2024-09-26 13:00:00]]>
       +      </pubDate>
       +      <category>
       +        <![CDATA[Data / ML]]>
       +      </category>
       +      <description>
       +        <![CDATA[<p>Discover how to enable intelligent and efficient data analytics at Uber scale with Preon, a Presto Query Analysis service that unlocks insights for deduplicating queries, creating efficient table layouts, and more.</p>
       +]]>
       +      </description>
       +    </item>
       +    <item>
       +      <title>
       +        <![CDATA[How to Measure Design System at Scale]]>
       +      </title>
       +      <link>
       +        <![CDATA[https://www.uber.com/blog/design-system-at-scale/]]>
       +      </link>
       +      <pubDate>
       +        <![CDATA[2024-09-24 13:00:00]]>
       +      </pubDate>
       +      <category>
       +        <![CDATA[Engineering]]>
       +      </category>
       +      <description>
       +        <![CDATA[<p>Learn how Uber made a breakthrough in tracking design metrics across Figma, Android, and iOS with Design System Observability.</p>
       +]]>
       +      </description>
       +    </item>
       +    <item>
       +      <title>
       +        <![CDATA[QueryGPT – Natural Language to SQL Using Generative AI]]>
       +      </title>
       +      <link>
       +        <![CDATA[https://www.uber.com/blog/query-gpt/]]>
       +      </link>
       +      <pubDate>
       +        <![CDATA[2024-09-19 13:00:00]]>
       +      </pubDate>
       +      <category>
       +        <![CDATA[Backend]]>
       +      </category>
       +      <description>
       +        <![CDATA[<p>Discover how QueryGPT revolutionizes SQL query generation at Uber! Learn about the cutting-edge AI that turns natural language prompts into efficient SQL queries, boosting productivity at Uber. Dive into our journey of innovation and transformation. </p>
       +]]>
       +      </description>
       +    </item>
       +    <item>
       +      <title>
       +        <![CDATA[Transforming Executive Travel: Delegate Booking with Uber]]>
       +      </title>
       +      <link>
       +        <![CDATA[https://www.uber.com/blog/executive-travel/]]>
       +      </link>
       +      <pubDate>
       +        <![CDATA[2024-09-12 13:00:00]]>
       +      </pubDate>
       +      <category>
       +        <![CDATA[Backend]]>
       +      </category>
       +      <description>
       +        <![CDATA[<p>Find out how Uber for Business launched delegate profiles on Administrative Professionals Day, empowering executive assistants to manage executive travel, streamlining processes, and optimizing efficiency.</p>
       +]]>
       +      </description>
       +    </item>
       +    <item>
       +      <title>
       +        <![CDATA[DataMesh: How Uber laid the foundations for the data lake cloud migration]]>
       +      </title>
       +      <link>
       +        <![CDATA[https://www.uber.com/blog/datamesh/]]>
       +      </link>
       +      <pubDate>
       +        <![CDATA[2024-09-10 13:00:00]]>
       +      </pubDate>
       +      <category>
       +        <![CDATA[Data / ML]]>
       +      </category>
       +      <description>
       +        <![CDATA[<p>Learn how Uber is streamlining the Cloud migration of its massive Data Lake by incorporating key Data Mesh principles.</p>
       +]]>
       +      </description>
       +    </item>
       +  </channel>
       +</rss>
       +\ No newline at end of file