uber.com_engineering.rss.xml - sfeed_tests - sfeed tests and RSS and Atom files
 (HTM) git clone git://git.codemadness.org/sfeed_tests
 (DIR) Log
 (DIR) Files
 (DIR) Refs
 (DIR) README
 (DIR) LICENSE
       ---
       uber.com_engineering.rss.xml (11233B)
       ---
            1 <?xml version="1.0" encoding="utf-8" ?>
            2 <rss version="2.0">
            3   <channel>
            4     <title>
            5       <![CDATA[Engineering | Uber Blog]]>
            6     </title>
            7     <link>https://www.uber.com</link>
            8     <description>
            9       <![CDATA[]]>
           10     </description>
           11     <lastBuildDate>Fri Jan 31 2025 10:04:42 GMT+0000 (Coordinated Universal Time)</lastBuildDate>
           12     <language>en</language>
           13     <item>
           14       <title>
           15         <![CDATA[MySQL At Uber]]>
           16       </title>
           17       <link>
           18         <![CDATA[https://www.uber.com/blog/mysql-at-uber/]]>
           19       </link>
           20       <pubDate>
           21         <![CDATA[2025-01-30 14:00:00]]>
           22       </pubDate>
           23       <category>
           24         <![CDATA[Backend]]>
           25       </category>
           26       <description>
           27         <![CDATA[<p>How does Uber achieve 99.99% availability across 2,000+ MySQL® clusters? Learn how we manage our MySQL fleet at scale, from architecture to control plane optimizations.</p>
           28 ]]>
           29       </description>
           30     </item>
           31     <item>
           32       <title>
           33         <![CDATA[How Uber Uses Ray® to Optimize the Rides Business]]>
           34       </title>
           35       <link>
           36         <![CDATA[https://www.uber.com/blog/how-uber-uses-ray-to-optimize-the-rides-business/]]>
           37       </link>
           38       <pubDate>
           39         <![CDATA[2025-01-09 14:00:00]]>
           40       </pubDate>
           41       <category>
           42         <![CDATA[Backend]]>
           43       </category>
           44       <description>
           45         <![CDATA[<p>Large-scale computation is a major back end and infrastructure challenge for Uber to solve as we scale. We applied a compute engine called Ray® in Uber’s marketplace to improve computation efficiency and engineering productivity.</p>
           46 ]]>
           47       </description>
           48     </item>
           49     <item>
           50       <title>
           51         <![CDATA[Serving Millions of Apache Pinot™ Queries with Neutrino]]>
           52       </title>
           53       <link>
           54         <![CDATA[https://www.uber.com/blog/serving-millions-of-apache-pinot-queries-with-neutrino/]]>
           55       </link>
           56       <pubDate>
           57         <![CDATA[2024-12-11 14:00:00]]>
           58       </pubDate>
           59       <category>
           60         <![CDATA[Data / ML]]>
           61       </category>
           62       <description>
           63         <![CDATA[<p>At Uber, we serve 500 million Pinot queries every day. Learn how we optimized and built an internal fork of Presto to support query features like window functions and sub-queries, all while supporting sub-second latencies at thousands of QPS.</p>
           64 ]]>
           65       </description>
           66     </item>
           67     <item>
           68       <title>
           69         <![CDATA[Introducing the Prompt Engineering Toolkit]]>
           70       </title>
           71       <link>
           72         <![CDATA[https://www.uber.com/blog/introducing-the-prompt-engineering-toolkit/]]>
           73       </link>
           74       <pubDate>
           75         <![CDATA[2024-11-26 14:00:00]]>
           76       </pubDate>
           77       <category>
           78         <![CDATA[Data / ML]]>
           79       </category>
           80       <description>
           81         <![CDATA[<p>LLM iteration can happen with speed and safety! Explore how Uber launched a prompt toolkit for LLMs that helps engineers create, manage, and evaluate prompts with dynamic contextualization, batch generation, and robust safety checks.</p>
           82 ]]>
           83       </description>
           84     </item>
           85     <item>
           86       <title>
           87         <![CDATA[The Accounter: Scaling Operational Throughput on Uber’s Stateful Platform]]>
           88       </title>
           89       <link>
           90         <![CDATA[https://www.uber.com/blog/the-accounter/]]>
           91       </link>
           92       <pubDate>
           93         <![CDATA[2024-11-21 14:00:00]]>
           94       </pubDate>
           95       <category>
           96         <![CDATA[Backend]]>
           97       </category>
           98       <description>
           99         <![CDATA[<p>Uber slashed operational costs using The Accounter—an intelligent state manager that orchestrates large-scale tasks across our entire infrastructure, optimized for time and resources.</p>
          100 ]]>
          101       </description>
          102     </item>
          103     <item>
          104       <title>
          105         <![CDATA[Unified Checkout: Streamlining Uber’s Payment Ecosystem]]>
          106       </title>
          107       <link>
          108         <![CDATA[https://www.uber.com/blog/unified-checkout/]]>
          109       </link>
          110       <pubDate>
          111         <![CDATA[2024-11-14 14:00:00]]>
          112       </pubDate>
          113       <category>
          114         <![CDATA[Backend]]>
          115       </category>
          116       <description>
          117         <![CDATA[<p>From payment chaos to calm: Discover how Uber&#8217;s game-changing Unified Checkout System powers payment methods across every product line, worldwide.</p>
          118 ]]>
          119       </description>
          120     </item>
          121     <item>
          122       <title>
          123         <![CDATA[Presto® Express: Speeding up Query Processing with Minimal Resources]]>
          124       </title>
          125       <link>
          126         <![CDATA[https://www.uber.com/blog/presto-express/]]>
          127       </link>
          128       <pubDate>
          129         <![CDATA[2024-11-07 14:00:00]]>
          130       </pubDate>
          131       <category>
          132         <![CDATA[Data / ML]]>
          133       </category>
          134       <description>
          135         <![CDATA[<p>Slow Presto® queries can hinder data-driven operations. At Uber, we designed Presto express to achieve a 50% improvement in the end-to-end SLA for 70% of queries using query analysis, real-time insights, and resource isolation.</p>
          136 ]]>
          137       </description>
          138     </item>
          139     <item>
          140       <title>
          141         <![CDATA[Enabling Infinite Retention for Upsert Tables in Apache Pinot]]>
          142       </title>
          143       <link>
          144         <![CDATA[https://www.uber.com/blog/enabling-infinite-retention-for-upsert-tables/]]>
          145       </link>
          146       <pubDate>
          147         <![CDATA[2024-10-31 13:00:00]]>
          148       </pubDate>
          149       <category>
          150         <![CDATA[Data / ML]]>
          151       </category>
          152       <description>
          153         <![CDATA[<p>With contributions from Uber and others, Apache Pinot™ now supports deletion with upsert tables! Learn how Uber drove these advancements and how you can benefit from cost-efficient infinite retention.</p>
          154 ]]>
          155       </description>
          156     </item>
          157     <item>
          158       <title>
          159         <![CDATA[Streamlining Financial Precision: Uber’s Advanced Settlement Accounting System]]>
          160       </title>
          161       <link>
          162         <![CDATA[https://www.uber.com/blog/ubers-advanced-settlement-accounting-system/]]>
          163       </link>
          164       <pubDate>
          165         <![CDATA[2024-10-24 13:00:00]]>
          166       </pubDate>
          167       <category>
          168         <![CDATA[Backend]]>
          169       </category>
          170       <description>
          171         <![CDATA[<p>Discover how Uber’s cutting-edge settlement accounting system processes over 1.2 billion transactions monthly, ensuring precise financial tracking, preventing fraud, and managing regulatory compliance with unmatched efficiency.</p>
          172 ]]>
          173       </description>
          174     </item>
          175     <item>
          176       <title>
          177         <![CDATA[Open Source and In-House: How Uber Optimizes LLM Training]]>
          178       </title>
          179       <link>
          180         <![CDATA[https://www.uber.com/blog/open-source-and-in-house-how-uber-optimizes-llm-training/]]>
          181       </link>
          182       <pubDate>
          183         <![CDATA[2024-10-17 15:30:00]]>
          184       </pubDate>
          185       <category>
          186         <![CDATA[Engineering]]>
          187       </category>
          188       <description>
          189         <![CDATA[<p>Exploring beyond third-party LLMs, Uber leverages in-house LLM training to embed domain-specific knowledge and support GenAI applications. Embracing open-source solutions unlocks top-tier training throughput and GPU utilization.</p>
          190 ]]>
          191       </description>
          192     </item>
          193     <item>
          194       <title>
          195         <![CDATA[Genie: Uber’s Gen AI On-Call Copilot]]>
          196       </title>
          197       <link>
          198         <![CDATA[https://www.uber.com/blog/genie-ubers-gen-ai-on-call-copilot/]]>
          199       </link>
          200       <pubDate>
          201         <![CDATA[2024-10-10 13:00:00]]>
          202       </pubDate>
          203       <category>
          204         <![CDATA[Data / ML]]>
          205       </category>
          206       <description>
          207         <![CDATA[<p>Explore how Uber is leveraging Genie, its Generative AI-powered On-Call CoPilot, to transform on-call operations and empower engineering teams.</p>
          208 ]]>
          209       </description>
          210     </item>
          211     <item>
          212       <title>
          213         <![CDATA[Making Uber’s ExperimentEvaluation Engine 100x Faster]]>
          214       </title>
          215       <link>
          216         <![CDATA[https://www.uber.com/blog/making-ubers-experiment-evaluation-engine-100x-faster/]]>
          217       </link>
          218       <pubDate>
          219         <![CDATA[2024-10-03 13:00:00]]>
          220       </pubDate>
          221       <category>
          222         <![CDATA[Backend]]>
          223       </category>
          224       <description>
          225         <![CDATA[<p>Learn how Uber was able to reduce evaluation latencies by a factor of 100x in their Experimentation platform, which is used to empower decision making across the company by processing over 10 million evaluations per second.</p>
          226 ]]>
          227       </description>
          228     </item>
          229     <item>
          230       <title>
          231         <![CDATA[Preon: Presto Query Analysis for Intelligent and Efficient Analytics]]>
          232       </title>
          233       <link>
          234         <![CDATA[https://www.uber.com/blog/preon/]]>
          235       </link>
          236       <pubDate>
          237         <![CDATA[2024-09-26 13:00:00]]>
          238       </pubDate>
          239       <category>
          240         <![CDATA[Data / ML]]>
          241       </category>
          242       <description>
          243         <![CDATA[<p>Discover how to enable intelligent and efficient data analytics at Uber scale with Preon, a Presto Query Analysis service that unlocks insights for deduplicating queries, creating efficient table layouts, and more.</p>
          244 ]]>
          245       </description>
          246     </item>
          247     <item>
          248       <title>
          249         <![CDATA[How to Measure Design System at Scale]]>
          250       </title>
          251       <link>
          252         <![CDATA[https://www.uber.com/blog/design-system-at-scale/]]>
          253       </link>
          254       <pubDate>
          255         <![CDATA[2024-09-24 13:00:00]]>
          256       </pubDate>
          257       <category>
          258         <![CDATA[Engineering]]>
          259       </category>
          260       <description>
          261         <![CDATA[<p>Learn how Uber made a breakthrough in tracking design metrics across Figma, Android, and iOS with Design System Observability.</p>
          262 ]]>
          263       </description>
          264     </item>
          265     <item>
          266       <title>
          267         <![CDATA[QueryGPT – Natural Language to SQL Using Generative AI]]>
          268       </title>
          269       <link>
          270         <![CDATA[https://www.uber.com/blog/query-gpt/]]>
          271       </link>
          272       <pubDate>
          273         <![CDATA[2024-09-19 13:00:00]]>
          274       </pubDate>
          275       <category>
          276         <![CDATA[Backend]]>
          277       </category>
          278       <description>
          279         <![CDATA[<p>Discover how QueryGPT revolutionizes SQL query generation at Uber! Learn about the cutting-edge AI that turns natural language prompts into efficient SQL queries, boosting productivity at Uber. Dive into our journey of innovation and transformation. </p>
          280 ]]>
          281       </description>
          282     </item>
          283     <item>
          284       <title>
          285         <![CDATA[Transforming Executive Travel: Delegate Booking with Uber]]>
          286       </title>
          287       <link>
          288         <![CDATA[https://www.uber.com/blog/executive-travel/]]>
          289       </link>
          290       <pubDate>
          291         <![CDATA[2024-09-12 13:00:00]]>
          292       </pubDate>
          293       <category>
          294         <![CDATA[Backend]]>
          295       </category>
          296       <description>
          297         <![CDATA[<p>Find out how Uber for Business launched delegate profiles on Administrative Professionals Day, empowering executive assistants to manage executive travel, streamlining processes, and optimizing efficiency.</p>
          298 ]]>
          299       </description>
          300     </item>
          301     <item>
          302       <title>
          303         <![CDATA[DataMesh: How Uber laid the foundations for the data lake cloud migration]]>
          304       </title>
          305       <link>
          306         <![CDATA[https://www.uber.com/blog/datamesh/]]>
          307       </link>
          308       <pubDate>
          309         <![CDATA[2024-09-10 13:00:00]]>
          310       </pubDate>
          311       <category>
          312         <![CDATA[Data / ML]]>
          313       </category>
          314       <description>
          315         <![CDATA[<p>Learn how Uber is streamlining the Cloud migration of its massive Data Lake by incorporating key Data Mesh principles.</p>
          316 ]]>
          317       </description>
          318     </item>
          319   </channel>
          320