tAdd Dougal/Luke experiment script - sphere - GPU-based 3D discrete element method algorithm with optional fluid coupling
 (HTM) git clone git://src.adamsgaard.dk/sphere
 (DIR) Log
 (DIR) Files
 (DIR) Refs
 (DIR) LICENSE
       ---
 (DIR) commit 924e5cc96c8508c17abff1b91dfc96baf9a21e0e
 (DIR) parent 670fa039eb42c42ec33f71e61da7ebab328056b5
 (HTM) Author: Anders Damsgaard <anders@adamsgaard.dk>
       Date:   Wed,  4 Dec 2019 09:36:26 +0100
       
       Add Dougal/Luke experiment script
       
       Diffstat:
         A python/hansen-zoet.py               |     152 +++++++++++++++++++++++++++++++
       
       1 file changed, 152 insertions(+), 0 deletions(-)
       ---
 (DIR) diff --git a/python/hansen-zoet.py b/python/hansen-zoet.py
       t@@ -0,0 +1,152 @@
       +#!/usr/bin/env python
       +
       +# Import sphere functionality
       +import sphere
       +
       +### EXPERIMENT SETUP ###
       +initialization = False
       +consolidation  = True
       +shearing       = True
       +rendering      = False
       +plots          = True
       +
       +# Number of particles
       +np = 1e4
       +
       +# Common simulation id
       +sim_id = "hz"
       +
       +# Deviatoric stress [Pa]
       +Nlist = [51e3, 101e3, 202e3, 303e3, 404e3]
       +
       +### INITIALIZATION ###
       +
       +# New class
       +init = sphere.sim(np = np, nd = 3, nw = 0, sid = sim_id + "-init")
       +
       +# Save radii
       +init.generateRadii(mean = 800e-5)
       +
       +# Use default params
       +init.defaultParams(gamma_n = 100.0, mu_s = 0.6, mu_d = 0.6)
       +
       +# Add gravity
       +init.g[2] = -9.81
       +
       +# Periodic x and y boundaries
       +init.periodicBoundariesXY()
       +
       +# Initialize positions in random grid (also sets world size)
       +hcells = np**(1.0/3.0)
       +init.initRandomGridPos(gridnum = [hcells, hcells, 1e9])
       +
       +# Set duration of simulation
       +init.initTemporal(total = 5.0)
       +
       +if (initialization == True):
       +
       +    # Run sphere
       +    init.run(dry = True)
       +    init.run()
       +
       +    if (plots == True):
       +        # Make a graph of energies
       +        init.visualize('energy')
       +
       +    init.writeVTKall()
       +
       +    if (rendering == True):
       +        # Render images with raytracer
       +        init.render(method = "angvel", max_val = 0.3, verbose = False)
       +
       +
       +
       +# For each normal stress, consolidate and subsequently shear the material
       +for N in Nlist:
       +
       +    ### CONSOLIDATION ###
       +
       +    # New class
       +    cons = sphere.sim(np = init.np, nw = 1, sid = sim_id +
       +                      "-cons-N{}".format(N))
       +
       +    # Read last output file of initialization step
       +    lastf = sphere.status(sim_id + "-init")
       +    cons.readbin("../output/" + sim_id + "-init.output{:0=5}.bin".format(lastf), verbose=False)
       +
       +    # Periodic x and y boundaries
       +    cons.periodicBoundariesXY()
       +
       +    # Setup consolidation experiment
       +    cons.consolidate(normal_stress = N)
       +    cons.adaptiveGrid()
       +
       +    # Set duration of simulation
       +    cons.initTemporal(total = 1.5)
       +
       +    """
       +    cons.w_m[0] *= 0.001
       +    cons.mu_s[0] = 0.0
       +    cons.mu_d[0] = 0.0
       +    cons.gamma_wn[0] = 1e4
       +    cons.gamma_wt[0] = 1e4
       +    cons.contactmodel[0] = 1
       +    """
       +
       +    if (consolidation == True):
       +
       +        # Run sphere
       +        cons.run(dry = True) # show values, don't run
       +        cons.run() # run
       +
       +        if (plots == True):
       +            # Make a graph of energies
       +            cons.visualize('energy')
       +            cons.visualize('walls')
       +
       +        cons.writeVTKall()
       +
       +        if (rendering == True):
       +            # Render images with raytracer
       +            cons.render(method = "pres", max_val = 2.0*N, verbose = False)
       +
       +
       +    ### SHEARING ###
       +
       +    # New class
       +    shear = sphere.sim(np = cons.np, nw = cons.nw, sid = sim_id +
       +                       "-shear-N{}".format(N))
       +
       +    # Read last output file of initialization step
       +    lastf = sphere.status(sim_id + "-cons-N{}".format(N))
       +    shear.readbin("../output/" + sim_id +
       +                  "-cons-N{}.output{:0=5}.bin".format(N, lastf),
       +                  verbose = False)
       +
       +    # Periodic x and y boundaries
       +    shear.periodicBoundariesXY()
       +
       +    # Setup shear experiment
       +    shear.shear(shear_strain_rate = 0.05, periodic = init.periodic)
       +    shear.adaptiveGrid()
       +        #shear.initFluid(mu=17.87e-4, p=0.0, hydrostatic=True, cfd_solver=1)
       +
       +    # Set duration of simulation
       +    shear.initTemporal(total = 20.0)
       +
       +    if (shearing == True):
       +
       +        # Run sphere
       +        shear.run(dry = True)
       +        shear.run()
       +
       +        if (plots == True):
       +            # Make a graph of energies
       +            shear.visualize('energy')
       +            shear.visualize('shear')
       +
       +        shear.writeVTKall()
       +
       +        if (rendering == True):
       +            # Render images with raytracer
       +            shear.render(method = "pres", max_val = 2.0*N, verbose = False)