or equivalently
These are the conservation equations for relativistic particle dynamics. In the classical case these equations read The function The main result concerning the existence of solutions to the classical Boltzmann equation is a theorem
by DiPerna and Lions [36] that proves existence, but not uniqueness, of renormalized solutions
(i.e. solutions in a weak sense, which are even more general than distributional solutions). An analogous
result holds in the relativistic case, as was shown by Dudyńsky and Ekiel-Jezewska [37]. Regarding
classical solutions, Illner and Shinbrot [58] have shown global existence of solutions to the nonrelativistic
Boltzmann equation for small initial data (close to vacuum). At present there is no analogous result for the
relativistic Boltzmann equation and this must be regarded as an interesting open problem. There is
however a recent result [74] for the homogeneous relativistic Boltzmann equation where global
existence is shown for small initial data and bounded scattering kernel. When the data are close to
equilibrium (see below), global existence of classical solutions has been proved by Glassey and
Strauss [48
] in the relativistic case and by Ukai [115] in the nonrelativistic case (see also [108]
and [69]).
The collision operator
may be written in an obvious way as
where
and
are called the gain and loss term, respectively. If the loss term is deleted the
gain-term-only Boltzmann equation is obtained. It is interesting to note that the methods of proof for the
small data results mentioned above concentrate on gain-term-only equations, and once that is solved it is
easy to include the loss term. In [5] it is shown that the gain-term-only classical and relativistic Boltzmann
equations blow up for initial data not restricted to a small neighbourhood of trivial data. Thus, if a
global existence proof for unrestricted data will be given it will necessarily use the full collision
operator.
The gain term has a nice regularizing property in the momentum variable. In [2
] it is proved that given
and
with
, then
The regularizing theorem has many applications. An important application is to prove that solutions
tend to equilibrium for large times. More precisely, Lions used the regularizing theorem to prove that
solutions to the (classical) Boltzmann equation, with periodic boundary conditions, converge in
to a
global Maxwellian,
as time goes to infinity. This result had first been obtained by Arkeryd [10] by using non-standard analysis. It should be pointed out that the convergence takes place through a sequence of times tending to infinity and it is not known whether the limit is unique or depends on the sequence. In the relativistic situation, the analogous question of convergence to a relativistic Maxwellian, or a Jüttner equilibrium solution,
had been studied by Glassey and Strauss [48, 49]. In the periodic case they proved convergence in a variety of function spaces for initial data close to a Jüttner solution. Having obtained the regularizing theorem for the relativistic gain term, it is a straightforward task to follow the method of Lions and prove convergence to a local Jüttner solution for arbitrary data (satisfying the natural bounds of finite energy and entropy) that is periodic in the space variables. In [2] it is next proved that the local Jüttner solution must be a global one, due to the periodicity of the solution.
For more information on the relativistic Boltzmann equation on Minkowski space we refer
to [41
, 34, 110] and in the nonrelativistic case we refer to the excellent review paper by Villani [116] and
the books [41
, 24].
| http://www.livingreviews.org/lrr-2005-2 |
© Max Planck Society and the author(s)
Problems/comments to |