In practice, to make the explicit computation of the Hadamard function, we will assume that the field
state is in the Euclidean vacuum and the background spacetime is de Sitter. Furthermore we will compute
the Hadamard function for a massless field, and will make a perturbative expansion in terms of the
dimensionless parameter
. Thus we consider
with
and where
are the positive frequency
-modes for a massless minimally coupled scalar field on a de Sitter
background, which define the Euclidean vacuum state,
[25].
The assumption of a massless field for the computation of the Hadamard function is made because
massless modes in de Sitter are much simpler to deal with than massive modes. We can see that this is,
however, a reasonable approximation as follows. For a given mode the
approximation is reasonable
when its wavelength
is shorter that the Compton wavelength,
. In our case we have a very
small mass
, and the horizon size
, where
is the Hubble constant
(here
with
the physical time
), satisfies that
. Thus, for modes inside the horizon,
and
is a reasonable approximation. Outside the horizon massive modes decay in
amplitude as
, whereas massless modes remain constant, thus when modes
leave the horizon the approximation will eventually break down. However, we only need to
ensure that the approximation is still valid after
e-folds, i.e.,
, but this is the
case since
given that
, and
as in most inflationary
models [190, 229].
The background geometry is not exactly that of de Sitter spacetime, for which
with
. One can expand in terms of the “slow-roll” parameters and assume that to first order
, where
is the physical time. The correlation function for the metric
perturbation (150
) can then be easily computed; see [253, 254
] for details. The final result, however, is very
weakly dependent on the initial conditions, as one may understand from the fact that the accelerated
expansion of de quasi-de Sitter spacetime during inflation erases the information about the initial
conditions. Thus one may take the initial time to be
, and obtain to lowest order in
the
expression
From this result two main conclusions are derived. First, the prediction of an almost Harrison–Zel’dovich
scale-invariant spectrum for large scales, i.e., small values of
. Second, since the correlation function is of
order of
, a severe bound to the mass
is imposed by the gravitational fluctuations derived
from the small values of the Cosmic Microwave Background (CMB) anisotropies detected by COBE. This
bound is of the order of
[265, 218
].
We should now comment on some differences with those works in [46, 213, 212, 39] which used a
self-interacting scalar field or a scalar field interacting nonlinearly with other fields. In those works an
important relaxation of the ratio
was found. The long wavelength modes of the inflaton field were
regarded as an open system in an environment made out of the shorter wavelength modes. Then, Langevin
type equations were used to compute the correlations of the long wavelength modes driven by the
fluctuations of the shorter wavelength modes. In order to get a significant relaxation on the above ratio,
however, one had to assume that the correlations of the free long wavelength modes, which correspond to
the dispersion of the system initial state, had to be very small. Otherwise they dominate by
several orders of magnitude those fluctuations that come from the noise of the environment. This
would require a great amount of fine-tuning for the initial quantum state of each mode [254
].
We should remark that in the model discussed here there is no environment for the inflaton
fluctuations. The inflaton fluctuations, however, are responsible for the noise that induces the metric
perturbations.
| http://www.livingreviews.org/lrr-2004-3 |
© Max Planck Society and the author(s)
Problems/comments to |