| 1 | Abrahams, A.M., Rezzolla, L., Rupright, M.E., Anderson, A., Anninos, P., Baumgarte, T.W.,
Bishop, N.T., Brandt, S.R., Browne, J.C., Camarda, K., Choptuik, M.W., Cook, G.B., Correll,
R.R., Evans, C.R., Finn, L.S., Fox, G.C., Gómez, R., Haupt, T., Huq, M.F., Kidder, L.E.,
Klasky, S.A., Laguna, P., Landry, W., Lehner, L., Lenaghan, J., Marsa, R.L., Massó, J.,
Matzner, R.A., Mitra, S., Papadopoulos, P., Parashar, M., Saied, F., Saylor, P.E., Scheel,
M.A., Seidel, E., Shapiro, S.L., Shoemaker, D.M., Smarr, L.L., Szilágyi, B., Teukolsky, S.A.,
van Putten, M.H.P.M., Walker, P., Winicour, J., and York Jr, J.W. (The Binary Black Hole
Grand Challenge Alliance), “Gravitational wave extraction and outer boundary conditions by
perturbative matching”, Phys. Rev. Lett., 80, 1812–1815, (1998). Related online version (cited
on 22 November 2004):
|
|
| 2 | Alcubierre, M., Benger, W., Brügmann, B., Lanfermann, G., Nerger, L., Seidel, E., and
Takahashi, R., “3D Grazing Collision of Two Black Holes”, Phys. Rev. Lett., 87, 271103, 1–4,
(2001). Related online version (cited on 22 November 2004):
|
|
| 3 | Alcubierre, M., Brügmann, B., Pollney, D., Seidel, E., and Takahashi, R., “Black hole excision
for dynamic black holes”, Phys. Rev. D, 64, 061501, 1–5, (2001). Related online version (cited
on 22 November 2004):
|
|
| 4 | Andrade, Z., Beetle, C., Blinov, A., Bromley, B., Burko, L.M., Cranor, M., Owen, R., and
Price, R.H., “Periodic standing-wave approximation: Overview and three-dimensional scalar
models”, Phys. Rev. D, 70, 064001, 1–14, (2003). Related online version (cited on 22 November
2004):
|
|
| 5 | Anninos, P., Bernstein, D., Brandt, S.R., Hobill, D., Seidel, E., and Smarr, L.L., “Dynamics of Black Hole Apparent Horizons”, Phys. Rev. D, 50, 3801–3819, (1994). | |
| 6 | Anninos, P., Camarda, K., Libson, J., Massó, J., Seidel, E., and Suen, W.-M., “Finding
apparent horizons in dynamic 3D numerical spacetimes”, Phys. Rev. D, 58, 024003, 1–12,
(1998). Related online version (cited on 22 November 2004):
|
|
| 7 | Arnowitt, R., Deser, S., and Misner, C.W., “The dynamics of general relativity”, in Witten, L., ed., Gravitation: An Introduction to Current Research, pp. 227–265, (Wiley, New York, U.S.A., 1962). | |
| 8 | Ashtekar, A., “Black Hole Entropy: Inclusion of Distortion and Angular Momentum”, lecture
notes, Penn State University, (2003). URL (cited on 22 November 2004):
|
|
| 9 | Ashtekar, A., Baez, J.C., Corichi, A., and Krasnov, K.V., “Quantum Geometry and Black Hole
Entropy”, Phys. Rev. Lett., 80, 904–907, (1998). Related online version (cited on 22 November
2004):
|
|
| 10 | Ashtekar, A., Baez, J.C., and Krasnov, K.V., “Quantum Geometry of Isolated Horizons and
Black Hole Entropy”, Adv. Theor. Math. Phys., 4, 1–94, (2000). Related online version (cited
on 22 November 2004):
|
|
| 11 | Ashtekar, A., Beetle, C., Dreyer, O., Fairhurst, S., Krishnan, B., Lewandowski, J., and
Wisniewski, J., “Generic Isolated Horizons and Their Applications”, Phys. Rev. Lett., 85,
3564–3567, (2000). Related online version (cited on 22 November 2004):
|
|
| 12 | Ashtekar, A., Beetle, C., and Fairhurst, S., “Isolated horizons: a generalization of black hole
mechanics”, Class. Quantum Grav., 16, L1–L7, (1999). Related online version (cited on 22
November 2004):
|
|
| 13 | Ashtekar, A., Beetle, C., and Fairhurst, S., “Mechanics of isolated horizons”, Class. Quantum
Grav., 17, 253–298, (2000). Related online version (cited on 22 November 2004):
|
|
| 14 | Ashtekar, A., Beetle, C., and Lewandowski, J., “Mechanics of rotating isolated horizons”, Phys.
Rev. D, 64, 044016, 1–17, (2001). Related online version (cited on 22 November 2004):
|
|
| 15 | Ashtekar, A., Beetle, C., and Lewandowski, J., “Geometry of generic isolated horizons”, Class.
Quantum Grav., 19, 1195–1225, (2002). Related online version (cited on 22 November 2004):
|
|
| 16 | Ashtekar, A., and Bojowald, M., unknown format. in preparation. | |
| 17 | Ashtekar, A., Bombelli, L., and Reula, O.A., “The covariant phase space of asymptotically flat gravitational fields”, in Francaviglia, M., ed., Mechanics, Analysis and Geometry: 200 Years After Lagrange, pp. 417–450, (North-Holland; Elsevier, Amsterdam, Netherlands; New York, U.S.A., 1991). | |
| 18 | Ashtekar, A., and Corichi, A., “Laws governing isolated horizons: Inclusion of dilaton coupling”,
Class. Quantum Grav., 17, 1317–1332, (2000). Related online version (cited on 22 November
2004):
|
|
| 19 | Ashtekar, A., and Corichi, A., “Non-minimal couplings, quantum geometry and black hole entropy”, Class. Quantum Grav., 20, 4473–4484, (2003). | |
| 20 | Ashtekar, A., Corichi, A., and Sudarsky, D., “Hairy black holes, horizon mass and solitons”,
Class. Quantum Grav., 18, 919–940, (2001). Related online version (cited on 22 November
2004):
|
|
| 21 | Ashtekar, A., Corichi, A., and Sudarsky, D., “Non-Minimally Coupled Scalar Fields and Isolated Horizons”, Class. Quantum Grav., 20, 3513–3425, (2003). | |
| 22 | Ashtekar, A., Dreyer, O., and Wisniewski, J., “Isolated Horizons in 2+1 Gravity”, Adv. Theor.
Math. Phys., 6, 507–555, (2002). Related online version (cited on 22 November 2004):
|
|
| 23 | Ashtekar, A., Engle, J., Pawlowski, T., and Van Den Broeck, C., “Multipole moments of
isolated horizons”, Class. Quantum Grav., 21, 2549–2570, (2004). Related online version (cited
on 22 November 2004):
|
|
| 24 | Ashtekar, A., Engle, J., and Van Den Broeck, C., “Quantum geometry of isolated horizons and
black hole entropy: Inclusion of distortion and rotation”, (December 2004). URL (cited on 13
December 2004):
|
|
| 25 | Ashtekar, A., Fairhurst, S., and Krishnan, B., “Isolated horizons: Hamiltonian evolution and
the first law”, Phys. Rev. D, 62, 104025, 1–29, (2000). Related online version (cited on 22
November 2004):
|
|
| 26 | Ashtekar, A., and Galloway, G.J., unknown format, (2004). in preparation. | |
| 27 | Ashtekar, A., Hayward, S.A., and Krishnan, B., unknown format. in preparation. | |
| 28 | Ashtekar, A., and Krasnov, K., “Quantum Geometry and Black Holes”, in Iyer, B., and Bhawal,
B., eds., Black Holes, Gravitational Radiation and the Universe: Essays in Honor of C.V.
Vishveshwara, Fundamental Theories of Physics, vol. 100, pp. 149–170, (Kluwer, Dordrecht,
Netherlands; Boston, U.S.A., 1999). Related online version (cited on 22 November 2004):
|
|
| 29 | Ashtekar, A., and Krishnan, B., “Dynamical Horizons: Energy, Angular Momentum, Fluxes,
and Balance Laws”, Phys. Rev. Lett., 89, 261101, 1–4, (2002). Related online version (cited on
22 November 2004):
|
|
| 30 | Ashtekar, A., and Krishnan, B., “Dynamical horizons and their properties”, Phys. Rev. D, 68,
104030, 1–25, (2003). Related online version (cited on 22 November 2004):
|
|
| 31 | Ashtekar, A., and Lewandowski, J., “Background independent quantum gravity: A status
report”, Class. Quantum Grav., 21, R53–R152, (2004). Related online version (cited on 22
November 2004):
|
|
| 32 | Ashtekar, A., and Streubel, M., “Symplective geometry of radiative fields at null infinity”, Proc. R. Soc. London, Ser. A, 376, 585–607, (1981). | |
| 33 | Baiotti, L., Hawke, I., Montero, P.J., Löffler, F., Rezzolla, L., Stergioulas, N., Font, J.A.,
and Seidel, E., “Three-dimensional relativistic simulations of rotating neutron star collapse
to a Kerr black hole”, Phys. Rev. D, 71, 024035, (2005). Related online version (cited on 22
November 2004):
|
|
| 34 | Bardeen, J.M., Carter, B., and Hawking, S.W., “The four laws of black hole mechanics”, Commun. Math. Phys., 31, 161–170, (1973). | |
| 35 | Barreira, M., Carfora, M., and Rovelli, C., “Physics with non-perturbative quantum gravity: Radiation from a quantum black hole”, Gen. Relativ. Gravit., 28, 1293–1299, (1996). | |
| 36 | Bartnik, R., and Isenberg, J.A., “Summary of spherically symmetric dynamical horizons”, personal communication. | |
| 37 | Bartnik, R., and McKinnon, J., “Particlelike Solutions of the Einstein–Yang–Mills Equations”, Phys. Rev. Lett., 61, 141–143, (1988). | |
| 38 | Baumgarte, T.W., “Innermost stable circular orbit of binary black holes”, Phys. Rev. D, 62,
024018, 1–8, (2000). Related online version (cited on 22 November 2004):
|
|
| 39 | Beig, R., “The multipole expansion in general relativity”, Acta Phys. Austriaca, 53, 249–270, (1981). | |
| 40 | Beig, R., and Simon, W., “Proof of a multipole conjecture due to Geroch”, Commun. Math. Phys., 78, 75–82, (1980). | |
| 41 | Beig, R., and Simon, W., “On the multipole expansion of stationary spacetimes”, Proc. R. Soc. London, Ser. A, 376, 333–341, (1981). | |
| 42 | Bekenstein, J.D., “Black Holes and Entropy”, Phys. Rev. D, 7, 2333–2346, (1973). | |
| 43 | Bekenstein, J.D., “Generalized second law of thermodynamics in black-hole physics”, Phys. Rev. D, 9, 3292–3300, (1974). | |
| 44 | Bekenstein, J.D., and Meisels, A., “Einstein A and B coefficients for a black hole”, Phys. Rev. D, 15, 2775–2781, (1977). | |
| 45 | Ben-Dov, I., “The Penrose inequality and apparent horizons”, (August 2004). URL (cited on
22 November 2004):
|
|
| 46 | Beyer, F., Krishnan, B., and Schnetter, E., unknown format. in preparation. | |
| 47 | Bizoń, P., “Colored black holes”, Phys. Rev. Lett., 64, 2844–2847, (1990). | |
| 48 | Bizoń, P., and Chmaj, T., “Gravitating skyrmions”, Phys. Lett. B, 297, 55–62, (1992). | |
| 49 | Bizoń, P., and Chmaj, T., “Remark on formation of colored black holes via fine-tuning”, Phys.
Rev. D, 61, 067501, 1–2, (2000). Related online version (cited on 22 November 2004):
|
|
| 50 | Bizoń, P., and Wald, R.M., “The n=1 colored black hole is unstable”, Phys. Lett. B, 267, 173–174, (1991). | |
| 51 | Blackburn, J.K., and Detweiler, S.L., “Close black-hole binary systems”, Phys. Rev. D, 46, 2318–2333, (1992). | |
| 52 | Bondi, H., van der Burg, M.G.J., and Metzner, A.W.K., “Gravitational waves in general relativity VII. Waves from axi-symmetric isolated systems”, Proc. R. Soc. London, Ser. A, 269, 21–52, (1962). | |
| 53 | Booth, I., and Fairhurst, S., “The first law for slowly evolving horizons”, Phys. Rev. Lett., 92,
011102, (2004). Related online version (cited on 22 November 2004):
|
|
| 54 | Booth, I.S., “Metric-based Hamiltonians, null boundaries and isolated horizons”, Class.
Quantum Grav., 18, 4239–4264, (2001). Related online version (cited on 22 November 2004):
|
|
| 55 | Bowen, J.M., and York Jr, J.W., “Time-asymmetric initial data for black holes and black-hole collisions”, Phys. Rev. D, 21, 2047–2056, (1980). | |
| 56 | Brandt, S.R., Correll, R.R., Gómez, R., Huq, M.F., Laguna, P., Lehner, L., Marronetti,
P., Matzner, R.A., Neilsen, D., Pullin, J., Schnetter, E., Shoemaker, D.M., and Winicour,
J., “Grazing collision of black holes via the excision of singularities”, Phys. Rev. Lett., 85,
5496–5499, (2000). Related online version (cited on 22 November 2004):
|
|
| 57 | Bray, H.L., “Proof of the Riemannian Penrose inequality using the positive energy theorem”, J. Differ. Geom., 59, 177–267, (2001). | |
| 58 | Breitenlohner, P., Forgács, P., and Maison, D., “On Static Spherically Symmetric Solutions of the Einstein–Yang–Mills Equations”, Commun. Math. Phys., 163, 141–172, (1994). | |
| 59 | Breitenlohner, P., Forgács, P., and Maison, D., “Gravitating monopole solutions II”, Nucl. Phys. B, 442, 126–156, (1995). | |
| 60 | Bretón, N., “Born–Infeld black hole in the isolated horizon framework”, Phys. Rev. D, 67,
124004, 1–4, (2003). Related online version (cited on 22 November 2004):
|
|
| 61 | Brill, D.R., and Lindquist, R.W., “Interaction Energy in Geometrostatics”, Phys. Rev., 131, 471–476, (1963). | |
| 62 | Brügmann, B., Tichy, W., and Jansen, N., “Numerical Simulation of Orbiting Black Holes”,
Phys. Rev. Lett., 92, 211101, (2004). Related online version (cited on 22 November 2004):
|
|
| 63 | Carter, B., “Black Hole Equilibrium States”, in DeWitt, C., and DeWitt, B.S., eds., Black Holes, Based on lectures given at the 23rd session of the Summer School of Les Houches, 1972, pp. 57–214, (Gordon and Breach, New York, U.S.A., 1973). | |
| 64 | Chandrasekhar, S., The Mathematical Theory of Black Holes, The International Series of Monographs on Physics, vol. 69, (Clarendon Press, Oxford, U.K., 1983). | |
| 65 | Choptuik, M.W., “Universality and scaling in gravitational collapse of a massless scalar field”, Phys. Rev. Lett., 70(1), 9–12, (1993). | |
| 66 | Chruściel, P.T., “On the global structure of Robinson–Trautman space-time”, Proc. R. Soc. London, Ser. A, 436, 299–316, (1992). | |
| 67 | Chruściel, P.T., “ ’No-Hair’ Theorems: Folklore, Conjectures, Results”, in Beem, J.K., and Duggal, K.L., eds., Differential Geometry and Mathematical Physics, AMS-CMS Special Session on Geometric Methods in Mathematical Physics, August 15–19, 1993, Vancouver, British Columbia, Canada, Contemporary Mathematics, vol. 170, pp. 23–49, (American Mathematical Society, Providence, U.S.A., 1994). | |
| 68 | Cook, G.B., “Three-dimensional initial data for the collision of two black holes. II. Quasicircular
orbits for equal-mass black holes”, Phys. Rev. D, 50, 5025–5032, (October 1994). Related online
version (cited on 22 November 2004):
|
|
| 69 | Cook, G.B., “Initial Data for Numerical Relativity”, Living Rev. Relativity, 2, lrr-2000-5,
(2000). URL (cited on 22 November 2004):
http://www.livingreviews.org/lrr-2000-5. |
|
| 70 | Cook, G.B., “Corotating and irrotational binary black holes in quasicircular orbits”, Phys. Rev.
D, 65, 084003, 1–13, (2002). Related online version (cited on 22 November 2004):
|
|
| 71 | Cook, G.B., Huq, M.F., Klasky, S.A., Scheel, M.A., Abrahams, A.M., Anderson, A., Anninos,
P., Baumgarte, T.W., Bishop, N.T., Brandt, S.R., Browne, J.C., Camarda, K., Choptuik,
M.W., Correll, R.R., Evans, C.R., Finn, L.S., Fox, G.C., Gómez, R., Haupt, T., Kidder, L.E.,
Laguna, P., Landry, W., Lehner, L., Lenaghan, J., Marsa, R.L., Massó, J., Matzner, R.A.,
Mitra, S., Papadopoulos, P., Parashar, M., Rezzolla, L., Rupright, M.E., Saied, F., Saylor,
P.E., Seidel, E., Shapiro, S.L., Shoemaker, D.M., Smarr, L.L., Suen, W.-M., Szilágyi, B.,
Teukolsky, S.A., van Putten, M.H.P.M., Walker, P., Winicour, J., and York Jr, J.W. (Binary
Black Hole Grand Challenge Alliance), “Boosted Three-Dimensional Black-Hole Evolutions
with Singularity Excision”, Phys. Rev. Lett., 80, 2512–2516, (1998). Related online version
(cited on 22 November 2004):
|
|
| 72 | Cook, G.B., and Pfeiffer, H.P., “Excision boundary conditions for black-hole initial data”, Phys.
Rev. D, 70, 104016, 1–24, (2004). Related online version (cited on 22 November 2004):
|
|
| 73 | Corichi, A., Kleihaus, B., and Kunz, J., personal communication, (2002). | |
| 74 | Corichi, A., Nucamendi, U., and Sudarsky, D., “Einstein–Yang–Mills isolated horizons: Phase
space, mechanics, hair, and conjectures”, Phys. Rev. D, 62, 044046, 1–19, (2000). Related
online version (cited on 22 November 2004):
|
|
| 75 | Corichi, A., Nucamendi, U., and Sudarsky, D., “Mass formula for Einstein–Yang–Mills
solitons”, Phys. Rev. D, 64, 107501, 1–4, (2001). Related online version (cited on 22 November
2004):
|
|
| 76 | Corichi, A., and Sudarsky, D., “Mass of colored black holes”, Phys. Rev. D, 61, 101501, 1–4,
(2000). Related online version (cited on 22 November 2004):
|
|
| 77 | Cutler, C., and Thorne, K.S., “An Overview of Gravitational-Wave Sources”, in Bishop,
N.T., and Maharaj, S.D., eds., General Relativity and Gravitation, Proceedings of the 16th
International Conference on General Relativity and Gravitation, Durban, South Africa, 15 – 21
July, 2001, pp. 72–111, (World Scientific, Singapore; River Edge, U.S.A., 2002). Related online
version (cited on 22 November 2004):
|
|
| 78 | Dain, S., “Black hole interaction energy”, Phys. Rev. D, 66, 084019, 1–8, (2002). Related online
version (cited on 22 November 2004):
|
|
| 79 | Dain, S., “Trapped surfaces as boundaries for the constraint equations”, Class. Quantum Grav.,
21, 555–574, (2004). Related online version (cited on 22 November 2004):
|
|
| 80 | Dain, S., Jaramillo, J.L., and Krishnan, B., “On the existence of initial data containing isolated
black holes”, (December 2004). URL (cited on 13 December 2004):
|
|
| 81 | Diener, P., personal communication. | |
| 82 | Diener, P., “A new general purpose event horizon finder for 3D numerical spacetimes”, Class.
Quantum Grav., 20, 4901–4918, (2003). Related online version (cited on 22 November 2004):
|
|
| 83 | Domagala, M., and Lewandowski, J., “Black hole entropy from Quantum Geometry”, Class.
Quantum Grav., 21, 5233–5243, (2004). Related online version (cited on 22 November 2004):
|
|
| 84 | Dreyer, O., Krishnan, B., Schnetter, E., and Shoemaker, D., “Introduction to isolated horizons
in numerical relativity”, Phys. Rev. D, 67, 024018, 1–14, (2003). Related online version (cited
on 22 November 2004):
|
|
| 85 | Eardley, D.M., “Black Hole Boundary Conditions and Coordinate Conditions”, Phys. Rev. D,
57, 2299–2304, (1998). Related online version (cited on 22 November 2004):
|
|
| 86 | Ernst, F.J., “Black holes in a magnetic universe”, J. Math. Phys., 17, 54–56, (1976). | |
| 87 | Fairhurst, S., and Krishnan, B., “Distorted black holes with charge”, Int. J. Mod. Phys. D, 10,
691–710, (2001). Related online version (cited on 22 November 2004):
|
|
| 88 | Finn, L.S., personal communication. | |
| 89 | Friedman, J.L., Schleich, K., and Witt, D.M., “Topological Censorship”, Phys. Rev. Lett., 71,
1486–1489, (1993). Related online version (cited on 22 November 2004):
|
|
| 90 | Friedman, J.L., Uryū, K., and Shibata, M., “Thermodynamics of binary black holes and
neutron stars”, Phys. Rev. D, 65, 064035, 1–20, (2002). Related online version (cited on 22
November 2004):
|
|
| 91 | Friedrich, H., “On the regular and the asymptotic characteristic initial value problem for Einstein’s vacuum field equations”, Proc. R. Soc. London, Ser. A, 375, 169–184, (1981). | |
| 92 | Galloway, G.J., personal communication, (2004). | |
| 93 | Gambini, R., Obregón, O., and Pullin, J., “Yang–Mills analogs of the Immirzi ambiguity”,
Phys. Rev. D, 59, 047505, 1–4, (1999). Related online version (cited on 22 November 2004):
|
|
| 94 | Garfinkle, D., Horowitz, G.T., and Strominger, A., “Charged black holes in string theory”, Phys. Rev. D, 43, 3140–3143, (1991). | |
| 95 | Garfinkle, D., Horowitz, G.T., and Strominger, A., “Erratum: Charged black holes in string theory”, Phys. Rev. D, 45, 3888, (1992). | |
| 96 | Garfinkle, D., and Mann, R., “Generalized entropy and Noether charge”, Class. Quantum
Grav., 17, 3317–3324, (2000). Related online version (cited on 22 November 2004):
|
|
| 97 | Geroch, R., “Multipole Moments. II. Curved Space”, J. Math. Phys., 11, 2580–2588, (1970). | |
| 98 | Geroch, R., and Hartle, J.B., “Distorted Black Holes”, J. Math. Phys., 23, 680, (1982). | |
| 99 | Gibbons, G.W., and Hawking, S.W., “Cosmological event horizons, thermodynamics, and particle creation”, Phys. Rev. D, 15, 2738–2751, (1977). | |
| 100 | Gibbons, G.W., Kallosh, R.E., and Kol, B., “Moduli, Scalar Charges, and the First Law of Black Hole Thermodynamics”, Phys. Rev. Lett., 77, 4992–4995, (1996). | |
| 101 | Gibbons, G.W., and Maeda, K., “Black holes and membranes in higher-dimensional theories with dilaton fields”, Nucl. Phys. B, 298, 741–775, (1988). | |
| 102 | Gonzalez, J., and Van Den Broeck, C., unknown format. in preparation. | |
| 103 | Gourgoulhon, E., Grandclément, P., and Bonazzola, S., “Binary black holes in circular orbits.
I. A global spacetime approach”, Phys. Rev. D, 65, 044020, 1–19, (2002). Related online version
(cited on 22 November 2004):
|
|
| 104 | Grandclément, P., Gourgoulhon, E., and Bonazzola, S., “Binary black holes in circular orbits.
II. Numerical methods and first results”, Phys. Rev. D, 65, 044021, 1–18, (2002). Related online
version (cited on 22 November 2004):
|
|
| 105 | Gundlach, C., “Critical phenomena in gravitational collapse”, Adv. Theor. Math. Phys., 2,
1–49, (1998). Related online version (cited on 22 November 2004):
|
|
| 106 | Hájíček, P., “Stationary electrovacuum spacetimes with bifurcate horizons”, J. Math. Phys., 16, 518–522, (1975). | |
| 107 | Hansen, R.O., “Multipole moments of stationary space-times”, J. Math. Phys., 15, 46–52, (1974). | |
| 108 | Hartle, J.B., and Hawking, S.W., “Energy and Angular Momentum Flow in to a Black Hole”, Commun. Math. Phys., 27, 283–290, (1972). | |
| 109 | Hartmann, B., Kleihaus, B., and Kunz, J., “Axially symmetric monopoles and black holes in
Einstein–Yang–Mills–Higgs theory”, Phys. Rev. D, 65, 024027, 1–22, (2002). Related online
version (cited on 22 November 2004):
|
|
| 110 | Hawking, S.W., “Black holes in general relativity”, Commun. Math. Phys., 25, 152–166, (1972). | |
| 111 | Hawking, S.W., “The Event Horizon”, in DeWitt, C., and DeWitt, B.S., eds., Black Holes, Based on lectures given at the 23rd session of the Summer School of Les Houches, 1972, pp. 1–56, (Gordon and Breach, New York, U.S.A., 1973). | |
| 112 | Hawking, S.W., “Particle creation by black holes”, Commun. Math. Phys., 43, 199–220, (1975). | |
| 113 | Hawking, S.W., and Ellis, G.F.R., The Large Scale Structure of Space-Time, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge, U.K., 1973). | |
| 114 | Hawking, S.W., and Hunter, C.J., “Gravitational entropy and global structure”, Phys. Rev. D,
59, 044025, 1–10, (1999). Related online version (cited on 22 November 2004):
|
|
| 115 | Hayward, S., “Energy and entropy conservation for dynamical black holes”, Phys. Rev. D, 70,
104027, 1–13, (2004). Related online version (cited on 22 November 2004):
|
|
| 116 | Hayward, S.A., “General laws of black hole dynamics”, Phys. Rev. D, 49, 6467–6474, (1994).
Related online version (cited on 22 November 2004):
|
|
| 117 | Hayward, S.A., “Spin coefficient form of the new laws of black hole dynamics”, Class. Quantum
Grav., 11, 3025–3035, (1994). Related online version (cited on 22 November 2004):
|
|
| 118 | Hayward, S.A., “Energy conservation for dynamical black holes”, (April 2004). URL (cited on
22 November 2004):
|
|
| 119 | Heusler, M., Black Hole Uniqueness Theorems, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1996). | |
| 120 | Horowitz, G.T., “Quantum States of Black Holes”, in Wald, R.M., ed., Black Holes and Relativistic Stars, Proceedings of the Symposium dedicated to the memory of Subrahmanyan Chandrasekhar, held in Chicago, December 14–15, 1996, pp. 241–266, (University of Chicago Press, Chicago, U.S.A.; London, U.K., 1998). | |
| 121 | Hughes, S.A., Keeton II, C.R., Walker, P., Walsh, K.T., Shapiro, S.L., and Teukolsky, S.A., “Finding Black Holes in Numerical Spacetimes”, Phys. Rev. D, 49, 4004–4015, (1994). | |
| 122 | Huisken, G., and Ilmanen, T., “The inverse mean curvature flow and the Riemannian Penrose inequality”, J. Differ. Geom., 59, 353–437, (2001). | |
| 123 | Iyer, V., and Wald, R.M., “Some properties of Noether charge and a proposal for dynamical black hole entropy”, Phys. Rev. D, 50, 846–864, (1994). | |
| 124 | Jacobson, T., Kang, G., and Myers, R.C., “On black hole entropy”, Phys. Rev. D, 49, 6587–6598, (1994). | |
| 125 | Jaramillo, J.L., Gourgoulhon, E., and Mena Marugán, G.A., “Inner boundary conditions for
black hole Initial Data derived from Isolated Horizons”, (2004). URL (cited on 22 November
2004):
|
|
| 126 | Kastor, D., and Traschen, J., “Cosmological multi-black-hole solutions”, Phys. Rev. D, 47, 5370–5375, (1993). | |
| 127 | Khanna, G., Baker, J., Gleiser, R.J., Laguna, P., Nicasio, C.O., Nollert, H.-P., Price, R.H., and
Pullin, J., “Inspiraling Black Holes: The Close Limit”, Phys. Rev. Lett., 83, 3581–3584, (1999).
Related online version (cited on 22 November 2004):
|
|
| 128 | Kleihaus, B., and Kunz, J., “Static axially symmetric Einstein–Yang–Mills-dilaton solutions: Regular solutions”, Phys. Rev. D, 57, 834–856, (1997). | |
| 129 | Kleihaus, B., and Kunz, J., “Static Black-Hole Solutions with Axial Symmetry”, Phys. Rev. Lett., 79, 1595–1598, (1997). | |
| 130 | Kleihaus, B., and Kunz, J., “Static axially symmetric Einstein–Yang–Mills-Dilaton solutions: 2. Black hole solutions”, Phys. Rev. D, 57, 6138–6157, (1998). | |
| 131 | Kleihaus, B., and Kunz, J., “Non-Abelian black holes with magnetic dipole hair”, Phys. Lett.
B, 494, 130–134, (2000). Related online version (cited on 22 November 2004):
|
|
| 132 | Kleihaus, B., Kunz, J., and Navarro-Lérida, F., “Rotating dilaton black holes with hair”,
Phys. Rev. D, 69, 064028, 1–30, (2004). Related online version (cited on 22 November 2004):
|
|
| 133 | Kleihaus, B., Kunz, J., Sood, A., and Wirschins, M., “Horizon properties of Einstein–Yang–Mills black hole”, Phys. Rev. D, 65, 061502, 1–4, (2002). | |
| 134 | Korzynski, N., Lewandowski, J., and Pawlowski, T., “Mechanics of isolated horizons in higher dimensions”, unknown format. in preparation. | |
| 135 | Krasnov, K.V., “Geometrical entropy from loop quantum gravity”, Phys. Rev. D, 55(6), 3505–3513, (1997). | |
| 136 | Krasnov, K.V., “On statistical mechanics of Schwarzschild black hole”, Gen. Relativ. Gravit., 30, 53–68, (1998). | |
| 137 | Krishnan, B., Isolated Horizons in Numerical Relativity, Ph.D. Thesis, (Pennsylvania State
University, University Park, U.S.A., 2002). Related online version (cited on 22 November 2004):
|
|
| 138 | Kuroda, Y., “Naked Singularities in the Vaidya Spacetimee”, Prog. Theor. Phys., 72, 63–72, (1984). | |
| 139 | Lehner, L., “Numerical Relativity: A review”, Class. Quantum Grav., 18, R25–R86, (2001).
Related online version (cited on 22 November 2004):
|
|
| 140 | Lehner, L., Bishop, N.T., Gómez, R., Szilágyi, B., and Winicour, J., “Exact solutions for the
intrinsic geometry of black hole coalescence”, Phys. Rev. D, 60, 044005, 1–10, (1999). Related
online version (cited on 22 November 2004):
|
|
| 141 | Lewandowski, J., “Spacetimes admitting isolated horizons”, Class. Quantum Grav., 17,
L53–L59, (2000). Related online version (cited on 22 November 2004):
|
|
| 142 | Lewandowski, J., and Pawlowski, T., “Geometric characterizations of the Kerr isolated
horizon”, Int. J. Mod. Phys. D, 11, 739–746, (2001). Related online version (cited on 22
November 2004):
|
|
| 143 | Lewandowski, J., and Pawlowski, T., “Extremal isolated horizons: a local uniqueness theorem”,
Class. Quantum Grav., 20, 587–606, (2003). Related online version (cited on 22 November
2004):
|
|
| 144 | Lewandowski, J., and Pawlowski, T., “Quasi-local rotating black holes in higher dimension:
geometry”, (October 2004). URL (cited on 22 November 2004):
|
|
| 145 | Lichnerowicz, A., “L’integration des équations de la gravitation relativiste et le problème des n corps”, J. Math. Pures Appl., 23, 37–63, (1944). | |
| 146 | Maldacena, J.M., and Strominger, A., “Statistical Entropy of Four-Dimensional Extremal Black
Holes”, Phys. Rev. Lett., 77, 428–429, (1996). Related online version (cited on 22 November
2004):
|
|
| 147 | Mann, R.B., “Misner string entropy”, Phys. Rev. D, 60, 104047, 1–5, (1999). Related online
version (cited on 22 November 2004):
|
|
| 148 | Masood-ul Alam, A.K.M., “Uniqueness of a static charged dilaton black hole”, Class. Quantum Grav., 10, 2649–2656, (1993). | |
| 149 | Meissner, K.A., “Black hole entropy in Loop Quantum Gravity”, Class. Quantum Grav., 21,
5245–5251, (2004). Related online version (cited on 22 November 2004):
|
|
| 150 | Misner, C.W., “Wormhole Initial Conditions”, Phys. Rev., 118, 1110–1111, (1959). | |
| 151 | Misner, C.W., “The Method of Images in Geometrostatics”, Ann. Phys. (N.Y.), 24, 102–117, (October 1963). | |
| 152 | Nakao, K., Shiromizu, T., and Hayward, S.A., “Horizons of the Kastor–Traschen multi-black-hole cosmos”, Phys. Rev. D, 52, 796–808, (1995). | |
| 153 | New, K.C.B., “Gravitational Waves from Gravitational Collapse”, Living Rev. Relativity, 6(2),
lrr-2003-2, (2003). URL (cited on 22 November 2004):
http://www.livingreviews.org/lrr-2003-2. |
|
| 154 | Núñez, D., Quevedo, H., and Sudarsky, D., “Black Holes Have No Short Hair”, Phys. Rev.
Lett., 76, 571–574, (1996). Related online version (cited on 22 November 2004):
|
|
| 155 | Pawlowski, T., Lewandowski, J., and Jezierski, J., “Spacetimes foliated by Killing horizons”,
Class. Quantum Grav., 21, 1237–1252, (2004). Related online version (cited on 22 November
2004):
|
|
| 156 | Pejerski, D.W., and Newman, E.T., “Trapped surface and the development of singularities”, J. Math. Phys., 9, 1929–1937, (1971). | |
| 157 | Penrose, R., “Naked singularities”, Ann. N.Y. Acad. Sci., 224, 125–134, (1973). | |
| 158 | Pfeiffer, H.P., Cook, G.B., and Teukolsky, S.A., “Comparing initial-data sets for binary black
holes”, Phys. Rev. D, 66, 024047, 1–17, (2002). Related online version (cited on 22 November
2004):
|
|
| 159 | Pfeiffer, H.P., Teukolsky, S.A., and Cook, G.B., “Quasicircular orbits for spinning binary black
holes”, Phys. Rev. D, 62, 104018, 1–11, (2000). Related online version (cited on 22 November
2004):
|
|
| 160 | Pullin, J., “The close limit of colliding black holes: An update”, Prog. Theor. Phys. Suppl.,
136, 107–120, (1999). Related online version (cited on 22 November 2004):
|
|
| 161 | Rendall, A.D., “Reduction of the characteristic initial value problem to the Cauchy problem and its applications to the Einstein equations”, Proc. R. Soc. London, Ser. A, 427, 221–239, (1990). | |
| 162 | Rovelli, C., “Black Hole Entropy from Loop Quantum Gravity”, Phys. Rev. Lett., 77, 3288–3291, (1996). | |
| 163 | Rovelli, C., “Loop quantum gravity and black hole physics”, Helv. Phys. Acta, 69, 582–611, (1996). | |
| 164 | Rovelli, C., “Loop Quantum Gravity”, Living Rev. Relativity, 1, lrr-1998-1, (1998). URL (cited
on 22 November 2004):
http://www.livingreviews.org/lrr-1998-1. |
|
| 165 | Sachs, R., and Bergmann, P.G., “Structure of Particles in Linearized Gravitational Theory”, Phys. Rev., 112, 674–680, (1958). | |
| 166 | Senovilla, J.M.M., “On the existence of horizons in spacetimes with vanishing curvature
invariants”, J. High Energy Phys., 11, 046, (2003). Related online version (cited on 22 November
2004):
|
|
| 167 | Shapiro, S.L., and Teukolsky, S.A., “Collision of relativistic clusters and the formation of black holes”, Phys. Rev. D, 45, 2739–2750, (1992). | |
| 168 | Shoemaker, D.M., Huq, M.F., and Matzner, R.A., “Generic tracking of multiple apparent
horizons with level flow”, Phys. Rev. D, 62, 124005, 1–12, (2000). Related online version (cited
on 22 November 2004):
|
|
| 169 | Simon, W., and Beig, R., “The multipole structure of stationary space-times”, J. Math. Phys., 24, 1163–1171, (1983). | |
| 170 | Smarr, L.L., “Surface Geometry of Charged Rotating Black Holes”, Phys. Rev. D, 7, 289–295, (1973). | |
| 171 | Smolin, L., “Linking topological quantum field theory and nonperturbative quantum gravity”, J. Math. Phys., 36, 6417–6455, (1995). | |
| 172 | Smoller, J.A., Wasserman, A.G., and Yau, S.-T., “Existence of Black Hole Solutions for the Einstein–Yang/Mills Equations”, Commun. Math. Phys., 154, 377–401, (1993). | |
| 173 | Straumann, N., and Zhou, Z.-H., “Instability of a colored black hole solution”, Phys. Lett. B, 243, 33–35, (1990). | |
| 174 | Straumann, N., and Zhou, Z.H., “Instability of the Bartnik–McKinnon solution to the Einstein–Yang–Mills equations”, Phys. Lett. B, 237, 353, (1990). | |
| 175 | Strominger, A., and Vafa, C., “Microscopic origin of the Bekenstein–Hawking entropy”, Phys.
Lett. B, 379, 99–104, (1996). Related online version (cited on 22 November 2004):
|
|
| 176 | Sudarsky, D., and Wald, R.M., “Extrema of mass, stationarity and staticity, and solutions to the Einstein–Yang–Mills equations”, Phys. Rev. D, 46, 1453–1474, (1992). | |
| 177 | Thiemann, T., “Introduction to Modern Canonical Quantum General Relativity”, (2001). URL
(cited on 22 November 2004):
|
|
| 178 | Thornburg, J., “A fast apparent horizon finder for three-dimensional Cartesian grids in
numerical relativity”, Class. Quantum Grav., 21, 743–766, (2004). Related online version (cited
on 22 November 2004):
|
|
| 179 | Torii, T., and Maeda, K., “Black holes with non-Abelian hair and their thermodynamical properties”, Phys. Rev. D, 48, 1643–1651, (1993). | |
| 180 | Vaidya, P.C., “The gravitational field of a radiating star”, Proc. Indian Acad. Sci., Sect. A, 33, 264, (1951). | |
| 181 | Van Den Broeck, C., personal communication. | |
| 182 | Volkov, M.S., and Gal’tsov, D.V., “Gravitating non-Abelian solitons and black holes with Yang–Mills fields”, Phys. Rep., 319, 1, (1999). | |
| 183 | Wald, R.M., “Black hole entropy is Noether charge”, Phys. Rev. D, 48, R3427–R3431, (1993). | |
| 184 | Wald, R.M., “The Thermodynamics of Black Holes”, Living Rev. Relativity, 4, lrr-2001-6,
(2001). URL (cited on 22 November 2004):
http://www.livingreviews.org/lrr-2001-6. |
|
| 185 | Wald, R.M., and Zoupas, A., “General definition of “conserved quantities” in general relativity
and other theories of gravity”, Phys. Rev. D, 61, 084027, 1–16, (2000). Related online version
(cited on 22 November 2004):
|
|
| 186 | Waugh, B., and Lake, K., “Double-null coordibates for the Vaidya spacetime”, Phys. Rev. D, 34, 2978–2984, (1986). | |
| 187 | Wheeler, J.A., “It from Bit”, in Keldysh, L.V., and Feinberg, V.Y., eds., Sakharov Memorial Lectures on Physics, Proceedings of the First International Sakharov Conferenference on Physics, Vol. 2, (Nova Science, New York, U.S.A., 1992). | |
| 188 | Witten, E., “A new proof of the positive energy theorem”, Commun. Math. Phys., 80, 381–402, (1981). | |
| 189 | Wolfram, S., “Mathematica: The Way the World Calculates”, institutional homepage, Wolfram
Research, Inc. URL (cited on 22 November 2004):
|
|
| 190 | Yo, H.-J., Cook, J.N., Shapiro, S.L., and Baumgarte, T.W., “Quasi-equilibrium binary black
hole initial data for dynamical evolutions”, Phys. Rev. D, 70, 084033, 1–14, (2004). Related
online version (cited on 22 November 2004):
|
|
| 191 | York Jr, J.W., “Kinematics and Dynamics of General Relativity”, in Smarr, L.L., ed., Sources of Gravitational Radiation, Proceedings of the Battelle Seattle Workshop, July 24 – August 4, 1978, pp. 83–126, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1979). | |
| 192 | York Jr, J.W., “Conformal “Thin-Sandwich” Data for the Initial-Value Problem of General
Relativity”, Phys. Rev. Lett., 82, 1350–1353, (1999). Related online version (cited on 22
November 2004):
|
| http://www.livingreviews.org/lrr-2004-10 |
© Max Planck Society and the author(s)
Problems/comments to |