Simulations provide us with a foliation of space-time
by partial Cauchy surfaces
, each of
which has a marginally trapped 2-surface
as (a connected component of) its inner boundary. The world
tube of these 2-surfaces is a candidate for a DH or an IH. If it is space-like, it is a DH
and if it is null
(or, equivalently, if the shear
of the outward null normal to
is zero) it is a WIH
. The
situation is depicted in Figure 7
. It is rather simple to numerically verify if these restrictions are
met. To calculate mass and angular momentum, one assumes that the intrinsic 2-metric on the
cross-sections
admits a rotational Killing field
(see, however, Section 8 for weakening
of this assumption). A rather general and convenient method, based on the notion of Killing
transport, has been introduced and numerically implemented to explicitly find this vector field
[84
].
Let us first suppose that, in a neighborhood of the cross-section
of interest, the world tube of
marginally trapped surfaces constitutes an IH. Then the task is to recast Equation (32
) in terms of
the Cauchy data
on
. This task is also straightforward [84
] and one arrives
at5:
Now consider the dynamical regime, i.e., assume that, in a small neighborhood of
, the world tube of
marginally trapped surfaces is a DH
. The angular momentum formula (46
) on DHs involves the
Cauchy data on
. However, it is easy to show [30
] that it equals the expression (58
) involving Cauchy
data on
. Thus, Equation (58
) is in fact applicable in both the isolated and dynamical regimes. The
availability of a single formula is extremely convenient in numerical simulations. From now on,
we will drop the subscript
and denote the angular momentum of
simply by
:
Having calculated
, it is easy to evaluate the mass
using Equation (40
):
None of the commonly used alternatives share all three of these features.
Before the availability of the IH and DH frameworks, standard procedures of calculating angular
momentum were based on properties of the Kerr geometry. The motivation comes from the common
belief, based on black-hole uniqueness theorems, that a black hole created in a violent event radiates
away all its higher multipole moments and as it settles down, its near horizon geometry can be
approximated by that of the Kerr solution. The strategy then is to identify the geometry of
with
that of a suitable member of the Kerr family and read off the corresponding angular momentum and
mass parameters.
The very considerations that lead one to this strategy also show that it is not suitable in the dynamical regime where the horizon may be distorted and not well-approximated by any Kerr horizon. For horizons which have very nearly reached equilibrium, the strategy is physically well motivated. However, even in this case, one has to find a way to match the horizon of the numerical simulation with that of a specific member in the Kerr family. This is non-trivial because the coordinate system used in the given simulation will, generically, not bear any relation to any of the standard coordinate systems used to describe the Kerr solution. Thus, one cannot just look at, say, a metric component to extract mass and angular momentum.
A semi-heuristic but most-commonly used procedure is the great circle method. It is based on an
observation of the properties of the Kerr horizon made by Smarr [170] using Kerr–Schild
coordinates. Let
be the length of the equator and
the length of a polar meridian on
the Kerr horizon, where the equator is the coordinate great circle of maximum proper
length and a polar meridian is a great circle of minimum proper length. Define a distortion
parameter
as
. The knowledge of
, together with one other
quantity such as the area,
, or
, is sufficient to find the parameters
and
of the Kerr geometry. However, difficulties arise when one wishes to use these ideas to
calculate
and
for a general apparent horizon
. For, notions such as great circles,
equator or polar meridian are all highly coordinate dependent. Indeed, if we represent
the standard two-metric on the Kerr horizon in different coordinates, the great circles in
one coordinate system will not agree with great circles in the other system. Therefore,
already for the Kerr horizon, two coordinate systems will lead to different answers for
and
! In certain specific situations where one has a good intuition about the
coordinate system being used and the physical situation being modelled, this method can be
useful as a quick way of estimating angular momentum. However, it has the conceptual
drawback that it is not derived from a well-founded, general principle and the practical
drawback that it suffers from too many ambiguities. Therefore it is inadequate as a general
method.
Problems associated with coordinate dependence can be satisfactorily resolved on axi-symmetric
horizons, even when the coordinate system used in the numerical code is not adapted to the axial
symmetry. The idea is to use the orbits of the Killing vector as analogs of the lines of latitude on a
metric two-sphere. The analog of the equator is then the orbit of the Killing vector which has
maximum proper length. This defines
in an invariant way. The north and south poles are the
points where the Killing vector vanishes, and the analog of
is the length of a geodesic joining
these two points. (Because of axial symmetry, all geodesics joining the poles will have the same
length). This geodesic is necessarily perpendicular to the Killing vector. Hence one just needs to find
the length of a curve joining the north and south poles which is everywhere perpendicular
to the Killing orbits. With
and
defined in this coordinate invariant way, one
can follow the same procedure as in the great circle method to calculate the mass and
angular momentum. This procedure has been named [84] the generalized great circle
method.
How does the generalized great circle method compare to that based on IHs and DHs? Since one must
find the Killing vector, the first step is the same in the two cases. In the IH and DH method, one is
then left simply with an integration of a component of the extrinsic curvature on the horizon. In
the generalized great circle method, by contrast, one has to determine the orbit of the
Killing vector with maximum length and also to calculate the length of a curve joining the
poles which is everywhere orthogonal to the Killing orbits. Numerically, this requires
more work and the numerical errors are at least as large as those in the IH-DH method.
Thus, even if one ignores conceptual considerations involving the fundamental meaning of
conserved quantities, and furthermore restricts oneself to the non-dynamical regime, the
practical simplicity of the great circle method is lost when it is made coordinate invariant. To
summarize, conceptually, Equations (59
) and (60
) provide the fundamental definitions
of angular momentum and mass, while the great circle method provides a quick way of
estimating these quantities in suitable situations. By comparing with Equations (59
)
and (60
), one can calculate errors and sharpen intuition on the reliability of the great circle
method.
A completely different approach to finding the mass and angular momentum of a black hole in a numerical solution is to use the concept of a Killing horizon. Assume the existence of Killing vectors in the neighborhood of the horizon so that mass and angular momentum are defined as the appropriate Komar integrals. This method is coordinate independent and does not assume, at least for angular momentum, that the near horizon geometry is isometric with the Kerr geometry. But it has two disadvantages. First, since the Komar integral can involve derivatives of the Killing field away from the horizon, one has to find the Killing fields in a neighborhood of the horizon. Second, existence of such a stationary Killing vector is a strong assumption; it will not be satisfied in the dynamical regime. Even when the Killing field exists, computationally it is much more expensive to find it in a neighborhood of the horizon rather than the horizon itself. Finally, it is not a priori clear how the stationary Killing vector is to be normalized if it is only known in a neighborhood of the horizon. In a precise sense, the isolated horizon framework extracts just the minimum amount of information from a Killing horizon in order to carry out the Hamiltonian analysis and define conserved quantities by by-passing these obstacles.
| http://www.livingreviews.org/lrr-2004-10 |
© Max Planck Society and the author(s)
Problems/comments to |