| 1 | Abramowitz, M. and Stegun, I.A., eds., Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables, (Dover, Mineola, NY, 1972). [ |
|
| 2 | Ando, M., et al., “DECIGO and DECIGO pathfinder”, Class. Quantum Grav., 27, 084010,
(2010). [ |
|
| 3 | Ando, M., et al., “Stable Operation of a 300-m Laser Interferometer with Sufficient Sensitivity
to Detect Gravitational-Wave Events within Our Galaxy”, Phys. Rev. Lett., 86, 3950–3954,
(2001). [ |
|
| 4 | Arun, K.G., Blanchet, L., Iyer, B.R. and Qusailah, M.S., “The 2.5PN gravitational wave
polarizations from inspiralling compact binaries in circular orbits”, Class. Quantum Grav., 21,
3771–3801, (2004). [ |
|
| 5 | Arun, K.G., Blanchet, L., Iyer, B.R. and Qusailah, M.S., “The 2.5PN gravitational wave
polarizations from inspiralling compact binaries in circular orbits”, Class. Quantum Grav., 22,
3115–3117, (2005). [ |
|
| 6 | Bardeen, J.M. and Press, W.H., “Radiation fields in the Schwarzschild background”, J. Math.
Phys., 14, 7–19, (1973). [ |
|
| 7 | Blanchet, L., “Energy losses by gravitational radiation in inspiraling compact binaries to 5/2
post-Newtonian order”, Phys. Rev. D, 54, 1417–1438, (1996). [ |
|
| 8 | Blanchet, L., “Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact
Binaries”, Living Rev. Relativity, 9, lrr-2006-4, (2006). URL (accessed 31 August 2010): http://www.livingreviews.org/lrr-2006-4. |
|
| 9 | Blanchet, L., “Post-Newtonian theory and the two-body problem”, in Blanchet, L., Spallicci,
A. and Whiting, B., eds., Mass and Motion in General Relativity, Proceedings of the CNRS
School on Mass held in Orléans, France, 23 – 25 June 2008, Fundamental Theories of Physics,
162, (Springer, Berlin; New York, 2010). [ |
|
| 10 | Blanchet, L., Damour, T. and Esposito-Farèse, G., “Dimensional regularization of the third
post-Newtonian dynamics of point particles in harmonic coordinates”, Phys. Rev. D, 69,
124007, 1–51, (2004). [ |
|
| 11 | Blanchet, L., Damour, T., Esposito-Farèse, G. and Iyer, B.R., “Gravitational radiation from
inspiralling compact binaries completed at the third post-Newtonian order”, Phys. Rev. Lett.,
93, 091101, 1–4, (2004). [ |
|
| 12 | Blanchet, L., Damour, T. and Iyer, B.R., “Gravitational waves from inspiralling compact
binaries: Energy loss and waveform to second-post-Newtonian order”, Phys. Rev. D, 51,
5360–5386, (1995). [ |
|
| 13 | Blanchet, L., Damour, T., Iyer, B.R., Will, C.M. and Wiseman, A.G., “Gravitational-Radiation
Damping of Compact Binary Systems to Second Post-Newtonian Order”, Phys. Rev. Lett., 74,
3515–3518, (1995). [ |
|
| 14 | Blanchet, L. and Faye, G., “General relativistic dynamics of compact binaries at the third
post-Newtonian order”, Phys. Rev. D, 63, 062005, 1–43, (2001). [ |
|
| 15 | Blanchet, L., Faye, G., Iyer, B.R. and Joguet, B., “Gravitational-wave inspiral of compact
binariy systems to 7/2 post-Newtonian order”, Phys. Rev. D, 65, 061501(R), 1–5, (2002). [ |
|
| 16 | Blanchet, L., Faye, G., Iyer, B.R. and Joguet, B., “Erratum: Gravitational-wave inspiral of
compact binary systems to 7/2 post-Newtonian order”, Phys. Rev. D, 71, 129902(E), 1–2,
(2005). [ |
|
| 17 | Blanchet, L., Faye, G., Iyer, B.R. and Sinha, S., “The third post-Newtonian gravitational wave
polarizations and associated spherical harmonic modes for inspiralling compact binaries in
quasi-circular orbits”, Class. Quantum Grav., 25, 165003, 1–44, (2008). [ |
|
| 18 | Blanchet, L., Iyer, B.R. and Joguet, B., “Gravitational waves from inspiralling compact
binaries: Energy loss to third post-Newtonian order”, Phys. Rev. D, 65, 064005, 1–41, (2002).
[ |
|
| 19 | Blanchet, L., Iyer, B.R. and Joguet, B., “Erratum: Gravitational waves from inspiralling
compact binaries: Energy loss to third post-Newtonian order”, Phys. Rev. D, 71, 129903(E),
1–1, (2005). [ |
|
| 20 | Breuer, R.A., Gravitational Perturbation Theory and Synchrotron Radiation, Lecture Notes in Physics, 44, (Springer, Berlin, 1975). | |
| 21 | Chandrasekhar, S., “On the equations governing the perturbations of the Schwarzschild black hole”, Proc. R. Soc. London, Ser. A, 343, 289–298, (1975). | |
| 22 | Chandrasekhar, S., The Mathematical Theory of Black Holes, The International Series of
Monographs on Physics, 69, (Clarendon, Oxford, 1983). [ |
|
| 23 | Chrzanowski, P.L., “Vector potential and metric perturbations of a rotating black hole”, Phys.
Rev. D, 11, 2042–2062, (1975). [ |
|
| 24 | Cutler, C., Finn, L.S., Poisson, E. and Sussman, G.J., “Gravitational radiation from a particle
in circular orbit around a black hole. II. Numerical results for the nonrotating case”, Phys.
Rev. D, 47, 1511–1518, (1993). [ |
|
| 25 | Damour, T. and Deruelle, N., “Lagrangien généralisé du système de deux masses ponctuelles, à l’approximation post-post-newtonienne de la relativité générale”, C. R. Acad. Sci. Ser. II, 293, 537–540, (1981). | |
| 26 | Damour, T. and Deruelle, N., “Radiation reaction and angular momentum loss in small angle
gravitational scattering”, Phys. Lett. A, 87, 81–84, (1981). [ |
|
| 27 | Damour, T., Jaranowski, P. and Schäfer, G., “Dimensional regularization of the gravitational
interaction of point masses”, Phys. Lett. B, 513, 147–155, (2001). [ |
|
| 28 | de Andrade, V.C., Blanchet, L. and Faye, G., “Third post-Newtonian dynamics of compact
binaries: Noetherian conserved quantities and equivalence between the harmonic-coordinate
and ADM-Hamiltonian formalisms”, Class. Quantum Grav., 18, 753–778, (2001). [ |
|
| 29 | Dixon, W.G., “Extended bodies in general relativity: Their description and motion”, in Ehlers, J., ed., Isolated Gravitating Systems in General Relativity (Sistemi gravitazionali isolati in relatività generale), Proceedings of the International School of Physics ‘Enrico Fermi’, Course 67, Varenna on Lake Como, Villa Monastero, Italy, 28 June – 10 July, 1976, pp. 156–219, (North-Holland, Amsterdam; New York, 1979). | |
| 30 | Drasco, S., Flanagan, É.É. and Hughes, S. A., “Computing inspirals in Kerr in the
adiabatic regime: I. The scalar case”, Class. Quantum Grav., 22, S801–S846, (2005). [ |
|
| 31 | Drasco, S. and Hughes, S. A., “Gravitational wave snapshots of generic extreme mass ratio
inspirals”, Phys. Rev. D, 73, 024027, 1–26, (2006). [ |
|
| 32 | Einstein, A., Infeld, L. and Hoffmann, B., “The Gravitational Equations and the Problem of
Motion”, Ann. Math., 39, 65–100, (1938). [ |
|
| 33 | Epstein, R. and Wagoner, R.V., “Post-Newtonian generation of gravitational waves”,
Astrophys. J., 197, 717–723, (1975). [ |
|
| 34 | Erdélyi, A., Magnus, W., Oberhettinger, F. and Tricomi, F.G., eds., Higher Transcendental Functions, Vol. I, (Krieger, Malabar, FL, 1981). | |
| 35 | Fackerell, E.D. and Crossman, R.G., “Spin-weighted angular spheroidal functions”, J. Math.
Phys., 18, 1849–1854, (1977). [ |
|
| 36 | Folkner, W.M. and Seidel, D.J., “Gravitational Wave Missions from LISA to Big Bang
Observer”, AIAA Space 2005 Conference, Long Beach, CA, August 8, 2005, conference paper,
(2005). Online version (accessed 10 August 2010): |
|
| 37 | Fujita, R., Gravitational waves from a particle orbiting a Kerr black hole, Ph.D. Thesis, (Osaka University, Toyonaka, 2006). | |
| 38 | Fujita, R., Hikida, W. and Tagoshi, H., “An Efficient Numerical Method for Computing
Gravitational Waves Induced by a Particle Moving on Eccentric Inclined Orbits around a Kerr
Black Hole”, Prog. Theor. Phys., 121, 843–874, (2009). [ |
|
| 39 | Fujita, R. and Iyer, B.R., “Spherical harmonic modes of 5.5 post-Newtonian gravitational wave
polarisations and associated factorised resummed waveforms for a particle in circular orbit
around a Schwarzschild black hole”, arXiv e-print, (2010). [ |
|
| 40 | Fujita, R. and Tagoshi, H., “New Numerical Methods to Evaluate Homogeneous Solutions of
the Teukolsky Equation”, Prog. Theor. Phys., 112, 415–450, (2004). [ |
|
| 41 | Fujita, R. and Tagoshi, H., “New Numerical Methods to Evaluate Homogeneous Solutions of
the Teukolsky Equation. II – Solutions of the Continued Fraction Equation –”, Prog. Theor.
Phys., 113, 1165–1182, (2005). [ |
|
| 42 | Futamase, T., “Strong-field point-particle limit and the equations of motion in the binary
pulsar”, Phys. Rev. D, 36, 321–329, (1987). [ |
|
| 43 | Futamase, T. and Itoh, Y., “The Post-Newtonian Approximation for Relativistic Compact
Binaries”, Living Rev. Relativity, 10, lrr-2007-2, (2007). URL (accessed 6 August 2010): http://www.livingreviews.org/lrr-2007-2. |
|
| 44 | Futamase, T. and Schutz, B.F., “Newtonian and post-Newtonian approximation are asymptotic
to general relativity”, Phys. Rev. D, 28, 2363–2372, (1983). [ |
|
| 45 | Futamase, T. and Schutz, B.F., “Gravitational radiation and the validity of the far-zone
quadrupole formula in the Newtonian limit of general relativity”, Phys. Rev. D, 32, 2557–2565,
(1985). [ |
|
| 46 | Gal’tsov, D.V., “Radiation reaction in the Kerr gravitational field”, J. Phys. A, 15, 3737–3749,
(1982). [ |
|
| 47 | Gal’tsov, D.V., Matiukhin, A.A. and Petukhov, V.I., “Relativistic corrections to the
gravitational radiation of a binary system and the fine structure of the spectrum”, Phys. Lett.
A, 77, 387–390, (1980). [ |
|
| 48 | Ganz, K., Hikida, W., Nakano, H., Sago, N. and Tanaka, T., “Adiabatic Evolution of Three
‘Constants’ of Motion for Greatly Inclined Orbits in Kerr Spacetime”, Prog. Theor. Phys., 117,
1041–1066, (2007). [ |
|
| 49 | Gautschi, W., “Computational Aspects of Three-Term Recurrence Relations”, SIAM Rev., 9,
24–82, (1967). [ |
|
| 50 | “GEO600: The German-British Gravitational Wave Detector”, project homepage, MPI for
Gravitational Physics (Albert Einstein Institute). URL (accessed 09 August 2010): |
|
| 51 | Grishchuk, L.P. and Kopeikin, S.M., “The motion of a pair of gravitating bodies, including the radiation reaction force”, Sov. Astron. Lett., 9, 230–232, (1983). | |
| 52 | Hikida, W., Jhingan, S., Nakano, H., Sago, N., Sasaki, M. and Tanaka, T., “A new analytical method for self-force regularization III – eccentric orbit –”, unknown status. | |
| 53 | Hughes, S.A., Drasco, S., Flanagan, É.É. and Franklin, J., “Gravitational Radiation Reaction
and Inspiral Waveforms in the Adiabatic Limit”, Phys. Rev. Lett., 94, 221101, 1–12, (2005).
[ |
|
| 54 | Itoh, Y., “Equation of motion for relativistic compact binaries with the strong field point
particle limit: Third post-Newtonian order”, Phys. Rev. D, 69, 064018, 1–43, (2004). [ |
|
| 55 | Itoh, Y., “Third-and-a-half order post-Newtonian equations of motion for relativistic compact
binaries using the strong field point particle limit”, Phys. Rev. D, 80, 124003, 1–17, (2009).
[ |
|
| 56 | Itoh, Y. and Futamase, T., “New derivation of a third post-Newtonian equation of motion for
relativistic compact binaries without ambiguity”, Phys. Rev. D, 68, 121501(R), 1–5, (2003).
[ |
|
| 57 | Itoh, Y., Futamase, T. and Asada, H., “Equation of motion for relativistic compact binaries
with the strong field point particle limit: Formulation, the first post-Newtonian and multipole
terms”, Phys. Rev. D, 62, 064002, 1–12, (2000). [ |
|
| 58 | Itoh, Y., Futamase, T. and Asada, H., “Equation of motion for relativistic compact binaries
with the strong field point particle limit: The second and half post-Newtonian order”, Phys.
Rev. D, 63, 064038, 1–21, (2001). [ |
|
| 59 | Jaranowski, P. and Schäfer, G., “Third post-Newtonian higher order ADM Hamilton dynamics
for two-body point-mass systems”, Phys. Rev. D, 57, 7274–7291, (1998). [ |
|
| 60 | Jaranowski, P. and Schäfer, G., “Binary black-hole problem at the third post-Newtonian
approximation in the orbital motion: Static part”, Phys. Rev. D, 60, 124003, 1–7, (1999). [ |
|
| 61 | Kidder, L.E., “Using full information when computing modes of post-Newtonian waveforms
from inspiralling compact binaries in circular orbit”, Phys. Rev. D, 77, 044016, 1–15, (2008).
[ |
|
| 62 | Königsdörffer, C., Faye, G. and Schäfer, G., “Binary black-hole dynamics at the
third-and-a-half post-Newtonian order in the ADM formalism”, Phys. Rev. D, 68, 044004,
1–19, (2003). [ |
|
| 63 | Kopeikin, S.M., “General-relativistic equations of binary motion for extended bodies, with conservative corrections and radiation damping”, Sov. Astron., 29, 516–523, (1985). | |
| 64 | Leaver, E.W., “Solutions to a generalized spheroidal wave equation: Teukolsky’s equations in
general relativity, and the two-center problem in molecular quantum mechanics”, J. Math.
Phys., 27, 1238–1265, (1986). [ |
|
| 65 | “LIGO Laboratory Home Page”, project homepage, California Institute of Technology. URL
(accessed 21 January 2003): |
|
| 66 | “LISA Home Page (ESA)”, project homepage, European Space Agency. URL (accessed 30
September 2003): |
|
| 67 | “LISA Home Page (NASA)”, project homepage, Jet Propulsion Laboratory/NASA. URL
(accessed 21 January 2003): |
|
| 68 | Mano, S., Suzuki, H. and Takasugi, E., “Analytic solutions of the Teukolsky equation and their
low frequency expansions”, Prog. Theor. Phys., 95, 1079–1096, (1996). [ |
|
| 69 | Mano, S. and Takasugi, E., “Analytic Solutions of the Teukolsky Equation and Their
Properties”, Prog. Theor. Phys., 97, 213–232, (1997). [ |
|
| 70 | Mino, Y., “Perturbative approach to an orbital evolution around a supermassive black hole”,
Phys. Rev. D, 67, 084027, 1–17, (2003). [ |
|
| 71 | Mino, Y., Sasaki, M., Shibata, M., Tagoshi, H. and Tanaka, T., “Black Hole Perturbation”,
Prog. Theor. Phys. Suppl., 128, 1–121, (1997). [ |
|
| 72 | Nakamura, T., Oohara, K. and Kojima, Y., “General Relativistic Collapse to Black Holes and
Gravitational Waves from Black Holes”, Prog. Theor. Phys. Suppl., 90, 1–218, (1987). [ |
|
| 73 | Narayan, R., Piran, T. and Shemi, A., “Neutron star and black hole binaries in the Galaxy”,
Astrophys. J., 379, L17–L20, (1991). [ |
|
| 74 | Newman, E.T. and Penrose, R., “An Approach to Gravitational Radiation by a Method of
Spin Coefficients”, J. Math. Phys., 3, 566–578, (1962). [ |
|
| 75 | Newman, E.T. and Penrose, R., “Errata: An approach to gravitational radiation by a method
of spin-coefficients”, J. Math. Phys., 4, 998–998, (1963). [ |
|
| 76 | Nissanke, S. and Blanchet, L., “Gravitational radiation reaction in the equations of motion of
compact binaries to 3.5 post-Newtonian order”, Class. Quantum Grav., 22, 1007–1031, (2005).
[ |
|
| 77 | Ohashi, A., Tagoshi, H. and Sasaki, M., “Post-Newtonian Expansion of Gravitational Waves
from a Compact Star Orbiting a Rotating Black Hole in Brans–Dicke Theory: Circular Orbit
Case”, Prog. Theor. Phys., 96, 713–728, (1996). [ |
|
| 78 | Pan, Y., Buonanno, A., Fujita, R., Racine, E. and Tagoshi, H., “Post-Newtonian factorized
multipolar waveforms for spinning, non-precessing black-hole binaries”, arXiv e-print, (2010).
[ |
|
| 79 | Papapetrou, A., “Spinning test-particles in general relativity. I”, Proc. R. Soc. London, Ser.
A, 209, 248–258, (1951). [ |
|
| 80 | Pati, M.E. and Will, C.M., “Post-Newtonian gravitational radiation and equations of motion
via direct integration of the relaxed Einstein equations: Foundations”, Phys. Rev. D, 62, 124015,
1–28, (2000). [ |
|
| 81 | Pati, M.E. and Will, C.M., “Post-Newtonian gravitational radiation and equations of motion
via direct integration of the relaxed Einstein equations. II. Two-body equations of motion to
second post-Newtonian order, and radiation reaction to 3.5 post-Newtonian order”, Phys. Rev.
D, 65, 104008, 1–21, (2002). [ |
|
| 82 | Phinney, E.S., “The rate of neutron star binary mergers in the universe: Minimal predictions
for gravity wave detectors”, Astrophys. J. Lett., 380, L17–L21, (1991). [ |
|
| 83 | Poisson, E., “Gravitational radiation from a particle in circular orbit around a black hole. I.
Analytic results for the nonrotating case”, Phys. Rev. D, 47, 1497–1510, (1993). [ |
|
| 84 | Poisson, E., “Gravitational radiation from a particle in circular orbit around a black hole. IV.
Analytical results for the slowly rotating case”, Phys. Rev. D, 48, 1860–1863, (1993). [ |
|
| 85 | Poisson, E. and Sasaki, M., “Gravitational radiation from a particle in circular orbit around a
black hole. V. Black hole absorption and tail corrections”, Phys. Rev. D, 51, 5753–5767, (1995).
[ |
|
| 86 | Press, W.H. and Teukolsky, S.A., “Perturbations of a Rotating Black Hole. II. Dynamical
Stability of the Kerr Metric”, Astrophys. J., 185, 649–673, (1973). [ |
|
| 87 | Regge, T. and Wheeler, J.A., “Stability of a Schwarzschild Singularity”, Phys. Rev., 108,
1063–1069, (1957). [ |
|
| 88 | Rowan, S. and Hough, J., “Gravitational Wave Detection by Interferometry (Ground and
Space)”, Living Rev. Relativity, 3, lrr-2000-3, (2000). URL (accessed 21 January 2002): http://www.livingreviews.org/lrr-2000-3. |
|
| 89 | Sago, N., Tanaka, T., Hikida, W., Ganz, K. and Nakano, H., “Adiabatic Evolution of Orbital
Parameters in Kerr Spacetime”, Prog. Theor. Phys., 115, 873–907, (2006). [ |
|
| 90 | Sago, N., Tanaka, T., Hikida, W. and Nakano, H., “Adiabatic Radiation Reaction to Orbits in
Kerr Spacetime”, Prog. Theor. Phys., 114, 509–514, (2005). [ |
|
| 91 | Sasaki, M., “Post-Newtonian Expansion of the Ingoing-Wave Regge–Wheeler Function”, Prog.
Theor. Phys., 92, 17–36, (1994). [ |
|
| 92 | Sasaki, M. and Nakamura, T., “A class of new perturbation equations for the Kerr geometry”,
Phys. Lett. A, 89, 68–70, (1982). [ |
|
| 93 | Sasaki, M. and Nakamura, T., “Gravitational Radiation from a Kerr Black Hole. I – Formulation
and a Method for Numerical Analysis –”, Prog. Theor. Phys., 67, 1788–1809, (1982). [ |
|
| 94 | Shibata, M., Sasaki, M., Tagoshi, H. and Tanaka, T., “Gravitational waves from a particle
orbiting around a rotating black hole: Post-Newtonian expansion”, Phys. Rev. D, 51,
1646–1663, (1995). [ |
|
| 95 | Tagoshi, H., “Post-Newtonian Expansion of Gravitational Waves from a Particle in Slightly
eccentric Orbit around a Rotating Black Hole”, Prog. Theor. Phys., 93, 307–333, (1995). [ |
|
| 96 | Tagoshi, H., “Errata: Post-Newtonian Expansion of Gravitational Waves from a Particle in
Slightly eccentric Orbit around a Rotating Black Hole”, Prog. Theor. Phys., 118, 577–579,
(2007). [ |
|
| 97 | Tagoshi, H. and Fujita, R., in preparation. | |
| 98 | Tagoshi, H., Mano, S. and Takasugi, E., “Post-Newtonian Expansion of Gravitational Waves
from a Particle in Circular Orbits around a Rotating Black Hole – Effects of Black Hole
Absorption –”, Prog. Theor. Phys., 98, 829–850, (1997). [ |
|
| 99 | Tagoshi, H. and Nakamura, T., “Gravitational waves from a point particle in circular orbit
around a black hole: Logarithmic terms in the post-Newtonian expansion”, Phys. Rev. D, 49,
4016–4022, (1994). [ |
|
| 100 | Tagoshi, H. and Sasaki, M., “Post-Newtonian Expansion of Gravitational Waves from a Particle
in Circular Orbit around a Schwarzschild Black Hole”, Prog. Theor. Phys., 92, 745–771, (1994).
[ |
|
| 101 | Tagoshi, H., Shibata, M., Tanaka, T. and Sasaki, M., “Post-Newtonian expansion of
gravitational waves from a particle in circular orbits around a rotating black hole: Up to O(v8)
beyond the quadrupole formula”, Phys. Rev. D, 54, 1439–1459, (1996). [ |
|
| 102 | Tagoshi, H., et al. (TAMA Collaboration), “First search for gravitational waves from
inspiraling compact binaries using TAMA300 data”, Phys. Rev. D, 63, 062001, 1–5, (2001).
[ |
|
| 103 | “TAMA300: The 300m Laser Interferometer Gravitational Wave Antenna”, project homepage,
National Astronomical Observatory. URL (accessed 21 January 2003): |
|
| 104 | Tanaka, T., Mino, Y., Sasaki, M. and Shibata, M., “Gravitational waves from a spinning particle
in circular orbits around a rotating black hole”, Phys. Rev. D, 54, 3762–3777, (1996). [ |
|
| 105 | Tanaka, T., Tagoshi, H. and Sasaki, M., “Gravitational Waves by a Particle in Circular Orbits
around a Schwarzschild Black Hole – 5.5 Post-Newtonian Formula –”, Prog. Theor. Phys., 96,
1087–1101, (1996). [ |
|
| 106 | Teukolsky, S.A., “Perturbations of a Rotating Black Hole. I. Fundamental Equations
for Gravitational, Electromagnetic, and Neutrino-Field Perturbations”, Astrophys. J., 185,
635–647, (1973). [ |
|
| 107 | Teukolsky, S.A. and Press, W.H., “Perturbations of a rotating black hole. III. Interaction of the
hole with gravitational and electromagnetic radiation”, Astrophys. J., 193, 443–461, (1974).
[ |
|
| 108 | “Virgo”, project homepage, INFN. URL (accessed 21 January 2003): |
|
| 109 | Wagoner, R.V. and Will, C.M., “Post-Newtonian gravitational radiation from orbiting point
masses”, Astrophys. J., 210, 764–775, (1976). [ |
|
| 110 | Wald, R.M., “Construction of Solutions of Gravitational, Electromagnetic, or Other
Perturbation Equations from Solutions of Decoupled Equations”, Phys. Rev. Lett., 41, 203–206,
(1978). [ |
|
| 111 | Will, C.M. and Wiseman, A.G., “Gravitational radiation from compact binary systems:
Gravitational waveforms and energy loss to second post-Newtonian order”, Phys. Rev. D, 54,
4813–4848, (1996). [ |
|
| 112 | Zerilli, F.J., “Gravitational Field of a Particle Falling in a Schwarzschild Geometry Analyzed
in Tensor Harmonics”, Phys. Rev. D, 2, 2141– 2160, (1970). [ |
| http://www.livingreviews.org/lrr-2003-6 | This work is licensed under a Creative Commons License. Problems/comments to |