| 1 | Abrahams, A.M., and Evans, C.R., “Critical behavior and scaling in vacuum axisymmetric
gravitational collapse”, Phys. Rev. Lett., 70, 2980–2983, (1993). [ |
|
| 2 | Abrahams, A.M., Heiderich, K.H., Shapiro, S.L., and Teukolsky, S.A., “Vacuum initial data, singularities, and cosmic censorship”, Phys. Rev. D, 46, 2452–2463, (1992). | |
| 3 | Andersson, L., and Rendall, A.D., “Quiescent cosmological singularities”, Commun. Math.
Phys., 218, 479–511, (2001). [ |
|
| 4 | Anninos, P., “Computational Cosmology: From the Early Universe to the Large Scale
Structure”, Living Rev. Relativity, 4, lrr-2001-2, (2001). URL (cited on 2 December 2001): http://www.livingreviews.org/lrr-2001-2. |
|
| 5 | Anninos, P., Centrella, J.M., and Matzner, R.A., “Nonlinear wave solutions to the planar vacuum Einstein equations”, Phys. Rev. D, 43, 1825–1838, (1991). | |
| 6 | Anninos, P., Centrella, J.M., and Matzner, R.A., “Numerical methods for solving the planar vacuum Einstein equations”, Phys. Rev. D, 43, 1808–1824, (1991). | |
| 7 | Ashtekar, A., Beetle, C., Dreyer, O., Fairhurst, S., Krishnan, B., Lewandowski, J., and
Wisniewski, J., “Generic Isolated Horizons and Their Applications”, Phys. Rev. Lett., 85,
3564–3567, (2000). [ |
|
| 8 | Bañados, M., Teitelboim, C., and Zanelli, J., “The Black Hole in Three Dimensional Space
Time”, Phys. Rev. Lett., 69, 1849–1851, (1992). [ |
|
| 9 | Barrabès, C., Gramain, A., Lesigne, E., and Letelier, P.S., “Geometric inequalities and the
hoop conjecture”, Class. Quantum Grav., 9, L105–L110, (1992). [ |
|
| 10 | Barrabès, C., Israel, W., and Letelier, P.S., “Analytic models of nonspherical collapse, cosmic
censorship and the hoop conjecture”, Phys. Lett. A, 160, 41–44, (1991). [ |
|
| 11 | Barrow, J.D., “Chaotic Behaviour in General Relativity”, Phys. Rep., 85, 1–49, (1982). [ |
|
| 12 | Barrow, J.D., and Levin, J., “Chaos in the Einstein–Yang–Mills Equations”, Phys. Rev. Lett.,
80, 656–659, (1998). [ |
|
| 13 | Barrow, J.D., and Tipler, F.J., “Analysis of the Generic Singularity Studies by Belinskii,
Khalatnikov, and Lifshitz”, Phys. Rep., 56, 371–402, (1979). [ |
|
| 14 | Bartnik, R., and McKinnon, J., “Particlelike Solutions of the Einstein–Yang–Mills Equations”,
Phys. Rev. Lett., 61, 141–144, (1988). [ |
|
| 15 | Belanger, Z.B., Adaptive Mesh Refinement in the T2 Symmetric Spacetime, Masters Thesis, (Oakland University, Rochester, MI, 2001). | |
| 16 | Belinskii, V.A., “Turbulence of a gravitational field near a cosmological singularity”, J. Exp. Theor. Phys. Lett., 56, 421–425, (1992). | |
| 17 | Belinskii, V.A., and Khalatnikov, I.M., “General Solution of the Gravitational Equations with a Physical Singularity”, Sov. Phys. JETP, 30, 1174–1180, (1969). | |
| 18 | Belinskii, V.A., and Khalatnikov, I.M., “On the Nature of the Singularities in the General Solution of the Gravitational Equations”, Sov. Phys. JETP, 29, 911–917, (1969). | |
| 19 | Belinskii, V.A., and Khalatnikov, I.M., “General Solution of the Gravitational Equations with a Physical Oscillatory Singularity”, Sov. Phys. JETP, 32, 169–172, (1971). | |
| 20 | Belinskii, V.A., and Khalatnikov, I.M., “Effect of scalar and vector fields on the nature of the cosmological singularity”, Sov. Phys. JETP, 36, 591–597, (1973). | |
| 21 | Belinskii, V.A., Khalatnikov, I.M., and Lifshitz, E.M., “A general solution of the Einstein
equations with a time singularity”, Adv. Phys., 13, 639–667, (1982). [ |
|
| 22 | Belinskii, V.A., Lifshitz, E.M., and Khalatnikov, I.M., “Oscillatory Approach to the Singularity Point in Relativistic Cosmology”, Sov. Phys. Usp., 13, 745–765, (1971). | |
| 23 | Berger, B.K., “Quantum graviton creation in a model universe”, Ann. Phys. (N.Y.), 83,
458–490, (1974). [ |
|
| 24 | Berger, B.K., “Comments on the Computation of Liapunov Exponents for the Mixmaster
Universe”, Gen. Relativ. Gravit., 23, 1385–1402, (1991). [ |
|
| 25 | Berger, B.K., “How to Determine Approximate Mixmaster Parameters from Numerical
Evolution of Einstein’s Equations”, Phys. Rev. D, 49, 1120–1123, (1994). [ |
|
| 26 | Berger, B.K., “Comment on the ‘Chaotic’ Singularity in Some Magnetic Bianchi VI0
Cosmologies”, Class. Quantum Grav., 13, 1273–1276, (1996). [ |
|
| 27 | Berger, B.K., “Numerical Investigation of Cosmological Singularities”, in Hehl, F.W.,
Puntigam, R.A., and Ruder, H., eds., Relativity and Scientific Computing: Computer Algebra,
Numerics, Visualization, 152nd WE-Heraeus seminar on Relativity and Scientific Computing,
Bad Honnef, Germany, September 18 – 22, 1995, pp. 152–169, (Springer, Berlin; New York,
1996). [ |
|
| 28 | Berger, B.K., “Numerical Investigation of Singularities”, in Francaviglia, M., Longhi, G.,
Lusanna, L., and Sorace, E., eds., General Relativity and Gravitation, Proceedings of the 14th
International Conference on General Relativity and Gravitation: Florence, Italy, 6 – 12 August
1995, pp. 57–78, (World Scientific, Singapore; River Edge, NJ, 1997). [ |
|
| 29 | Berger, B.K., “Numerical Approaches to Spacetime Singularities”, Living Rev. Relativity, 1,
lrr-1998-7, (1998). URL (cited on 3 May 1998): http://www.livingreviews.org/lrr-1998-7. |
|
| 30 | Berger, B.K., “On the Nature of the Generic Big Bang”, arXiv e-print, (1998). [ |
|
| 31 | Berger, B.K., “Approach to the Singularity in Spatially Inhomogeneous Cosmologies”, in
Weikard, R., and Weinstein, G., eds., Differential Equations and Mathematical Physics,
Proceedings of an international conference held at the University of Alabama in Birmingham,
March 16 – 20, 1999, AMS/IP Studies in Advanced Mathematics, vol. 16, (American
Mathematical Society, Providence, RI, 2000). [ |
|
| 32 | Berger, B.K., “Influence of Scalar Fields on the Approach to the Singularity in Spatially
Inhomogeneous Cosmologies”, Phys. Rev. D, 61, 023508, (2000). [ |
|
| 33 | Berger, B.K., “A Spectral Symplectic Method for Numerical Investigation of Cosmological
Singularities”, lecture notes, University of California, Santa Barbara, (2000). URL (cited on 20
January 2000): |
|
| 34 | Berger, B.K., ChruÅ›ciel, P.T., Isenberg, J.A., and Moncrief, V., “Global Foliations of Vacuum
Spacetimes with T2 Isometry”, Ann. Phys. (N.Y.), 260, 117–148, (1997). [ |
|
| 35 | Berger, B.K., ChruÅ›ciel, P.T., and Moncrief, V., “On ‘Asymptotically Flat’ Space-Times
with G2-Invariant Cauchy Surfaces”, Ann. Phys. (N.Y.), 237, 322–354, (1995). [ |
|
| 36 | Berger, B.K., and Garfinkle, D., “Phenomenology of the Gowdy Model on T3 ×R”, Phys. Rev.
D, 57, 4767–4777, (1998). [ |
|
| 37 | Berger, B.K., Garfinkle, D., Isenberg, J.A., Moncrief, V., and Weaver, M., “The singularity
in generic gravitational collapse is spacelike, local, and oscillatory”, Mod. Phys. Lett. A, 13,
1565–1574, (1998). [ |
|
| 38 | Berger, B.K., Garfinkle, D., and Moncrief, V., “Numerical Study of Cosmological Singularities”,
in Burko, L.M., and Ori, A., eds., Internal Structure of Black Holes and Spacetime Singularities,
An international research workshop, Haifa, June 29 – July 3, 1997, Annals of the Israel
Physical Society, vol. 13, pp. 441–457, (Institute of Physics; Israel Physical Society, Bristol;
Philadelphia; Jerusalem, 1998). [ |
|
| 39 | Berger, B.K., Garfinkle, D., and Strasser, E., “New algorithm for Mixmaster dynamics”, Class.
Quantum Grav., 14, L29–L36, (1997). [ |
|
| 40 | Berger, B.K., Garfinkle, D., and Swamy, V., “Detection of Computer Generated Gravitational
Waves in Numerical Cosmologies”, Gen. Relativ. Gravit., 27, 511–527, (1995). [ |
|
| 41 | Berger, B.K., Isenberg, J.A., and Weaver, M., “Oscillatory Approach to the Singularity in
Vacuum Spacetimes with T2 Isometry”, Phys. Rev. D, 64, 084006, (2001). [ |
|
| 42 | Berger, B.K., and Moncrief, V., “Numerical Investigations of Cosmological Singularities”, Phys.
Rev. D, 48, 4676–4687, (1993). [ |
|
| 43 | Berger, B.K., and Moncrief, V., “Evidence for an oscillatory singularity in generic U(1)
symmetric cosmologies on T3 × R”, Phys. Rev. D, 58, 064023, 1–8, (1998). [ |
|
| 44 | Berger, B.K., and Moncrief, V., “Numerical Evidence that the Singularity in Polarized U(1)
Symmetric Cosmologies on T3 × R is Velocity Dominated”, Phys. Rev. D, 57, 7235–7240,
(1998). [ |
|
| 45 | Berger, B.K., and Moncrief, V., “Signature for local Mixmaster dynamics in U(1) symmetric
cosmologies”, Phys. Rev. D, 62, 123501, 1–9, (2000). [ |
|
| 46 | BizoÅ„, P., “How to Make a Tiny Black Hole?”, Acta Cosm., 22, 81, (1996). [ |
|
| 47 | BizoÅ„, P., and Chmaj, T., “Formation and critical collapse of Skyrmions”, Phys. Rev. D, 58,
041501, 1–4, (1998). [ |
|
| 48 | BizoÅ„, P., Chmaj, T., and Tabor, Z., “Dispersion and collapse of wave maps”, Nonlinearity,
13, 1411–1423, (2000). [ |
|
| 49 | BizoÅ„, P., and Tabor, Z., “On blowup for Yang–Mills fields”, Phys. Rev. D, 64, 121701, 1–4,
(2001). [ |
|
| 50 | Bonanno, A., Droz, S., Israel, W., and Morsink, S.M., “Structure of the Spherical Black Hole
Interior”, Proc. R. Soc. London, Ser. A, 450, 553–567, (1995). [ |
|
| 51 | Brady, P.R., and Chambers, C.M., “Non-Linear Instability of Kerr-Type Cauchy Horizons”,
Phys. Rev. D, 51, 4177–4186, (1995). [ |
|
| 52 | Brady, P.R., Chambers, C.M., and Gonçalves, S.M.C.V., “Phases of massive scalar field
collapse”, Phys. Rev. D, 56, R6057–R6061, (1997). [ |
|
| 53 | Brady, P.R., Chambers, C.M., Krivan, W., and Laguna, P., “Telling tails in the presence of a
cosmological constant”, Phys. Rev. D, 55, 7538–7545, (1997). [ |
|
| 54 | Brady, P.R., Droz, S., and Morsink, S.M., “Late-Time Singularity inside Nonspherical Black
Holes”, Phys. Rev. D, 58, 084034, (1998). [ |
|
| 55 | Brady, P.R., Moss, I.G., and Myers, R.C., “Cosmic Censorship: As Strong as Ever”, Phys. Rev.
Lett., 80, 3432–3435, (1998). [ |
|
| 56 | Brady, P.R., and Smith, J.D., “Black Hole Singularities: A Numerical Approach”, Phys. Rev.
Lett., 75, 1256–1259, (1995). [ |
|
| 57 | Breitenlohner, P., Lavrelashvili, G., and Maison, D., “Mass Inflation and Chaotic Behavior
Inside Hairy Black Holes”, Nucl. Phys. B, 524, 427–443, (1998). [ |
|
| 58 | Breitenlohner, P., Lavrelashvili, G., and Maison, D., “Non-Abelian Black Holes: The Inside
Story”, in Burko, L.M., and Ori, A., eds., Internal Structure of Black Holes and Spacetime
Singularities, An international research workshop, Haifa, June 29 – July 3, 1997, Annals of
the Israel Physical Society, pp. 172–193, (Institute of Physics; Israel Physical Society, Bristol;
Philadelphia; Jerusalem, 1998). [ |
|
| 59 | Breitenlohner, P., Lavrelashvili, G., and Maison, D., “Mass Inflation Inside Non-Abelian Black
Holes”, in Piran, T., ed., The Eighth Marcel Grossmann Meeting on Recent Developments in
Theoretical and Experimental General Relativity, Gravitation and Relativistic Field Theories,
Proceedings of the meeting held at the Hebrew University of Jerusalem, June 22 – 27, 1997,
(World Scientific, Singapore, 1999). [ |
|
| 60 | Brill, D.R., “On the Positive Definite Mass of the Bondi–Weber–Wheeler Time-Symmetric
Gravitational Waves”, Ann. Phys. (N.Y.), 7, 466–483, (1959). [ |
|
| 61 | Browne, M.W., “A Bet on a Cosmic Scale, And a Concession, Sort Of”, New York Times, (February 12, 1997), p. 1. | |
| 62 | Burd, A.B., Buric, N., and Ellis, G.F.R., “A Numerical Analysis of Chaotic Behavior in Bianchi
IX Models”, Gen. Relativ. Gravit., 22, 349–363, (1990). [ |
|
| 63 | Burko, L.M., “Structure of the Black Hole’s Cauchy-Horizon Singularity”, Phys. Rev. Lett.,
79, 4958–4961, (1997). [ |
|
| 64 | Burko, L.M., “Homogeneous Spacelike Singularities Inside Spherical Black Holes”, in Burko,
L.M., and Ori, A., eds., Internal Structure of Black Holes and Spacetime Singularities, An
international research workshop, Haifa, June 29 – July 3, 1997, Annals of the Israel Physical
Society, (Institute of Physics; Israel Physical Society, Bristol; Philadelphia; Jerusalem, 1998).
[ |
|
| 65 | Burko, L.M., “The Singularity in Supercritical Collapse of a Spherical Scalar Field”, Phys. Rev.
D, 58, 084013, (1998). [ |
|
| 66 | Burko, L.M., “Singularity Deep inside the Charged Black Hole Core”, Phys. Rev. D, 59, 024011,
(1999). [ |
|
| 67 | Burko, L.M., and Ori, A., “Late-time evolution of nonlinear gravitational collapse”, Phys. Rev.
D, 56, 7820–7832, (1997). [ |
|
| 68 | Burko, L.M., and Ori, A., “Analytic Study of the Null Singularity inside Spherical Charged
Black Holes”, Phys. Rev. D, 57, 7084–7088, (1998). [ |
|
| 69 | Carretero-Gonzalez, R., Nunuz-Yepez, H.N., and Salas-Brito, A.L., “Evidence of Chaotic
Behavior in Jordan–Brans–Dicke Cosmology”, Phys. Lett. A, 188, 48, (1994). [ |
|
| 70 | Chambers, C.M., “The Cauchy Horizon in Black Hole-de Sitter Spacetimes”, in Burko,
L.M., and Ori, A., eds., Internal Structure of Black Holes and Spacetime Singularities, An
international research workshop, Haifa, June 29 – July 3, 1997, Annals of the Israel Physical
Society, (Institute of Physics; Israel Physical Society, Bristol; Philadelphia; Jerusalem, 1998).
[ |
|
| 71 | Chambers, C.M., Brady, P.R., and Gonçalves, S.M.C.V., “Phases of Massive Scalar Field
Collapse”, in Piran, T., ed., The Eighth Marcel Grossmann Meeting on Recent Developments in
Theoretical and Experimental General Relativity, Gravitation and Relativistic Field Theories,
Proceedings of the meeting held at the Hebrew University of Jerusalem, June 22 – 27, 1997,
(World Scientific, Singapore, 1999). [ |
|
| 72 | Chambers, C.M., Brady, P.R., Krivan, W., and Laguna, P., “Some Cosmological Tails of
Collapse”, in Piran, T., ed., The Eighth Marcel Grossmann Meeting on Recent Developments in
Theoretical and Experimental General Relativity, Gravitation and Relativistic Field Theories,
Proceedings of the meeting held at the Hebrew University of Jerusalem, June 22 – 27, 1997,
(World Scientific, Singapore, 1999). [ |
|
| 73 | Chandrasekhar, S., and Hartle, J.B., “On Crossing the Cauchy Horizon of a Reissner–Nordström Black Hole”, Proc. R. Soc. London, Ser. A, 384, 301–315, (1982). | |
| 74 | Chernoff, D.F., and Barrow, J.D., “Chaos in the Mixmaster Universe”, Phys. Rev. Lett., 50,
134–137, (1983). [ |
|
| 75 | Chiba, T., “Apparent Horizon Formation and Hoop Conjecture in Non-axisymmetric Spaces”,
Phys. Rev. D, 60, 044003, (1999). [ |
|
| 76 | Chiba, T., Nakamura, T., Nakao, K., and Sasaki, M., “Hoop Conjecture for Apparent Horizon
Formation”, Class. Quantum Grav., 11, 431–441, (1994). [ |
|
| 77 | Choptuik, M.W., “Universality and scaling in gravitational collapse of a massless scalar field”,
Phys. Rev. Lett., 70, 9–12, (1993). [ |
|
| 78 | Choptuik, M.W., “Animations of SU(2) EYM Collapse”, personal homepage, University of
British Columbia, (1999). URL (cited on 20 June 2001): |
|
| 79 | Choptuik, M.W., Chmaj, T., and BizoÅ„, P., “Critical Behavior in Gravitational Collapse of a
Yang–Mills Field”, Phys. Rev. Lett., 77, 424–427, (1996). [ |
|
| 80 | Christodoulou, D., “A mathematical theory of gravitational collapse”, Commun. Math. Phys.,
109, 613–647, (1987). [ |
|
| 81 | Christodoulou, D., “The Instability of Naked Singularities in the Gravitational Collapse of a
Scalar Field”, Ann. Math. (2), 149, 183–217, (1999). [ |
|
| 82 | ChruÅ›ciel, P.T., “On Space-Time with U(1) × U(1) Symmetric Compact Cauchy Surfaces”,
Ann. Phys. (N.Y.), 202, 100–150, (1990). [ |
|
| 83 | ChruÅ›ciel, P.T., Isenberg, J.A., and Moncrief, V., “Strong cosmic censorship in polarised
Gowdy spacetimes”, Class. Quantum Grav., 7, 1671–1680, (1990). [ |
|
| 84 | Coley, A.A., “No chaos in brane-world cosmology”, Class. Quantum Grav., 19, L45–L56, (2002).
[ |
|
| 85 | Cornish, N.J., and Levin, J., “The Mixmaster Universe is Chaotic”, Phys. Rev. Lett., 78,
998–1001, (1997). [ |
|
| 86 | Cornish, N.J., and Levin, J.J., “Mixmaster universe: A chaotic Farey tale”, Phys. Rev. D, 55,
7489–7510, (1997). [ |
|
| 87 | Cotsakis, S., Demaret, J., DeRop, Y., and Querella, L., “Mixmaster Universe in Fourth-Order Gravity Theories”, Phys. Rev. D, 48, 4595–4603, (1993). | |
| 88 | Damour, T., and Henneaux, M., “Chaos in superstring cosmology”, Phys. Rev. Lett., 85,
920–923, (2000). [ |
|
| 89 | Damour, T., and Henneaux, M., “Oscillatory behaviour in homogeneous string cosmology
models”, Phys. Lett. B, 488, 108–116, (2000). [ |
|
| 90 | Deruelle, N., and Langlois, D., “Long Wavelength Iteration of Einstein’s Equations near a
Spacetime Singularity”, Phys. Rev. D, 52, 2007–2019, (1995). [ |
|
| 91 | Donets, E.E., Gal’tsov, D.V., and Zotov, M.Y., “Internal Structure of Einstein–Yang–Mills
Black Holes”, Phys. Rev. D, 56, 3459–3465, (1997). [ |
|
| 92 | Droz, S., “Numerical Investigation of Black Hole Interiors”, Helv. Phys. Acta, 69, 257–260,
(1996). [ |
|
| 93 | Eardley, D.M., Hirschmann, E.W., and Horne, J.H., “S duality at the black hole threshold in
gravitational collapse”, Phys. Rev. D, 52, R5397–R5401, (1995). [ |
|
| 94 | Eardley, D.M., Isenberg, J.A., Marsden, J., and Moncrief, V., “Homothetic and Conformal
Symmetries of Solutions to Einstein’s Equations”, Commun. Math. Phys., 106, 137–158, (1986).
[ |
|
| 95 | Eardley, D.M., Liang, E., and Sachs, R., “Velocity-Dominated Singularities in Irrotational Dust
Cosmologies”, J. Math. Phys., 13, 99–107, (1972). [ |
|
| 96 | Echeverria, F., “Gravitational Collapse of an Infinite, Cylindrical Dust Shell”, Phys. Rev. D, 47, 2271–2282, (1993). | |
| 97 | Ellis, G.F.R., and Schmidt, B.G., “Singular Space-Times”, Gen. Relativ. Gravit., 8, 915–953,
(1977). [ |
|
| 98 | Evans, C.R., and Coleman, J.S., “Critical Phenomena and Self-Similarity in the Gravitational
Collapse of Radiation Fluid”, Phys. Rev. Lett., 72, 1782–1785, (1994). [ |
|
| 99 | Ferraz, K., Francisco, G., and Matsas, G.E.A., “Chaotic and Nonchaotic Behavior in the
Mixmaster Dynamics”, Phys. Lett. A, 156, 407–409, (1991). [ |
|
| 100 | Finn, L.S., “A Numerical Approach to Binary Black Hole Coalescence”, in Francaviglia,
M., Longhi, G., Lusanna, L., and Sorace, E., eds., General Relativity and Gravitation,
Proceedings of the 14th International Conference on General Relativity and Gravitation:
Florence, Italy, 6 – 12 August 1995, pp. 147–166, (World Scientific, Singapore; River Edge, NJ,
1997). [ |
|
| 101 | Fleck, J.A., Morris, J.R., and Feit, M.D., “Time-Dependent Propagation of High Energy Laser
Beams through the Atmosphere”, Appl. Phys., 10, 129–160, (1976). [ |
|
| 102 | Francisco, G., and Matsas, G.E.A., “Qualitative and Numerical Study of Bianchi IX Models”,
Gen. Relativ. Gravit., 20, 1047–1054, (1988). [ |
|
| 103 | Friedrich, H., “On Static and Radiative Space-Times”, Commun. Math. Phys., 119, 51–73,
(1988). [ |
|
| 104 | Gal’tsov, D.V., and Donets, E.E., “Power-law mass inflation in Einstein–Yang–Mills–Higgs
black holes”, C. R. Acad. Sci. Ser. IIB, 325, 649–657, (1997). [ |
|
| 105 | Gal’tsov, D.V., Donets, E.E., and Zotov, M.Y., “Singularities Inside Non-Abelian Black Holes”,
J. Exp. Theor. Phys. Lett., 65, 895–901, (1997). [ |
|
| 106 | Gal’tsov, D.V., Donets, E.E., and Zotov, M.Y., “Singularities inside Hairy Black Holes”, in
Piran, T., ed., The Eighth Marcel Grossmann Meeting on Recent Developments in Theoretical
and Experimental General Relativity, Gravitation and Relativistic Field Theories, Proceedings
of the meeting held at the Hebrew University of Jerusalem, June 22 – 27, 1997, pp. 539–541,
(World Scientific, Singapore, 1999). [ |
|
| 107 | Garfinkel, D., and Meyer, K., “Scale invariance and critical gravitational collapse”, Phys. Rev.
D, 59, 064003, 1–5, (1999). [ |
|
| 108 | Garfinkle, D., “Asymptotically Flat Space-Times Have No Conformal Killing Fields”, J. Math.
Phys., 28, 28–32, (1987). [ |
|
| 109 | Garfinkle, D., “Choptuik scaling in null coordinates”, Phys. Rev. D, 51, 5558–5561, (1995).
[ |
|
| 110 | Garfinkle, D., “Choptuik scaling and the scale invariance of Einstein’s equation”, Phys. Rev.
D, 56, 3169–3173, (1997). [ |
|
| 111 | Garfinkle, D., “Numerical Simulations of Gowdy Spacetimes on S2 × S1 × R”, Phys. Rev. D,
60, 104010, (1999). [ |
|
| 112 | Garfinkle, D., “Exact solution for (2+1)-dimensional critical collapse”, Phys. Rev. D, 63,
044007, 1–5, (2001). [ |
|
| 113 | Garfinkle, D., “Harmonic coordinate method for simulating generic singularities”, Phys. Rev.
D, 65, 044029, 1–6, (2002). [ |
|
| 114 | Garfinkle, D., and Duncan, G.C., “Scaling of curvature in subcritical gravitational collapse”,
Phys. Rev. D, 58, 064024, 1–4, (1998). [ |
|
| 115 | Garfinkle, D., and Duncan, G.C., “Numerical Evolution of Brill Waves”, Phys. Rev. D, 63,
044011, (2001). [ |
|
| 116 | Garfinkle, D., and Gundlach, C., “Symmetry-seeking spacetime coordinates”, Class. Quantum
Grav., 16, 4111–4123, (1999). [ |
|
| 117 | Gentle, A.P., and Miller, W.A., “A fully (3+1)-dimensional Regge calculus model of the Kasner
cosmology”, Class. Quantum Grav., 15, 389–405, (1998). [ |
|
| 118 | Gnedin, M.L., and Gnedin, N.Y., “Destruction of the Cauchy horizon in the
Reissner–Nordström black hole”, Class. Quantum Grav., 10, 1083–1102, (1993). [ |
|
| 119 | Goldwirth, D.S., and Piran, T., “Gravitational collapse of massless scalar field and cosmic
censorship”, Phys. Rev. D, 36, 3575–3581, (1987). [ |
|
| 120 | Gonçalves, S.M.C.V., and Moss, I.G., “Black Hole Formation from Massive Scalar Fields”,
Class. Quantum Grav., 14, 2607–2615, (1997). [ |
|
| 121 | Gowdy, R.H., “Gravitational Waves in Closed Universes”, Phys. Rev. Lett., 27, 826, (1971). | |
| 122 | Grubisić, B., “Velocity Dominance near a Crushing Singularity”, in Brown, J.D., Chu, M.T.,
Ellison, D.C., and Plemmons, R.J., eds., Proceedings of the Cornelius Lanczos International
Centenary Conference, Proceedings of the conference held in Raleigh, North Carolina,
December 12 – 17, 1993, (SIAM, Philadelphia, 1994). [ |
|
| 123 | Grubisić, B., and Moncrief, V., “Asymptotic Behavior of the T3 × R Gowdy Space-times”,
Phys. Rev. D, 47, 2371–2382, (1993). [ |
|
| 124 | Grubisić, B., and Moncrief, V., “Mixmaster Spacetime, Geroch’s Transformation, and
Constants of Motion”, Phys. Rev. D, 49, 2792–2800, (1994). [ |
|
| 125 | Gundlach, C., “The Choptuik Spacetime as an Eigenvalue Problem”, Phys. Rev. Lett., 75,
3214–3217, (1995). [ |
|
| 126 | Gundlach, C., “Critical phenomena in gravitational collapse”, in ChruÅ›ciel, P.T., ed.,
Mathematics of Gravitation, Part I: Lorentzian Geometry and Einstein Equations, Proceedings
of the Workshop on Mathematical Aspects of Theories of Gravitation, held in Warsaw, Poland,
February 29 – March 30, 1996, Banach Center Publications, vol. 41, pp. 143–152, (Polish
Academy of Sciences, Institute of Mathematics, Warsaw, 1997). [ |
|
| 127 | Gundlach, C., “Echoing and scaling in Einstein–Yang–Mills critical collapse”, Phys. Rev. D,
55, 6002–6013, (1997). [ |
|
| 128 | Gundlach, C., “Understanding critical collapse of a scalar field”, Phys. Rev. D, 55, 695–713,
(1997). [ |
|
| 129 | Gundlach, C., “Critical phenomena in gravitational collapse”, Adv. Theor. Math. Phys., 2,
1–49, (1998). [ |
|
| 130 | Gundlach, C., “Nonspherical perturbations of critical collapse and cosmic censorship”, Phys.
Rev. D, 57, 7075–7079, (1998). [ |
|
| 131 | Gundlach, C., “Critical Phenomena in Gravitational Collapse”, Living Rev. Relativity, 2,
lrr-1999-4, (1999). URL (cited on 28 May 2001): http://www.livingreviews.org/lrr-1999-4. |
|
| 132 | Gundlach, C., and Martín-García, J.M., “Charge scaling and universality in critical
collapse”, Phys. Rev. D, 54, 7353–7360, (1996). [ |
|
| 133 | Halpern, P., “Chaos in the Long-Term Behavior of Some Bianchi-type VIII Models”, Gen.
Relativ. Gravit., 19, 73–94, (1987). [ |
|
| 134 | Hamadé, R.S., Horne, J.H., and Stewart, J.M., “Continuous self-similarity and S-duality”,
Class. Quantum Grav., 13, 2241–2253, (1996). [ |
|
| 135 | Hamadé, R.S., and Stewart, J.M., “The spherically symmetric collapse of a massless scalar
field”, Class. Quantum Grav., 13, 497–512, (1996). [ |
|
| 136 | Hara, T., Koike, T., and Adachi, S., “Renormalization group and critical behavior in
gravitational collapse”, arXiv e-print, (1996). [ |
|
| 137 | Harada, T., Iguchi, H., and Nakao, K., “Naked Singularity Explosion”, Phys. Rev. D, 61,
101502, (2000). [ |
|
| 138 | Harada, T., Iguchi, H., and Nakao, K., “Power, Energy, and Spectrum of a Naked Singularity
Explosion”, Phys. Rev. D, 62, 084037, (2000). [ |
|
| 139 | Hawking, S.W., “The Occurrence of Singularities in Cosmology. III. Causality and Singularities”, Proc. R. Soc. London, Ser. A, 300, 182–201, (1967). | |
| 140 | Hawking, S.W., and Ellis, G.F.R., The Large Scale Structure of Space-Time, Cambridge
Monographs on Mathematical Physics, (Cambridge University Press, Cambridge, 1973). [ |
|
| 141 | Hawking, S.W., and Penrose, R., “The singularities of gravitational collapse and cosmology”, Proc. R. Soc. London, Ser. A, 314, 529–548, (1970). | |
| 142 | Hern, S.D., Numerical Relativity and Inhomogeneous Cosmologies, Ph.D. Thesis, (Cambridge
University, Cambridge, 2000). [ |
|
| 143 | Hern, S.D., and Stewart, J.M., “The Gowdy T3 Cosmologies Revisited”, Class. Quantum Grav.,
15, 1581–1593, (1998). [ |
|
| 144 | Hirschmann, E.W., and Eardley, D.M., “Critical exponents and stability at the black hole
threshold for a complex scalar field”, Phys. Rev. D, 52, 5850–5856, (1995). [ |
|
| 145 | Hirschmann, E.W., and Eardley, D.M., “Universal scaling and echoing in gravitational collapse
of a complex scalar field”, Phys. Rev. D, 51, 4198–4207, (1995). [ |
|
| 146 | Hirschmann, E.W., and Eardley, D.M., “Criticality and bifurcation in the gravitational collapse
of a self-coupled scalar field”, Phys. Rev. D, 56, 4696–4705, (1997). [ |
|
| 147 | Hobill, D.W., Bernstein, D.H., Welge, M., and Simkins, D., “The Mixmaster cosmology as a
dynamical system”, Class. Quantum Grav., 8, 1155–1171, (1991). [ |
|
| 148 | Hobill, D.W., Burd, A., and Coley, A.A., eds., Deterministic Chaos in General Relativity, Proceedings of the NATO Advanced Research Workshop, held July 25 – 30, 1993, in Kananaskis, Alberta, Canada, (Plenum, New York, 1994). | |
| 149 | Hobill, D.W., and Webster, P.S., “Trapped Surface Structure in Brill Wave Evolution”, personal communication. Talk presented at GR16 and private communication. | |
| 150 | Hod, S., “Radiative Tail of Realistic Rotating Gravitational Collapse”, Phys. Rev. Lett., 84,
10–13, (2000). [ |
|
| 151 | Hod, S., and Piran, T., “Critical behavior and universality in gravitational collapse of a charged
scalar field”, Phys. Rev. D, 55, 3485–3496, (1997). [ |
|
| 152 | Hod, S., and Piran, T., “Fine-structure of Choptuik’s mass-scaling relation”, Phys. Rev. D, 55,
440–442, (1997). [ |
|
| 153 | Hod, S., and Piran, T., “The Inner Structure of Black Holes”, Gen. Relativ. Gravit., 30,
1555–1562, (1998). [ |
|
| 154 | Hod, S., and Piran, T., “Mass Inflation in Dynamical Gravitational Collapse of a Charged
Scalar Field”, Phys. Rev. Lett., 81, 1554–1557, (1998). [ |
|
| 155 | Hübner, P., “Method for calculating the global structure of (singular) spacetimes”, Phys. Rev.
D, 53(2), 701–721, (1994). [ |
|
| 156 | Hübner, P., “Numerical approach to the global structure of space-time”, Helv. Phys. Acta, 69, 316–320, (1996). | |
| 157 | Hübner, P., “How to avoid artificial boundaries in the numerical calculation of black hole
space-times”, Class. Quantum Grav., 16(7), 2145–2164, (1999). [ |
|
| 158 | Husa, S., Lechner, C., Pürrer, M., Thornburg, J., and Aichelburg, P.C., “Type II critical
collapse of a self-gravitating nonlinear σ model”, Phys. Rev. D, 62, 104007, 1–11, (2000). [ |
|
| 159 | Iguchi, H., and Harada, T., “Physical Aspects of Naked Singularity Explosion: How Does
a Naked Singularity Explode?”, Class. Quantum Grav., 18, 3681–3700, (2001). [ |
|
| 160 | Iguchi, H., Nakao, K., and Harada, T., “Gravitational Waves around a Naked Singularity:
Odd-Parity Perturbation of Lemaître–Tolman–Bondi Space-Time”, Phys. Rev. D, 57,
7262–7273, (1998). [ |
|
| 161 | Iguchi, H., Nakao, K., and Harada, T., “Gravitational Waves around a Naked Singularity. II
— Even-Parity Perturbation —”, Prog. Theor. Phys., 103, 53–72, (2000). [ |
|
| 162 | Iguchi, O., Hosoya, A., and Koike, T., “Renormalization Group Approach to the Einstein
Equation in Cosmology”, Phys. Rev. D, 57, 3340–3350, (1998). [ |
|
| 163 | Isenberg, J.A., and Kichenassamy, S., “Asymptotic behaviour in polarized T2-symmetric
vacuum space-times”, J. Math. Phys., 40, 340–352, (1999). [ |
|
| 164 | Isenberg, J.A., and Moncrief, V., “Asymptotic Behaviour of the Gravitational Field and the
Nature of Singularities in Gowdy Spacetimes”, Ann. Phys. (N.Y.), 199, 84–122, (1990). [ |
|
| 165 | Isenberg, J.A., and Moncrief, V., “Asymptotic behavior of polarized and half-polarized U(1)
symmetric vacuum spacetimes”, Class. Quantum Grav., 19, 5361–5386, (2002). [ |
|
| 166 | Israel, W., “The Formation of Black Holes in Nonspherical Collapse and Cosmic Censorship”, Can. J. Phys., 64, 120–127, (1986). | |
| 167 | Israel, W., “Must Nonspherical Collapse Produce Black Holes? A Gravitational Confinement
Theorem”, Phys. Rev. Lett., 56, 789–791, (1986). [ |
|
| 168 | Jantzen, R.T., “Finite-Dimensional Einstein–Maxwell–Scalar Field System”, Phys. Rev. D, 33, 2121–2135, (1986). | |
| 169 | Jantzen, R.T., “Spatially Homogeneous Dynamics: A Unified Picture”, in Ruffini, R., and
Melchiorri, F., eds., Gamow Cosmology, Proceedings of the International School of Physics
‘Enrico Fermi’, Course 86, Varenna, Italy, 13 – 23 July 1982, pp. 61–147, (North-Holland;
Elsevier, Amsterdam; New York, 1986). [ |
|
| 170 | Johnson, G., “What a Physicist Finds Obscene”, New York Times, (February 16, 1997), p. 4. | |
| 171 | Kasner, E., “Solutions of the Einstein Equations Involving Functions of Only One Variable”,
Trans. Amer. Math. Soc., 27, 155–162, (1925). [ |
|
| 172 | Khalatnikov, I.M., Lifshitz, E.M., Khanin, K.M., Shchur, L.N., and Sinai, Y.G., “On the
Stochasticity in Relativistic Cosmology”, J. Stat. Phys., 38, 97–114, (1985). [ |
|
| 173 | Kichenassamy, S., and Rendall, A.D., “Analytic description of singularities in Gowdy
spacetimes”, Class. Quantum Grav., 15, 1339–1355, (1998). [ |
|
| 174 | Kirillov, A.A., “The Nature of the Spatial Distribution of Metric Inhomogeneities in the General Solution of the Einstein Equations near a Cosmological Singularity”, J. Exp. Theor. Phys., 76, 355–358, (1993). | |
| 175 | Kirillov, A.A., and Kochnev, A.A., “Cellular Structure of Space near a Singularity in Time in Einstein’s Equations”, J. Exp. Theor. Phys. Lett., 46, 435–438, (1987). | |
| 176 | Koike, T., Hara, T., and Adachi, S., “Critical Behavior in Gravitational Collapse of Radiation
Fluid: A Renormalization Group (Linear Perturbation) Analysis”, Phys. Rev. Lett., 74,
5170–5173, (1995). [ |
|
| 177 | LeBlanc, V.G., “Asymptotic states of magnetic Bianchi I cosmologies”, Class. Quantum Grav.,
14, 2281–2301, (1997). [ |
|
| 178 | LeBlanc, V.G., Kerr, D., and Wainwright, J., “Asymptotic states of magnetic Bianchi VI0
cosmologies”, Class. Quantum Grav., 12, 513–541, (1995). [ |
|
| 179 | Libson, J., Massó, J., Seidel, E., Suen, W.-M., and Walker, P., “Event horizons in numerical
relativity: Methods and tests”, Phys. Rev. D, 53, 4335–4350, (1996). [ |
|
| 180 | Liebling, S.L., Hirschmann, E.W., and Isenberg, J.A., “Critical phenomena in nonlinear sigma
models”, J. Math. Phys., 41(8), 5691–5700, (2000). [ |
|
| 181 | Ma, P.K.-H., and Wainwright, J., “A Dynamical Systems Approach to the Oscillatory Singularity in Bianchi Cosmologies”, in Hobill, D.W., Burd, A., and Coley, A.A., eds., Deterministic Chaos in General Relativity, Proceedings of the NATO Advanced Research Workshop, held July 25 – 30, 1993, in Kananaskis, Alberta, Canada, NATO ASI Series B, vol. 332, (Plenum, New York, 1994). | |
| 182 | MacCallum, M., “Anisotropic and Inhomogeneous Relativistic Cosmologies”, in Hawking, S.W., and Israel, W., eds., General Relativity: An Einstein Centenary Survey, (Cambridge University Press, Cambridge; New York, 1979). | |
| 183 | Maison, D., “Non-universality of critical behaviour in spherically symmetric gravitational
collapse”, Phys. Lett. B, 366, 82–84, (1996). [ |
|
| 184 | Massó, J., Seidel, E., Suen, W.-M., and Walker, P., “Event Horizons in Numerical Relativity
II: Analyzing the Horizon”, Phys. Rev. D, 59, 064015, (1999). [ |
|
| 185 | Mellor, F., and Moss, I.G., “Stability of black holes in de Sitter space”, Phys. Rev. D, 41, 403–409, (1990). | |
| 186 | Mellor, F., and Moss, I.G., “A Reassessment of the Stability of the Cauchy Horizon in de Sitter
Space”, Class. Quantum Grav., 9, L43–L46, (1992). [ |
|
| 187 | Misner, C.W., “Mixmaster Universe”, Phys. Rev. Lett., 22, 1071–1074, (1969). [ |
|
| 188 | Moncrief, V., “Global Properties of Gowdy Spacetimes with T3 × R Topology”, Ann. Phys.
(N.Y.), 132, 87–107, (1981). [ |
|
| 189 | Moncrief, V., “Finite-Difference Approach to Solving Operator Equations of Motion in Quantum Theory”, Phys. Rev. D, 28, 2485–2490, (1983). | |
| 190 | Moncrief, V., “Reduction of Einstein’s Equations for Vacuum Space-Times with Spacelike U(1)
Isometry Groups”, Ann. Phys. (N.Y.), 167, 118–142, (1986). [ |
|
| 191 | Moncrief, V., “Spacetime Singularities and Cosmic Censorship”, in Francaviglia, M., Longhi, G., Lusanna, L., and Sorace, E., eds., General Relativity and Gravitation, Proceedings of the 14th International Conference on General Relativity and Gravitation: Florence, Italy, 6 – 12 August 1995, pp. 259–276, (World Scientific, Singapore; River Edge, NJ, 1997). | |
| 192 | Montani, G., “On the General Behavior of the Universe near the Cosmological Singularity”,
Class. Quantum Grav., 12, 2505–2517, (1995). [ |
|
| 193 | Moser, A.A., Matzner, R.A., and Ryan Jr, M.P., “Numerical Solutions for Symmetric Bianchi
Type IX Universes”, Ann. Phys. (N.Y.), 79, 558–579, (1973). [ |
|
| 194 | Motter, A.E., and Letelier, P.S., “Mixmaster Chaos”, Phys. Lett. A, 285, 127–131, (2001).
[ |
|
| 195 | Nakamura, T., and Sato, H., “General Relativistic Collapse of Non-Rotating, Axisymmetric
Stars”, Prog. Theor. Phys., 67, 1396–1405, (1982). [ |
|
| 196 | Nakamura, T., Shapiro, S.L., and Teukolsky, S.A., “Naked Singularities and the Hoop Conjecture: An Analytic Exploration”, Phys. Rev. D, 38, 2972–2978, (1988). | |
| 197 | Nakamura, T., Shibata, M., and Nakao, K., “Naked Singularity Dries Up?”, Prog. Theor. Phys.,
89, 821–831, (1993). [ |
|
| 198 | Nakao, K., Iguchi, H., and Harada, T., “Newtonian Analysis of Gravitational Waves from
Naked Singularity”, Phys. Rev. D, 63, 084003, (2001). [ |
|
| 199 | Niemeyer, J.C., and Jedamzik, K., “Near-Critical Gravitational Collapse and the Initial
Mass Function of Primordial Black Holes”, Phys. Rev. Lett., 80, 5481–5484, (1998). [ |
|
| 200 | Norton, A.H., “Finite Difference Operators for PDE’s Based on Sampling Kernels for Spline Quasi-Interpolation”, unknown status, (1992). University of New South Wales Preprint. | |
| 201 | Olabarrieta, I., Critical Collapse of Collisionless Matter in Spherical Symmetry, Masters Thesis,
(Uinversity of British Columbia, Vancouver, 2000). [ |
|
| 202 | Ori, A., “Inner Structure of a Charged Black Hole: An Exact Mass-Inflation Solution”, Phys.
Rev. Lett., 67, 789–792, (1991). [ |
|
| 203 | Ori, A., “Structure of the Singularity inside a Realistic Black Hole”, Phys. Rev. Lett., 68,
2117–2120, (1992). [ |
|
| 204 | Ori, A., “Null Weak Singularities in Plane-Symmetric Spacetimes”, Phys. Rev. D, 57,
4745–4753, (1998). [ |
|
| 205 | Ori, A., “Evolution of Linear Gravitational and Electromagnetic Perturbations inside a Kerr Black Hole”, Phys. Rev. D, 61, 024001, (1999). | |
| 206 | Ori, A., “Oscillatory Null Singularity inside Realistic Spinning Black Holes”, Phys. Rev. Lett.,
83, 5423–5426, (1999). [ |
|
| 207 | Ove, R., “Nonlinear Gravitational Effect”, Phys. Rev. Lett., 64, 1200–1203, (1990). [ |
|
| 208 | Pelath, M.A., Tod, K.P., and Wald, R.M., “Trapped surfaces in prolate collapse in
the Gibbons–Penrose construction”, Class. Quantum Grav., 15, 3917–3934, (1998). [ |
|
| 209 | Penrose, R., “Gravitational Collapse: The Role of General Relativity”, Riv. Nuovo Cimento,
1, 252–276, (1969). [ |
|
| 210 | Penrose, R., “Singularities and Time-Asymmetry”, in Hawking, S.W., and Israel, W., eds., General Relativity: An Einstein Centenary Survey, pp. 581–638, (Cambridge University Press, Cambridge; New York, 1979). | |
| 211 | Poisson, E., “Black-Hole Interiors and Strong Cosmic Censorship”, in Burko, L.M., and Ori, A.,
eds., Internal Structure of Black Holes and Spacetime Singularities, An international research
workshop, Haifa, June 29 – July 3, 1997, Annals of the Israel Physical Society, vol. 13, (Institute
of Physics; Israel Physical Society, Bristol; Philadelphia; Jerusalem, 1998). [ |
|
| 212 | Poisson, E., and Israel, W., “Inner-Horizon Instability and Mass Inflation in Black Holes”,
Phys. Rev. Lett., 63, 1663–1666, (1989). [ |
|
| 213 | Poisson, E., and Israel, W., “Internal structure of black holes”, Phys. Rev. D, 41, 1796–1809,
(1990). [ |
|
| 214 | Press, W.H., Flannery, B.P., Teukolsky, S.A., and Vetterling, W.T., Numerical Recipes: The
Art of Scientific Computing, (Cambridge University, Cambridge; New York, 1992), 2nd edition.
[ |
|
| 215 | Pretorius, F., and Choptuik, M.W., “Gravitational collapse in 2+1 dimensional AdS
spacetime”, Phys. Rev. D, 62, 124012, 1–15, (2000). [ |
|
| 216 | Pullin, J., “Time and Chaos in General Relativity”, in D’Olivo, J.C., Nahmad, E., and Ryan, M., eds., Relativity and Gravitation: Classical and Quantum, Proceedings of SILARG VII, the 7th Latin-American Symposium on Relativity and Gravitation, Cocoyoc, Mexico, December 1990, (World Scientific, Singapore, 1991). | |
| 217 | Rein, G., Rendall, A.D., and Schaeffer, J., “Critical collapse of collisionless matter: A numerical
investigation”, Phys. Rev. D, 58, 044007, 1–8, (1998). [ |
|
| 218 | Rendall, A.D., “Global dynamics of the mixmaster model”, Class. Quantum Grav., 14,
2341–2356, (1997). [ |
|
| 219 | Rendall, A.D., “Solutions of the Einstein equations with matter”, in Francaviglia, M., Longhi,
G., Lusanna, L., and Sorace, E., eds., General Relativity and Gravitation, Proceedings of the
14th International Conference on General Relativity and Gravitation, Florence, Italy, 6 – 12
August 1995, pp. 313–335, (World Scientific, Singapore; River Edge, NJ, 1997). [ |
|
| 220 | Rendall, A.D., and Weaver, M., “Manufacture of Gowdy spacetimes with spikes”, Class.
Quantum Grav., 18, 2959–2975, (2001). [ |
|
| 221 | Ringström, H., “Curvature blow up in Bianchi VIII and IX vacuum spacetimes”, Class.
Quantum Grav., 17, 713–731, (2000). [ |
|
| 222 | Ringström, H., “The Bianchi IX attractor”, Ann. Henri Poincare, 2, 405–500, (2001).
[ |
|
| 223 | Rugh, S.E., Chaotic Behavior and Oscillating Three-Volumes in a Space-Time Metric in General Relativity, Masters Thesis, (Niels Bohr Institute, Copenhagen, 1990). Available on request to the author. | |
| 224 | Rugh, S.E., “Chaos in the Einstein Equations – Characterization and Importance?”, in Hobill, D.W., Burd, A., and Coley, A.A., eds., Deterministic Chaos in General Relativity, Proceedings of the NATO Advanced Research Workshop, held July 25 – 30, 1993, in Kananaskis, Alberta, Canada, NATO ASI Series B, vol. 332, (Plenum, New York, 1994). | |
| 225 | Rugh, S.E., and Jones, B.J.T., “Chaotic Behaviour and Oscillating Three-Volumes in Bianchi
IX Universes”, Phys. Lett. A, 147, 353, (1990). [ |
|
| 226 | Ryan Jr, M.P., “Qualitative Cosmology: Diagrammatic Solutions for Bianchi IX Universes with Expansion, Rotation, and Shear II: The General Case”, Ann. Phys. (N.Y.), 68, 541–555, (1971). | |
| 227 | Ryan Jr, M.P., and Shepley, L.C., Homogeneous Relativistic Cosmologies, Princeton Series in Physics, (Princeton University Press, Princeton, NJ, 1975). | |
| 228 | Schoen, R., and Yau, S.-T., “The Existence of a Black Hole Due to Condensation of Matter”,
Commun. Math. Phys., 90, 575–579, (1983). [ |
|
| 229 | Seidel, E., and Suen, W.-M., “Formation of Solitonic Stars Through Gravitational Cooling”,
Phys. Rev. Lett., 72, 2516–2519, (1994). [ |
|
| 230 | Shapiro, S.L., and Teukolsky, S.A., “Formation of Naked Singularities: The Violation of Cosmic
Censorship”, Phys. Rev. Lett., 66, 994–997, (1991). [ |
|
| 231 | Shapiro, S.L., and Teukolsky, S.A., “Gravitational collapse of rotating spheroids and the formation of naked singularities”, Phys. Rev. D, 45, 2006–2012, (1992). | |
| 232 | Shapiro, S.L., and Teukolsky, S.A., “Relativistic Stellar Systems with Spindle Singularities”, Astrophys. J., 419, 622–635, (1993). | |
| 233 | Ståhl, F., “Fuchsian Analysis of S2 ×S1 and S3 Gowdy Spacetimes”, Class. Quantum Grav.,
19, 4483–4504, (2002). [ |
|
| 234 | Suzuki, M., “Fractal Decomposition of Exponential Operators with Applications to Many-body
Theories and Monte Carlo Simulations”, Phys. Lett. A, 146, 319–323, (1990). [ |
|
| 235 | Suzuki, M., “General Theory of Fractal Path Integrals with Applications to Many-body
Theories and Statistical Physics”, J. Math. Phys., 32, 400–407, (1991). [ |
|
| 236 | Taub, A., “Empty Space-Times Admitting a Three-Parameter Group of Motions”, Ann. Math.,
53, 472, (1951). [ |
|
| 237 | Teukolsky, S.A., “On the Stability of the Iterated Crank–Nicholson Method in Numerical
Relativity”, Phys. Rev. D, 61, 087501, (2000). [ |
|
| 238 | Thornburg, J., Lechner, C., Pürrer, M., Aichelburg, P.C., and Husa, S., “Episodic
Self-Similarity in Critical Gravitational Collapse”, in Gurzadyan, V.G., Jantzen, R.T.,
and Ruffini, R., eds., The Ninth Marcel Grossmann Meeting on recent developments in
theoretical and experimental general relativity, gravitation and relativistic field theories, Part
B, Proceedings of the MGIX MM meeting held at the University of Rome ‘La Sapienza’, July
2 – 8, 2000, pp. 1670–1671, (World Scientific, Singapore; River Edge, NJ, 2002). [ |
|
| 239 | Thorne, K.S., “Nonspherical gravitational collapse – A short review”, in Klauder, J., ed., Magic Without Magic: John Archibald Wheeler. A Collection of Essays in Honor of his Sixtieth Birthday, pp. 231–258, (W.H. Freeman, San Francisco, 1972). | |
| 240 | Tipler, F.J., Clarke, C.J.S., and Ellis, G.F.R., “Singularities and Horizons – A Review Article”, in Held, A., ed., General Relativity and Gravitation: One Hundred Years After the Birth of Albert Einstein, pp. 97–206, (Plenum, New York, 1980). | |
| 241 | Tod, K.P., “The hoop conjecture and the Gibbons–Penrose construction of trapped surfaces”, Class. Quantum Grav., 9, 1581–1591, (1992). | |
| 242 | van Elst, H., Uggla, C., and Wainwright, J., “Dynamical systems approach to G2 cosmology”,
Class. Quantum Grav., 19, 51–82, (2002). [ |
|
| 243 | van Putten, M.H.P.M., “Numerical Integration of Nonlinear Wave Equations for General
Relativity”, Phys. Rev. D, 55, 4705–4711, (1997). [ |
|
| 244 | Wald, R.M., General Relativity, (University of Chicago Press, Chicago, 1984). | |
| 245 | Wald, R.M., “Gravitational Collapse and Cosmic Censorship”, arXiv e-print, (1997).
[ |
|
| 246 | Wald, R.M., and Iyer, V., “Trapped surfaces in the Schwarzschild geometry and cosmic censorship”, Phys. Rev. D, 44, R3719–R3722, (1991). | |
| 247 | Weaver, M., Asymptotic Behavior to Solutions to Einstein’s Equation, Ph.D. Thesis, (University of Oregon, Eugene, 1999). | |
| 248 | Weaver, M., “Dynamics of magnetic Bianchi VI0 cosmologies”, Class. Quantum Grav., 17,
421–434, (2000). [ |
|
| 249 | Weaver, M., Berger, B.K., and Isenberg, J.A., “Oscillatory Approach to the Singularity in
Vacuum T2 Symmetric Spacetimes”, in Gurzadyan, V.G., Jantzen, R.T., and Ruffini, R., eds.,
The Ninth Marcel Grossmann Meeting on recent developments in theoretical and experimental
general relativity, gravitation and relativistic field theories, Part B, Proceedings of the MGIX
MM meeting held at the University of Rome ‘La Sapienza’, July 2 – 8, 2000, pp. 1011–1012,
(World Scientific, Singapore; River Edge, NJ, 2002). [ |
|
| 250 | Weaver, M., Isenberg, J.A., and Berger, B.K., “Mixmaster Behavior in Inhomogeneous
Cosmological Spacetimes”, Phys. Rev. Lett., 80, 2984–2987, (1998). [ |
|
| 251 | Wojtkiewicz, J., “Naked Singularities in Initial Surfaces”, Phys. Rev. D, 41, 1867–1874, (1990). | |
| 252 | Yokoyama, J., “Cosmological constraints on primordial black holes produced in the near-critical
gravitational collapse”, Phys. Rev. D, 58, 107502, (1998). [ |
|
| 253 | Zardecki, A., “Modeling in Chaotic Relativity”, Phys. Rev. D, 28, 1235–1242, (1983). | |
| 254 | Zotov, M.Y., “Einstein–Yang–Mills Black Hole Interiors: Serious Problems But Simple
Solution”, arXiv e-print, (1997). [ |
| http://www.livingreviews.org/lrr-2002-1 |
© Max Planck Society and the author(s)
Problems/comments to |