\documentclass[a4paper]{article} \usepackage{amsmath} \begin{document} \title{Sum of Two Radicals} \author{Amit Yaron} \date{Nov 21, 2025} \maketitle \section*{How to Solve $\sqrt[5]{\frac{6x+5}{81x+81}}+\sqrt[5]{\frac{5x+6}{81x+81}}=1$?} Let us solve it by substitution: \[ a=\frac{6x+5}{81x+81},\ b=\frac{5x+6}{81x+81} \] Then, \[ \begin{cases} a+b=1\\a^5+b^5=\frac{11}{81} \end{cases} \] By factorizing $a^5+b^5$, we can find values of $ab$ in addition to the value of $a+b$ we already know. \begin{align*} a^5+b^5&=\underbrace{(a+b)}_{=1}(a^4-a^3b+a^2b^2-ab^3+b^4)\\ &=a^4-a^3b+a^2b^2-ab^3+b^4\\ &=a^4+a^2b^2+b^4-a^3b-ab^3\\ &=a^4+a^2b^2+b^4-ab(a^2+b^2)\\ &=a^4+2a^2b^2+b^4-a^2b^2-ab(a^2+2ab+b^2-2ab)\\ &=(a^2+b^2)^2-a^2b^2-ab\big({\underbrace{(a+b)}_{=1}}^2-2ab)\\ &=(a^2+b^2)^2-(ab)^2-ab(1-2ab)\\ &=(a^2+b^2)^2-(ab)^2-ab+2(ab)^2\\ &=(a^2+b^2)^2+(ab)^2-ab\\ &=(a^2+2ab+b^2-2ab)+(ab)^2-ab\\ &={\big((a+b)^2-2ab\big)}^2+(ab)^2-ab\\ &=(1-2ab)^2+(ab)^2-ab\\ &=1-4ab+4(ab)^2+(ab)^2-ab\\ &=1-5ab+5(ab)^2 \end{align*} Let us recall that $a^5+b^5=\frac{11}{81}$ Then, \begin{align*} &5(ab)^2-5ab+1=\frac{11}{81}\Rightarrow\\ \Rightarrow &5(ab)^2-5ab+1-\frac{11}{81}=0\Rightarrow\\ \Rightarrow &5(ab)^2-5ab+\frac{70}{81}=0\Rightarrow\\ \Rightarrow &405-405ab+70=0\Rightarrow\\ \Rightarrow &ab=\frac{405\pm\sqrt{405^2-4\cdot405\cdot70}}{810}\Rightarrow\\ \Rightarrow &ab=\frac{405\pm\sqrt{405(405-280)}}{810}\Rightarrow\\ \Rightarrow &ab=\frac{405\pm\sqrt{81\cdot5\cdot125}}{810}\Rightarrow\\ \Rightarrow &ab=\frac{405\pm\sqrt{9^2\cdot5^4}}{810}\Rightarrow\\ \Rightarrow &ab=\frac{405\pm\sqrt{9^2\cdot25^2}}{810}\Rightarrow\\ \Rightarrow &ab=\frac{405\pm9\cdot25}{810}\Rightarrow\\ \Rightarrow &ab=\frac{405\pm225}{810}\Rightarrow\\ \Rightarrow &ab=\frac{9\pm5}{18} \end{align*} Now, we have two cases: \subsection*{Case 1: $ab=\frac{9+5}{18}=\frac{14}{18}=\frac{7}9$} and \[ a+b=1\Rightarrow b=1-a \] Thus, \begin{align*} &a(1-a)=\frac{7}9\Rightarrow\\ \Rightarrow &a-a^2=\frac{7}9\Rightarrow\\ \Rightarrow &9a-9a^2=7\Rightarrow\\ \Rightarrow &9a^2-9a+7=0 \end{align*} But the discriminant is: \[ \Delta=9^2-4\cdot9\cdot7=81-252=-171<0 \] No real solutions. \subsection*{Case 2: $ab=\frac{9-5}{18}=\frac{4}{18}=\frac{2}9$} and \[ a+b=1\Rightarrow b=1-a \] Thus, \begin{align*} &a(1-a)=\frac{2}9\Rightarrow\\ \Rightarrow&a(1-a)=\frac{2}9\Rightarrow\\ \Rightarrow&a-a^2=\frac{2}9\Rightarrow\\ \Rightarrow&9a-9a^2=2\Rightarrow\\ \Rightarrow&9a^2-9a+2=0 \end{align*} Thus, \begin{align*} a=&\frac{9\pm\sqrt{9^2-4\cdot2\cdot9}}{18}\\ &=\frac{9\pm{81-72}}{18}=\\ &=\frac{9\pm\sqrt9}{18}=\\ &=\frac{9\pm3}{18} \end{align*} Time to solve for $x$. Case 1: \begin{align*} &a=\frac{9+3}{18}=\frac{12}{18}=\frac23\Rightarrow\\ \Rightarrow &\sqrt[5]{\frac{6x+5}{81x+81}}=\frac23\Rightarrow\\ \Rightarrow &\frac{6x+5}{81x+81}=\frac{32}{243}\Rightarrow\\ \Rightarrow &\frac{6x+5}{x+1}=\frac{32}3\Rightarrow\\ \Rightarrow &32x+32=18x+15\Rightarrow\\ \Rightarrow &14x+17=0\Rightarrow\\ \Rightarrow &x=-\frac{17}{14} \end{align*} Case 2: \begin{align*} &a=\frac{9-3}{18}=\frac{6}{18}=\frac13\Rightarrow\\ \Rightarrow &\sqrt[5]{\frac{6x+5}{81x+81}}=\frac13\Rightarrow\\ \Rightarrow &\frac{6x+5}{81x+81}=\frac{1}{243}\Rightarrow\\ \Rightarrow &\frac{6x+5}{x+1}=\frac{1}3\Rightarrow\\ \Rightarrow &x+1=18x+15\Rightarrow\\ \Rightarrow &17x+14=0\Rightarrow\\ \Rightarrow &x=-\frac{14}{17} \end{align*} So, we have two solutions: \[ x=-\frac{14}{17} \] or \[ x=-\frac{17}{14} \] \end{document}