\documentclass[a4paper]{article} \usepackage{mathtools} \usepackage{amsfonts} \usepackage{listings} \begin{document} \title{Special Pythagorean Triples} \author{Amit Yaron} \date{Sep 25, 2024} \maketitle \begin{abstract} A pythagorean triple is an ordered set of integers a,b,c such that $a^2+b^2=c^2$ . Generating triples in which $c-b=1$ is easy. Another type of a Pythagorean triple is that in which $b-a=1$. One of them is $(a,b,c)=(20,21,29)$. In this article I will show a formula for those triples. \end{abstract} \section{Let's Get Started} Be a,b,c three positive integers, such that:\\ \[ \begin{cases} a^2+b^2=c^2\\ b-a=1 \end{cases} \] The variable $b$ can be eliminated. so:\\ \begin{align} &a^2+(a+1)^2=c^2\Rightarrow\nonumber\\ \Rightarrow & a^2+a^2+2a+1=c^2\Rightarrow\nonumber\\ \Rightarrow & 2a^2+2a+1=c^2\Rightarrow\nonumber\\ \Rightarrow & 4a^2+4a+2=2c^2\Rightarrow\nonumber\\ \Rightarrow & 4a^2+4a+1+1=2c^2\Rightarrow\nonumber\\ \Rightarrow & (2a+1)^2+1=2c^2\Rightarrow\nonumber\\ \Rightarrow & (2a+1)^2-2c^2=-1 \end{align} Now, let us plug: \[ \begin{cases} x=2a+1\\ y=c \end{cases} \] into (1), and we'll get that: \begin{equation}x^2-2y^2=-1\end{equation} Equation (2) is not Pell's equation for Pell's equation is: \begin{equation*}x^2-ny^2=1\end{equation*} Where $x,y$ are integer variables and $n$ is a non-square constant integer. Equation (2) can be solved using the solutions of Pell's equation, and the solutions are based on Brahmagupta's identity. \section{Brahmagupta's Identity} Brahmagupta's identity is: \begin{align} (x^2-ny^2)(a^2-nb^2) &= a^2x^2-na^2y^2-nb^2x^2+n^2b^2y^2\nonumber\\ &= (ax)^2+(nby)^2-n(ay)^2-n(bx)^2\nonumber\\ &= (ax)^2+2abnxy+(nby)^2-n(ay)^2-2abnx-n(bx)^2\nonumber\\ &= (ax+bny)^2-n(ay+bx)^2 \end{align} To put it in words, the result is a square minus $n$ times a square. \section{Pell's equation} Pell's equation is a diophantine equation, were $x^2-ny^2=1$, thus\\ $\forall k\in\mathbb{Z},\quad {(x^2-ny^2)}^k=1$ and \begin{equation}x^2-ny^2=(x-\sqrt{n}y)(x+\sqrt{n}y)\end{equation} and from (3), if a solution is represented as $x+\sqrt{n}y$, then for any natural number $k$, $(x+\sqrt{n}y)^k$ is a solution too. \subsection{The Solution Set} Now, be $(x_1,y_1)$ a pair of the minimal $x$ and $y$, such that $x^2-ny^2=1$. And $(x_k,y_k)$ is the pair satisfying \begin{equation}x_k+\sqrt{n}y_k=(x_1+\sqrt{n}y_1)^k\quad k\in\mathbb{N}\end{equation} Then, you can prove by mathematical induction, for example, that \[(x_k,y_k)\quad k\in\mathbb{N}\] is the complete solution set.\\ \underline{Proof:}\\ Let us sort all the solutions with positive components so \[ kny_{k+1}y_k-ny_{k+1}y_k=0 \end{align*} and \begin{equation*} Y=y_{K+1}\cdot\sqrt{ny_k^2+1}-y_k\sqrt{ny_{K+1}^2+1} \end{equation*} Now, \begin{align*} &Y<0\Rightarrow\\ \Rightarrow& y_{K+1}\cdot\sqrt{ny_k^2+1}0\text{ and }Y>0$ And from the definition of $X$ and $Y$: \[ X+\sqrt{n}Y < x_{K+1}+y_{K+1} \] Because $(x_{X+1},y_{K+1})$ is the next solution after $(x_{K},y_{K})$: \[ X+\sqrt{n}Y\leq x_K+\sqrt{n}y_K \] and \begin{equation} X+\sqrt{n}Y\leq x_1+\sqrt{n}y_1\end{equation} According to the order we have defined: \[ \exists k\in\{1,2,\ldots,K\},\ s.t.\ (X,Y)=(x_k,y_k) \] and, per the induction hypothesis: \[ x+\sqrt{n}Y=(x_1+\sqrt{n}y_1)^k \] combined with (7), $(X,Y)$ has no choice but to be $(x_1,y_1)$. \\ \\QED. \section{Solving $x^2-2y^2=-1$} The first solution of that equation is $(x,y)=(1,1)$ or \[ x+\sqrt2y=1+\sqrt2 \] and \[ (1+\sqrt2)^2 = 3+2\sqrt2 \] The first solution of Pell's equation with $n=2$. Thus, we can write the solutions as: \[ x_k+\sqrt2y_k = (1+\sqrt2)^{2k} \] Thus, we can write the solutions of $x^2-2y^2=-1$ as \[ x_k+\sqrt2k = (1+\sqrt2)^{2k-1} \] \underline{Closed Form}\\ Feel free to use binomial expansion to get the solutions in closed form. Following are the solutions: \[ x_k=\frac{(1+\sqrt2)^{2k-1}+(1-\sqrt2)^{2k-1}}2 \] and \[ y_k=\frac{\sqrt2[(1+\sqrt2)^{2k-1}-(1-\sqrt2)^{2k-1}]}4 \] \section{Getting the Triangle Sides} Let us refer back to section 1: \begin{align*} x&=2a+1\Rightarrow a=\frac{x-1}2\\ b&=a+1\Rightarrow a=\frac{x+1}2\\ c&=y \end{align*} But the first solution is \[ (x,y)=(1,1)\Rightarrow a=0 \] So, we'll write our solutions as: \begin{align*} a_k&=\frac{(1+\sqrt2)^{2k+1}+(1-\sqrt2)^{2k+1}i-2}4 \\ b_k&=\frac{(1+\sqrt2)^{2k+1}+(1-\sqrt2)^{2k+1}i+2}4 \\ c_k&=\frac{\sqrt2[(1+\sqrt2)^{2k-1}-(1-\sqrt2)^{2k-1}]}4 \end{align*} The first 10 solutions are: \begin{lstlisting} (a,b,c)=(3,4,5) (a,b,c)=(20,21,29) (a,b,c)=(119,120,169) (a,b,c)=(696,697,985) (a,b,c)=(4059,4060,5741) (a,b,c)=(23660,23661,33461) (a,b,c)=(137903,137904,195025) (a,b,c)=(803760,803761,1136689) (a,b,c)=(4684659,4684660,6625109) (a,b,c)=(27304196,27304197,38613965) \end{lstlisting} \end{document}