\documentclass[a4paper]{article} \usepackage{amsmath} \begin{document} \title{Find all Roots, Solve for Square First} \author{Amit Yaron} \date{Nov 16, 2025} \maketitle \section*{How to solve $x^7+7^7=(x+7)^7$} Let us first write the equation as \[ (x+7)^7-x^7=7^7 \] Here I'm going to use a substitution, that will make the odd powers of $x$ disappear. Let us first mulitply both sides by $2^7$, so we'll work with integers. \[ 2^7(x+7)^7-2^7x^7=2^77^7\Rightarrow (2x+14)^7-(2x)^7=14^7 \] Now, let us substitute \[ t=2x+7 \] Then \[ 2x+14=t+7\text{ and } 2x=t-7 \] And the equation will be \[ (t+7)^7-(t-7)^7=14^7 \] Let us expand: \begin{equation} (t+7)^7=t^7+7\cdot7t^6+21\cdot7^2t^5+35\cdot7^3t^4+35\cdot7^4t^3+21\cdot7^5t^2+7\cdot7^6t+7^7 \end{equation} and \begin{equation} (t+7)^7=t^7-7\cdot7t^6+21\cdot7^2t^5-35\cdot7^3t^4+35\cdot7^4t^3-21\cdot7^5t^2 +7\cdot7^6t-7^7 \end{equation} Let us subtract (2) from (1) and get: \[ 14\cdot7t^6+70\cdot7^3t^4+42\cdot7^5t^2+2\cdot7^7=14^7 \] Now, two real values of x are roots of the original equation \[ x=0\Rightarrow t=2x+7=7 \] and \[ x=-7\Rightarrow t=2x+7=-7 \] So $t^2=7^2$ is a solution. Let us start solving \begin{align*} &14\cdot7t^6+70\cdot7^3t^4+42\cdot7^5t^2+2\cdot7^7-14^7=0\Rightarrow\\ \Rightarrow &7t^6+5\cdot7^3t^4+3\cdot7^5t^2+7^6-14^6=0\Rightarrow\\ \Rightarrow &7t^6+5\cdot7^3t^4+3\cdot7^5t^2+7^6-64\cdot7^6=0\Rightarrow\\ \Rightarrow &7t^6+5\cdot7^3t^4+3\cdot7^5t^2-63\cdot7^6=0\Rightarrow\\ \Rightarrow &7t^6+5\cdot7^3t^4+3\cdot7^5t^2-9\cdot7^7=0\Rightarrow\\ \Rightarrow &7t^6-7^3t^4+6\cdot7^3t^4-6\cdot7^5t^2+9\cdot7^5t^2-9\cdot7^7=0\Rightarrow\\ \Rightarrow &(t^2-49)(7t^4+6\cdot7^3t^2+9\cdot7^5)=0\Rightarrow\\ \Rightarrow &(t^2-49)(t^4+6\cdot7^2t^2+9\cdot7^4)=0\Rightarrow\\ \Rightarrow &(t^2-49)\big({(t^2)}^2+2\cdot(3\cdot7^2)t^2+{(3\cdot7)^2\big)}^2=0\Rightarrow\\ \Rightarrow &(t^2-49){(t^2+3\cdot7^2)}^2=0 \end{align*} Now, it's time to recall that \[ t=2x+7\Rightarrow x=\frac{t-7}2 \] And use the solutions for $t^2$ Solution (1): \[ t=-7\Rightarrow x=\frac{-7-7}2=-7 \] Solution (2): \[ t=7\Rightarrow x=\frac{7-7}2=0 \] The rest: \[ t^2=-3\cdot7^2\Rightarrow t=\pm7i\sqrt3\Rightarrow x=-\frac{7\pm7i\sqrt3}2 \] \end{document}