tge25519.c - sick - sign and check files using ed25519
 (HTM) git clone git://z3bra.org/sick
 (DIR) Log
 (DIR) Files
 (DIR) Refs
 (DIR) README
 (DIR) LICENSE
       ---
       tge25519.c (11221B)
       ---
            1 /*
            2  * Public Domain, Authors: Daniel J. Bernstein, Niels Duif, Tanja Lange,
            3  * Peter Schwabe, Bo-Yin Yang.
            4  * Copied from supercop-20230530/crypto_sign/ed25519/ref/ge25519.c
            5  */
            6 
            7 #include "fe25519.h"
            8 #include "sc25519.h"
            9 #include "ge25519.h"
           10 
           11 /* 
           12  * Arithmetic on the twisted Edwards curve -x^2 + y^2 = 1 + dx^2y^2 
           13  * with d = -(121665/121666) = 37095705934669439343138083508754565189542113879843219016388785533085940283555
           14  * Base point: (15112221349535400772501151409588531511454012693041857206046113283949847762202,46316835694926478169428394003475163141307993866256225615783033603165251855960);
           15  */
           16 
           17 /* d */
           18 static const fe25519 ge25519_ecd = {{0xA3, 0x78, 0x59, 0x13, 0xCA, 0x4D, 0xEB, 0x75, 0xAB, 0xD8, 0x41, 0x41, 0x4D, 0x0A, 0x70, 0x00, 
           19                       0x98, 0xE8, 0x79, 0x77, 0x79, 0x40, 0xC7, 0x8C, 0x73, 0xFE, 0x6F, 0x2B, 0xEE, 0x6C, 0x03, 0x52}};
           20 /* 2*d */
           21 static const fe25519 ge25519_ec2d = {{0x59, 0xF1, 0xB2, 0x26, 0x94, 0x9B, 0xD6, 0xEB, 0x56, 0xB1, 0x83, 0x82, 0x9A, 0x14, 0xE0, 0x00, 
           22                        0x30, 0xD1, 0xF3, 0xEE, 0xF2, 0x80, 0x8E, 0x19, 0xE7, 0xFC, 0xDF, 0x56, 0xDC, 0xD9, 0x06, 0x24}};
           23 /* sqrt(-1) */
           24 static const fe25519 ge25519_sqrtm1 = {{0xB0, 0xA0, 0x0E, 0x4A, 0x27, 0x1B, 0xEE, 0xC4, 0x78, 0xE4, 0x2F, 0xAD, 0x06, 0x18, 0x43, 0x2F, 
           25                          0xA7, 0xD7, 0xFB, 0x3D, 0x99, 0x00, 0x4D, 0x2B, 0x0B, 0xDF, 0xC1, 0x4F, 0x80, 0x24, 0x83, 0x2B}};
           26 
           27 #define ge25519_p3 ge25519
           28 
           29 typedef struct
           30 {
           31   fe25519 x;
           32   fe25519 z;
           33   fe25519 y;
           34   fe25519 t;
           35 } ge25519_p1p1;
           36 
           37 typedef struct
           38 {
           39   fe25519 x;
           40   fe25519 y;
           41   fe25519 z;
           42 } ge25519_p2;
           43 
           44 typedef struct
           45 {
           46   fe25519 x;
           47   fe25519 y;
           48 } ge25519_aff;
           49 
           50 
           51 /* Packed coordinates of the base point */
           52 const ge25519 ge25519_base = {{{0x1A, 0xD5, 0x25, 0x8F, 0x60, 0x2D, 0x56, 0xC9, 0xB2, 0xA7, 0x25, 0x95, 0x60, 0xC7, 0x2C, 0x69, 
           53                                 0x5C, 0xDC, 0xD6, 0xFD, 0x31, 0xE2, 0xA4, 0xC0, 0xFE, 0x53, 0x6E, 0xCD, 0xD3, 0x36, 0x69, 0x21}},
           54                               {{0x58, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 
           55                                 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66}},
           56                               {{0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 
           57                                 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}},
           58                               {{0xA3, 0xDD, 0xB7, 0xA5, 0xB3, 0x8A, 0xDE, 0x6D, 0xF5, 0x52, 0x51, 0x77, 0x80, 0x9F, 0xF0, 0x20, 
           59                                 0x7D, 0xE3, 0xAB, 0x64, 0x8E, 0x4E, 0xEA, 0x66, 0x65, 0x76, 0x8B, 0xD7, 0x0F, 0x5F, 0x87, 0x67}}};
           60 
           61 /* Multiples of the base point in affine representation */
           62 static const ge25519_aff ge25519_base_multiples_affine[425] = {
           63 #include "ge25519_base.data"
           64 };
           65 
           66 static void p1p1_to_p2(ge25519_p2 *r, const ge25519_p1p1 *p)
           67 {
           68   fe25519_mul(&r->x, &p->x, &p->t);
           69   fe25519_mul(&r->y, &p->y, &p->z);
           70   fe25519_mul(&r->z, &p->z, &p->t);
           71 }
           72 
           73 static void p1p1_to_p3(ge25519_p3 *r, const ge25519_p1p1 *p)
           74 {
           75   p1p1_to_p2((ge25519_p2 *)r, p);
           76   fe25519_mul(&r->t, &p->x, &p->y);
           77 }
           78 
           79 static void ge25519_mixadd2(ge25519_p3 *r, const ge25519_aff *q)
           80 {
           81   fe25519 a,b,t1,t2,c,d,e,f,g,h,qt;
           82   fe25519_mul(&qt, &q->x, &q->y);
           83   fe25519_sub(&a, &r->y, &r->x); /* A = (Y1-X1)*(Y2-X2) */
           84   fe25519_add(&b, &r->y, &r->x); /* B = (Y1+X1)*(Y2+X2) */
           85   fe25519_sub(&t1, &q->y, &q->x);
           86   fe25519_add(&t2, &q->y, &q->x);
           87   fe25519_mul(&a, &a, &t1);
           88   fe25519_mul(&b, &b, &t2);
           89   fe25519_sub(&e, &b, &a); /* E = B-A */
           90   fe25519_add(&h, &b, &a); /* H = B+A */
           91   fe25519_mul(&c, &r->t, &qt); /* C = T1*k*T2 */
           92   fe25519_mul(&c, &c, &ge25519_ec2d);
           93   fe25519_add(&d, &r->z, &r->z); /* D = Z1*2 */
           94   fe25519_sub(&f, &d, &c); /* F = D-C */
           95   fe25519_add(&g, &d, &c); /* G = D+C */
           96   fe25519_mul(&r->x, &e, &f);
           97   fe25519_mul(&r->y, &h, &g);
           98   fe25519_mul(&r->z, &g, &f);
           99   fe25519_mul(&r->t, &e, &h);
          100 }
          101 
          102 static void add_p1p1(ge25519_p1p1 *r, const ge25519_p3 *p, const ge25519_p3 *q)
          103 {
          104   fe25519 a, b, c, d, t;
          105   
          106   fe25519_sub(&a, &p->y, &p->x); /* A = (Y1-X1)*(Y2-X2) */
          107   fe25519_sub(&t, &q->y, &q->x);
          108   fe25519_mul(&a, &a, &t);
          109   fe25519_add(&b, &p->x, &p->y); /* B = (Y1+X1)*(Y2+X2) */
          110   fe25519_add(&t, &q->x, &q->y);
          111   fe25519_mul(&b, &b, &t);
          112   fe25519_mul(&c, &p->t, &q->t); /* C = T1*k*T2 */
          113   fe25519_mul(&c, &c, &ge25519_ec2d);
          114   fe25519_mul(&d, &p->z, &q->z); /* D = Z1*2*Z2 */
          115   fe25519_add(&d, &d, &d);
          116   fe25519_sub(&r->x, &b, &a); /* E = B-A */
          117   fe25519_sub(&r->t, &d, &c); /* F = D-C */
          118   fe25519_add(&r->z, &d, &c); /* G = D+C */
          119   fe25519_add(&r->y, &b, &a); /* H = B+A */
          120 }
          121 
          122 /* See http://www.hyperelliptic.org/EFD/g1p/auto-twisted-extended-1.html#doubling-dbl-2008-hwcd */
          123 static void dbl_p1p1(ge25519_p1p1 *r, const ge25519_p2 *p)
          124 {
          125   fe25519 a,b,c,d;
          126   fe25519_square(&a, &p->x);
          127   fe25519_square(&b, &p->y);
          128   fe25519_square(&c, &p->z);
          129   fe25519_add(&c, &c, &c);
          130   fe25519_neg(&d, &a);
          131 
          132   fe25519_add(&r->x, &p->x, &p->y);
          133   fe25519_square(&r->x, &r->x);
          134   fe25519_sub(&r->x, &r->x, &a);
          135   fe25519_sub(&r->x, &r->x, &b);
          136   fe25519_add(&r->z, &d, &b);
          137   fe25519_sub(&r->t, &r->z, &c);
          138   fe25519_sub(&r->y, &d, &b);
          139 }
          140 
          141 /* Constant-time version of: if(b) r = p */
          142 static void cmov_aff(ge25519_aff *r, const ge25519_aff *p, unsigned char b)
          143 {
          144   fe25519_cmov(&r->x, &p->x, b);
          145   fe25519_cmov(&r->y, &p->y, b);
          146 }
          147 
          148 static unsigned char equal(signed char b,signed char c)
          149 {
          150   unsigned char ub = b;
          151   unsigned char uc = c;
          152   unsigned char x = ub ^ uc; /* 0: yes; 1..255: no */
          153   crypto_uint32 y = x; /* 0: yes; 1..255: no */
          154   y -= 1; /* 4294967295: yes; 0..254: no */
          155   y >>= 31; /* 1: yes; 0: no */
          156   return y;
          157 }
          158 
          159 static unsigned char negative(signed char b)
          160 {
          161   unsigned long long x = b; /* 18446744073709551361..18446744073709551615: yes; 0..255: no */
          162   x >>= 63; /* 1: yes; 0: no */
          163   return x;
          164 }
          165 
          166 static void choose_t(ge25519_aff *t, unsigned long long pos, signed char b)
          167 {
          168   /* constant time */
          169   fe25519 v;
          170   *t = ge25519_base_multiples_affine[5*pos+0];
          171   cmov_aff(t, &ge25519_base_multiples_affine[5*pos+1],equal(b,1) | equal(b,-1));
          172   cmov_aff(t, &ge25519_base_multiples_affine[5*pos+2],equal(b,2) | equal(b,-2));
          173   cmov_aff(t, &ge25519_base_multiples_affine[5*pos+3],equal(b,3) | equal(b,-3));
          174   cmov_aff(t, &ge25519_base_multiples_affine[5*pos+4],equal(b,-4));
          175   fe25519_neg(&v, &t->x);
          176   fe25519_cmov(&t->x, &v, negative(b));
          177 }
          178 
          179 static void setneutral(ge25519 *r)
          180 {
          181   fe25519_setzero(&r->x);
          182   fe25519_setone(&r->y);
          183   fe25519_setone(&r->z);
          184   fe25519_setzero(&r->t);
          185 }
          186 
          187 /* ********************************************************************
          188  *                    EXPORTED FUNCTIONS
          189  ******************************************************************** */
          190 
          191 /* return 0 on success, -1 otherwise */
          192 int ge25519_unpackneg_vartime(ge25519_p3 *r, const unsigned char p[32])
          193 {
          194   unsigned char par;
          195   fe25519 t, chk, num, den, den2, den4, den6;
          196   fe25519_setone(&r->z);
          197   par = p[31] >> 7;
          198   fe25519_unpack(&r->y, p); 
          199   fe25519_square(&num, &r->y); /* x = y^2 */
          200   fe25519_mul(&den, &num, &ge25519_ecd); /* den = dy^2 */
          201   fe25519_sub(&num, &num, &r->z); /* x = y^2-1 */
          202   fe25519_add(&den, &r->z, &den); /* den = dy^2+1 */
          203 
          204   /* Computation of sqrt(num/den) */
          205   /* 1.: computation of num^((p-5)/8)*den^((7p-35)/8) = (num*den^7)^((p-5)/8) */
          206   fe25519_square(&den2, &den);
          207   fe25519_square(&den4, &den2);
          208   fe25519_mul(&den6, &den4, &den2);
          209   fe25519_mul(&t, &den6, &num);
          210   fe25519_mul(&t, &t, &den);
          211 
          212   fe25519_pow2523(&t, &t);
          213   /* 2. computation of r->x = t * num * den^3 */
          214   fe25519_mul(&t, &t, &num);
          215   fe25519_mul(&t, &t, &den);
          216   fe25519_mul(&t, &t, &den);
          217   fe25519_mul(&r->x, &t, &den);
          218 
          219   /* 3. Check whether sqrt computation gave correct result, multiply by sqrt(-1) if not: */
          220   fe25519_square(&chk, &r->x);
          221   fe25519_mul(&chk, &chk, &den);
          222   if (!fe25519_iseq_vartime(&chk, &num))
          223     fe25519_mul(&r->x, &r->x, &ge25519_sqrtm1);
          224 
          225   /* 4. Now we have one of the two square roots, except if input was not a square */
          226   fe25519_square(&chk, &r->x);
          227   fe25519_mul(&chk, &chk, &den);
          228   if (!fe25519_iseq_vartime(&chk, &num))
          229     return -1;
          230 
          231   /* 5. Choose the desired square root according to parity: */
          232   if(fe25519_getparity(&r->x) != (1-par))
          233     fe25519_neg(&r->x, &r->x);
          234 
          235   fe25519_mul(&r->t, &r->x, &r->y);
          236   return 0;
          237 }
          238 
          239 void ge25519_pack(unsigned char r[32], const ge25519_p3 *p)
          240 {
          241   fe25519 tx, ty, zi;
          242   fe25519_invert(&zi, &p->z); 
          243   fe25519_mul(&tx, &p->x, &zi);
          244   fe25519_mul(&ty, &p->y, &zi);
          245   fe25519_pack(r, &ty);
          246   r[31] ^= fe25519_getparity(&tx) << 7;
          247 }
          248 
          249 int ge25519_isneutral_vartime(const ge25519_p3 *p)
          250 {
          251   int ret = 1;
          252   if(!fe25519_iszero(&p->x)) ret = 0;
          253   if(!fe25519_iseq_vartime(&p->y, &p->z)) ret = 0;
          254   return ret;
          255 }
          256 
          257 /* computes [s1]p1 + [s2]p2 */
          258 void ge25519_double_scalarmult_vartime(ge25519_p3 *r, const ge25519_p3 *p1, const sc25519 *s1, const ge25519_p3 *p2, const sc25519 *s2)
          259 {
          260   ge25519_p1p1 tp1p1;
          261   ge25519_p3 pre[16];
          262   unsigned char b[127];
          263   int i;
          264 
          265   /* precomputation                                                        s2 s1 */
          266   setneutral(pre);                                                      /* 00 00 */
          267   pre[1] = *p1;                                                         /* 00 01 */
          268   dbl_p1p1(&tp1p1,(ge25519_p2 *)p1);      p1p1_to_p3( &pre[2], &tp1p1); /* 00 10 */
          269   add_p1p1(&tp1p1,&pre[1], &pre[2]);      p1p1_to_p3( &pre[3], &tp1p1); /* 00 11 */
          270   pre[4] = *p2;                                                         /* 01 00 */
          271   add_p1p1(&tp1p1,&pre[1], &pre[4]);      p1p1_to_p3( &pre[5], &tp1p1); /* 01 01 */
          272   add_p1p1(&tp1p1,&pre[2], &pre[4]);      p1p1_to_p3( &pre[6], &tp1p1); /* 01 10 */
          273   add_p1p1(&tp1p1,&pre[3], &pre[4]);      p1p1_to_p3( &pre[7], &tp1p1); /* 01 11 */
          274   dbl_p1p1(&tp1p1,(ge25519_p2 *)p2);      p1p1_to_p3( &pre[8], &tp1p1); /* 10 00 */
          275   add_p1p1(&tp1p1,&pre[1], &pre[8]);      p1p1_to_p3( &pre[9], &tp1p1); /* 10 01 */
          276   dbl_p1p1(&tp1p1,(ge25519_p2 *)&pre[5]); p1p1_to_p3(&pre[10], &tp1p1); /* 10 10 */
          277   add_p1p1(&tp1p1,&pre[3], &pre[8]);      p1p1_to_p3(&pre[11], &tp1p1); /* 10 11 */
          278   add_p1p1(&tp1p1,&pre[4], &pre[8]);      p1p1_to_p3(&pre[12], &tp1p1); /* 11 00 */
          279   add_p1p1(&tp1p1,&pre[1],&pre[12]);      p1p1_to_p3(&pre[13], &tp1p1); /* 11 01 */
          280   add_p1p1(&tp1p1,&pre[2],&pre[12]);      p1p1_to_p3(&pre[14], &tp1p1); /* 11 10 */
          281   add_p1p1(&tp1p1,&pre[3],&pre[12]);      p1p1_to_p3(&pre[15], &tp1p1); /* 11 11 */
          282 
          283   sc25519_2interleave2(b,s1,s2);
          284 
          285   /* scalar multiplication */
          286   *r = pre[b[126]];
          287   for(i=125;i>=0;i--)
          288   {
          289     dbl_p1p1(&tp1p1, (ge25519_p2 *)r);
          290     p1p1_to_p2((ge25519_p2 *) r, &tp1p1);
          291     dbl_p1p1(&tp1p1, (ge25519_p2 *)r);
          292     if(b[i]!=0)
          293     {
          294       p1p1_to_p3(r, &tp1p1);
          295       add_p1p1(&tp1p1, r, &pre[b[i]]);
          296     }
          297     if(i != 0) p1p1_to_p2((ge25519_p2 *)r, &tp1p1);
          298     else p1p1_to_p3(r, &tp1p1);
          299   }
          300 }
          301 
          302 void ge25519_scalarmult_base(ge25519_p3 *r, const sc25519 *s)
          303 {
          304   signed char b[85];
          305   int i;
          306   ge25519_aff t;
          307   sc25519_window3(b,s);
          308 
          309   choose_t((ge25519_aff *)r, 0, b[0]);
          310   fe25519_setone(&r->z);
          311   fe25519_mul(&r->t, &r->x, &r->y);
          312   for(i=1;i<85;i++)
          313   {
          314     choose_t(&t, (unsigned long long) i, b[i]);
          315     ge25519_mixadd2(r, &t);
          316   }
          317 }