What are Threads?
Traditionally, processes have been limited in that they can do only one thing at a time. If your application needed to perform multiple tasks in parallel, you designed the application to create multiple processes. However, this approach has its drawbacks. One is that processes are relatively "heavy" in terms of the resources they consume and the time it takes to create them. For applications that frequently create new processes — for example, servers that create a new process to handle each client connection — this can lead to decreased response time. And widely parallel applications that create many processes can consume so many system resources as to slow down the entire system. Another drawback is that passing information between processes can be slow because most interprocess communication mechanisms — such as files, pipes, and sockets — involve intermediaries such as the file system or operating system, as well as requiring a context switch from one running process to another.
Threads were designed as a light-weight alternative. Threads are multiple flows of execution within the same process. All threads within a process share the same memory and other resources. As a result, creating a thread requires far fewer resources than creating a separate process. Furthermore, sharing information between threads is much faster and easier than sharing information between processes.
The operating system handles the details of thread creation and coordination. On a single-processor system, the operating system allocates processor time to each of an application's threads, so a single thread doesn't block the rest of the application. On multi-processor systems, the operating system can even run threads on separate processors, so that threads truly can run simultaneously.
The drawback to traditional multi-threaded programming is that it can be difficult to design a thread-safe application — that is, an application in which one thread doesn't corrupt the resources being used by another thread. Because all resources are shared in a multi-threaded application, you need to use various locking and scheduling mechanisms to guard against multiple threads modifying resources concurrently.
|