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Analityk i/lub projektant 
systemu informatycznego

Dane opisujące jeden 
pojazd to porcja 

różnych informacji 
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Potrzeba wiele porcji 
danych. 

Każda z porcji jest 
złożona i zawiera 
różne dane opisujące 
pojazd.

Potrzeba wiele porcji 
danych. 

Każda z porcji jest 
złożona i zawiera 
różne dane opisujące 
pojazd.
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/* Maksymalna dlugosc pol marka i model */
#define MAKS_M 20

/* Maksymalna dlugosc pola numeru rejestracyjnego */
#define MAKS_R 10

/* Deklaracja typu strukturalnego, opisu informacji o pojezdzie */
struct _pojazd
{
  char  marka[ MAKS_M ];
  char  model[ MAKS_M ];
  short int rok_prod;
  float cena;
  float przebieg;
  char  nr_rej[ MAKS_R ];
};

typedef struct _pojazd pojazd;

Typ short int jest reprezentowany w postaci 16-to bitowej liczby ze znakiem zarówno 
w kompilatorach 16-to jak i 32-u bitowych. Taka deklaracja poprawi przenośność kodu 
programu oraz pliku z danymi. 

Typ short int jest reprezentowany w postaci 16-to bitowej liczby ze znakiem zarówno 
w kompilatorach 16-to jak i 32-u bitowych. Taka deklaracja poprawi przenośność kodu 
programu oraz pliku z danymi. 
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pojazd a;  

/* Przykladowe dane */
strcpy( a.marka, ”Honda” );
strcpy( a.model, ”Accord” );
a.rok_prod = 2006;
a.przebieg = 32850.5;
a.cena = 45000;
strcpy( a.nr_rej, ”S1 XXXX” );

pokaz_info( &a );

pojazd a;  

czytaj_info( &a );
. . .

if( zmiana_rocznika ) /* Zmniejsz cene o 10% */
  a.cena -= a.cena * 0.9;

pokaz_info( &a );

T ab l i ce  i  p l i k i  s t ruk tu rT ab l i ce  i  p l i k i  s t ruk tu r
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void czytaj_info( pojazd * info )
{
  char bufor[ 128 ];
  printf( "\nMarka: " ); gets( bufor );
  if( strlen( bufor ) >= MAKS_M ) bufor[ MAKS_M - 1 ] = '\0'; 
  strcpy( info->marka, bufor );

  printf( "Model: " );  gets( bufor );
  if( strlen( bufor ) >= MAKS_M ) bufor[ MAKS_M - 1 ] = '\0'; 
  strcpy( info->model, bufor );

  printf( "Rok produkcji: " ); gets( bufor );
  info->rok_prod = atoi( bufor );

  printf( "Cena: " ); gets( bufor );
  info->cena = atof( bufor );

  printf( "Przebieg: " ); gets( bufor );
  info->przebieg = atof( bufor );

  printf( "Numer rejestracyjny: " ); gets( bufor );
  if( strlen( bufor ) >= MAKS_R ) bufor[ MAKS_R - 1 ] = '\0'; 
  strcpy( info->nr_rej, bufor );
}

T ab l i ce  i  p l i k i  s t ruk tu rT ab l i ce  i  p l i k i  s t ruk tu r
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void pokaz_info( pojazd * info )
{
  printf( ”\nMarka: %s”, info->marka );
  printf( ”\nModel: %s”, info->model );
  printf( ”\nRok produkcji: %d”, info->rok_prod );
  printf( ”\nCena: %g”, info->cena );
  printf( ”\nPrzebieg: %g”, info->przebieg );
  printf( ”\nNr rejestracyjny: %s”, info->nr_rej );
}`

T ab l i ce  i  p l i k i  s t ruk tu rT ab l i ce  i  p l i k i  s t ruk tu r
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pojazd a;
FILE * f;

czytaj_info( &a );

if( ( f = fopen( ”pojazdy.dat”, ”wb” ) ) != NULL )
{
  fwrite( &a, sizeof( pojazd ), 1, f );

  fclose( f );
} a

Mazda

1999

12000

626

marka

model

rok_prod

cena

przebieg

nr_rej KTA1234

134500

fwrite( &a, sizeof( pojazd ), 1, plik );fwrite( &a, sizeof( pojazd ), 1, plik );
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T ab l i ce  i  p l i k i  s t ruk tu rT ab l i ce  i  p l i k i  s t ruk tu r

pojazd a;
FILE * f;

if( ( f = fopen( ”pojazdy.dat”, ”rb” ) ) != NULL )
{
  fread( &a, sizeof( pojazd ), 1, f );

  pokaz_info( &a );

  fclose( f );
} a

Mazda

1999

12000

626

marka

model

rok_prod

cena

przebieg

nr_rej KTA1234

134500

fread( &a, sizeof( pojazd ), 1, plik );fread( &a, sizeof( pojazd ), 1, plik );
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int info_z_pliku( pojazd * info, FILE * file )
{
  return ( fread( info, sizeof( pojazd ), 1, file ) == 1 );
}

. . . 

if( ( f = fopen( ”auta.dat”, ”rb” ) ) != NULL )
{
  if( info_z_pliku( &a, f ) )
    pokaz_info( &a );
  else
    printf( ”Blad odczytu danych” );

  fclose( f );
}
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int info_do_pliku( pojazd * info, FILE * file )
{
  return ( fwrite( info, sizeof( pojazd ), 1, file ) == 1 );
}

. . . 

czytaj_info( &a );

if( ( f = fopen( ”auta.dat”, ”wb” ) ) != NULL )
{
  if( info_do_pliku( &a, f ) )
    printf( ”Dane zapisane poprawnie” );
  else
    printf( ”Blad zapisu danych” );

  fclose( f );
}
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/* Maksymalna liczba ewidencjonowanych pojazdow  */
#define MAKS_P 200

/* Tablica struktur opisujacych pojazdy */
pojazd pojazdy[ MAKS_P ];

• • •

0 1 2 3 MAKS_P - 2 MAKS_P - 1

pojazd pojazdy [ MAKS_P ];pojazd pojazdy [ MAKS_P ];

Typ elementów tablicyTyp elementów tablicy Maks.  liczba elementów tablicyMaks.  liczba elementów tablicy

Tablica struktur

T ab l i ce  i  p l i k i  s t ruk tu rT ab l i ce  i  p l i k i  s t ruk tu r
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/* Maksymalna liczba ewidencjonowanych pojazdow  */
#define MAKS_P 200

/* Tablica struktur opisujacych pojazdy */
pojazd pojazdy[ MAKS_P ];

Mazda

123000
• • •

0 1 2 3 MAKS_P - 2 MAKS_P - 1

pojazdy[ 0 ].przebieg = 123000;
strcpy( pojazdy[ 0 ].marka, ”Mazda” );
pojazdy[ 0 ].przebieg = 123000;
strcpy( pojazdy[ 0 ].marka, ”Mazda” );

Tablica struktur

T ab l i ce  i  p l i k i  s t ruk tu rT ab l i ce  i  p l i k i  s t ruk tu r
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/* Maksymalna liczba ewidencjonowanych pojazdow  */
#define MAKS_P 200

/* Tablica struktur opisujacych pojazdy */
pojazd pojazdy[ MAKS_P ];

/* Aktualna liczba ewidencjonowanych pojazdow, domy lnie zerowana */ś
short int lb_pojazdow = 0; 

/* Nazwa pliku danych ewidencji pojazdow */
const char nazwa_pliku[] = "pojazdy.dat";

• • •

0 1 2 3 MAKS_P - 2 MAKS_P - 1

pojazdy

lb_pojazdow 0
W sensie logicznym tabela jest pustaW sensie logicznym tabela jest pusta

T ab l i ce  i  p l i k i  s t ruk tu rT ab l i ce  i  p l i k i  s t ruk tu r
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. . .
czytaj_info( &pojazdy[ lb_pojazdow ] );
lb_pojazdow++;
. . .

. . .
czytaj_info( &pojazdy[ lb_pojazdow++ ] );
. . .

lub

• • •

0 1 2 3 MAKS_P - 2 MAKS_P - 1

Mazda
626

123000
pojazdy

lb_pojazdow 1
Pierwszy wolny rekordPierwszy wolny rekord

T ab l i ce  i  p l i k i  s t ruk tu rT ab l i ce  i  p l i k i  s t ruk tu r
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void dopisz_pojazd( void )
{
  int jeszcze_jeden; /* Czy wczytac dane nastepnego pojazdu? */

  if( lb_pojazdow < MAKS_P ) /* Czy jest miejsce w tablicy? */
    do
    {
      czytaj_info( &pojazdy[ lb_pojazdow ] );
      lb_pojazdow++;

      printf( "\nCzy wprowadzasz nastepny pojazd? (t/n): " );

      jeszcze_jeden = ( tolower( getchar() ) == 't' );
      fflush( stdin );

    }
    while( jeszcze_jeden && lb_pojazdow < MAKS_P );
    
  if( lb_pojazdow == MAKS_P ) /* Czy wyczerpano miejsce w tablicy? */
    printf( "\nEwidencja pelna!" );
}

T ab l i ce  i  p l i k i  s t ruk tu rT ab l i ce  i  p l i k i  s t ruk tu r
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void pokaz_pojazdy( void )
{
  int nr;
  
  if( lb_pojazdow == 0 )
    printf( "\nEwidencja jest pusta." );
  
  for( nr = 0; nr < lb_pojazdow; nr++ )
  {

    printf( "\nDane pojazdu nr: %d\n", nr + 1 );
    pokaz_info( &pojazdy[ nr ] );

    if( nr < lb_pojazdow - 1 )
      printf( "\n\n[Enter] = Nastepny pojazd >>" );
    else
      printf( "\n\n[Enter] = Zakoncz przeglad" );

   ( void )getchar(); fflush( stdin );
  }
}

T ab l i ce  i  p l i k i  s t ruk tu rT ab l i ce  i  p l i k i  s t ruk tu r
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ProgramProgram

Zapis liczby pojazdów: 
1-en blok o rozmiarze sizeof( lb_pojazdow ) ,

spod adresu &lb_pojazdow

Zapis liczby pojazdów: 
1-en blok o rozmiarze sizeof( lb_pojazdow ) ,

spod adresu &lb_pojazdow

• • •

0 1 2 3 MAKS_P - 2 MAKS_P - 1

Honda

Accord
Mazda

626

123000

lb_pojazdow 3 Pierwszy wolny rekordPierwszy wolny rekord

Volvo
V40

pojazdy

Zapis info o pojazdach: 
 tyle bloków o rozmiarze sizeof( pojazd ) ile wynosi

lb_pojazdow, spod adresu pojazdy

Zapis info o pojazdach: 
 tyle bloków o rozmiarze sizeof( pojazd ) ile wynosi

lb_pojazdow, spod adresu pojazdy

T ab l i ce  i  p l i k i  s t ruk tu rT ab l i ce  i  p l i k i  s t ruk tu r
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3 Mazda • • •626 Honda • • •Accord Volvo • • •V40 EOF

3 rekordy opisu pojazdówLiczba rekordów

Fizycznie

Logicznie
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ProgramProgram

fwrite( &lb_pojazdow, sizeof( lb_pojazdow ), 1, plik );fwrite( &lb_pojazdow, sizeof( lb_pojazdow ), 1, plik );

• • •

0 1 2 3 MAKS_P - 2 MAKS_P - 1

Honda

Accord
Mazda

626

123000

lb_pojazdow 3 Pierwszy wolny rekordPierwszy wolny rekord

Volvo
V40

pojazdy

T ab l i ce  i  p l i k i  s t ruk tu rT ab l i ce  i  p l i k i  s t ruk tu r
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fwrite( pojazdy, sizeof( pojazd ), lb_pojazdow, plik );fwrite( pojazdy, sizeof( pojazd ), lb_pojazdow, plik );

• • •

0 1 2 3 MAKS_P - 2 MAKS_P - 1

Honda

Accord
Mazda

626

123000

lb_pojazdow 3 Pierwszy wolny rekordPierwszy wolny rekord

Volvo
V40

pojazdy
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 int n;

 n = fwrite( &lb_pojazdow, sizeof( lb_pojazdow ), 1, plik );

 if( n != 1  )
   printf( "\nBlad zapisu pliku ewidencji pojazdow." );
    
 

 if( lb_pojazdow > 0 )
 {  
   n = fwrite( pojazdy, sizeof( pojazd ), lb_pojazdow, plik );

   if( n != lb_pojazdow  )
     printf( "\nBlad w pliku ewidencji pojazdow." );
 }

Liczba zapisanych bloków jest 
niezgodna

T ab l i ce  i  p l i k i  s t ruk tu rT ab l i ce  i  p l i k i  s t ruk tu r
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void z_tablicy_do_pliku( void )
{
  FILE * plik;
  
  printf( "\nZapisywanie ewidencji..." );

  if( ( plik = fopen( nazwa_pliku, "wb" ) ) == NULL )
    printf( " blad aktualizacji pliku." );
  else
  {
    int n;

    n = fwrite( &lb_pojazdow, sizeof( lb_pojazdow ), 1, plik );
    if( n != 1  )
      printf( "\nBlad zapisu pliku ewidencji pojazdow." );
    
    if( lb_pojazdow > 0 )
    {  
      n = fwrite( pojazdy, sizeof( pojazd ), lb_pojazdow, plik );
      if( n != lb_pojazdow  )
        printf( "\nBlad w pliku ewidencji pojazdow." );
    }
    fclose( plik );
  }  
}

Zapis liczby pojazdów w ewidencji

Zapis blokowy rekordów z tablicy

T ab l i ce  i  p l i k i  s t ruk tu rT ab l i ce  i  p l i k i  s t ruk tu r
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ProgramProgram

fread( &lb_pojazdow, sizeof( lb_pojazdow ), 1, plik );fread( &lb_pojazdow, sizeof( lb_pojazdow ), 1, plik );

• • •

0 1 2 3 MAKS_P - 2 MAKS_P - 1

lb_pojazdow 3 Tyle rekordów należy odczytaćTyle rekordów należy odczytać

pojazdy

T ab l i ce  i  p l i k i  s t ruk tu rT ab l i ce  i  p l i k i  s t ruk tu r
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ProgramProgram

fread( pojazdy, sizeof( pojazd ), lb_pojazdow, plik );fread( pojazdy, sizeof( pojazd ), lb_pojazdow, plik );

• • •

0 1 2 3 MAKS_P - 2 MAKS_P - 1

Honda

Accord
Mazda

626

123000

lb_pojazdow 3 Pierwszy wolny rekordPierwszy wolny rekord

Volvo
V40

pojazdy

T ab l i ce  i  p l i k i  s t ruk tu rT ab l i ce  i  p l i k i  s t ruk tu r
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void z_pliku_do_tablicy( void )
{
  FILE * plik;
  
  printf( "\nLadowanie ewidencji..." );

  if( ( plik = fopen( nazwa_pliku, "rb" ) ) == NULL )
    printf( "plik ewidencji pojazdow nie istnieje." );
  else
  {
    int n;

    n = fread( &lb_pojazdow, sizeof( lb_pojazdow ), 1, plik );
    if( n != 1  )
      printf( "\nBlad w pliku ewidencji pojazdow." );

    n = fread( pojazdy, sizeof( pojazd ), lb_pojazdow, plik );
    if( n != lb_pojazdow  )
      printf( "\nBlad w pliku ewidencji pojazdow." );

    fclose( plik );
  }  
}

Odczyt liczby pojazdów w ewidencji

Odczyt blokowy rekordów z pliku
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