

Podstawy programowaniaPodstawy programowania
w jw języku C++ęzyku C++

Tablice struktur, pliki struktur

Część trzynasta

Niniejsze opracowanie zawiera skrót treści wykładu, lektura tych materiałów nie zastąpi uważnego w nim uczestnictwa.
Opracowanie to jest chronione prawem autorskim. Wykorzystywanie jakiegokolwiek fragmentu w celach innych niż nauka własna jest nielegalne.

Dystrybuowanie tego opracowania lub jakiejkolwiek jego części oraz wykorzystywanie zarobkowe bez zgody autora jest zabronione.

Roman Simiński

roman.siminski@us.edu.pl
www.programowanie.siminskionline.pl

Autor

Kontakt

System ewidencji pojazdów dla autokomisuSystem ewidencji pojazdów dla autokomisu
Podstawy programowania w C++Podstawy programowania w C++

Copyright © Roman Simiński 2Strona :

T ab l i ce i p l i k i s t ruk tu rT ab l i ce i p l i k i s t ruk tu r

Obiekty rzeczywiste

Analityk i/lub
projektant systemu

informatycznego

Jakich danych
potrzebujemy?

Jakie informacje będziemy przetwarzać i przechowywać?Jakie informacje będziemy przetwarzać i przechowywać?
Podstawy programowania w C++Podstawy programowania w C++

Copyright © Roman Simiński 3Strona :

Obiekty rzeczywiste

Analityk i/lub
projektant systemu

informatycznego

Marka
Model
Rok produkcji
Cena
Przebieg
Nr rejestracyjny

D
an

e
T ab l i ce i p l i k i s t ruk tu rT ab l i ce i p l i k i s t ruk tu r

Dane opisują jeden pojazdDane opisują jeden pojazd
Podstawy programowania w C++Podstawy programowania w C++

Copyright © Roman Simiński 4Strona :

Analityk i/lub projektant
systemu informatycznego

Dane opisujące jeden
pojazd to porcja

różnych informacji

Marka
Model
Rok produkcji
Cena
Przebieg
Nr rejestracyjny

D
an

e

T ab l i ce i p l i k i s t ruk tu rT ab l i ce i p l i k i s t ruk tu r

Pojazdów jest wiele...Pojazdów jest wiele...
Podstawy programowania w C++Podstawy programowania w C++

Copyright © Roman Simiński 5Strona :

Marka
Model
Rok produkcji
Cena
Przebieg
Nr rejestracyjny

D
an

e

Marka
Model
Rok produkcji
Cena
Przebieg
Nr rejestracyjny

D
an

e

Marka
Model
Rok produkcji
Cena
Przebieg
Nr rejestracyjny

D
an

e

Marka
Model
Rok produkcji
Cena
Przebieg
Nr rejestracyjny

D
an

e

Marka
Model
Rok produkcji
Cena
Przebieg
Nr rejestracyjny

D
an

e

Marka
Model
Rok produkcji
Cena
Przebieg
Nr rejestracyjny

D
an

e

Potrzeba wiele porcji
danych.

Każda z porcji jest
złożona i zawiera
różne dane opisujące
pojazd.

Potrzeba wiele porcji
danych.

Każda z porcji jest
złożona i zawiera
różne dane opisujące
pojazd.

T ab l i ce i p l i k i s t ruk tu rT ab l i ce i p l i k i s t ruk tu r

Definicja typu strukturalnego raz jeszczeDefinicja typu strukturalnego raz jeszcze
Podstawy programowania w C++Podstawy programowania w C++

Copyright © Roman Simiński 6Strona :

/* Maksymalna dlugosc pol marka i model */
#define MAKS_M 20

/* Maksymalna dlugosc pola numeru rejestracyjnego */
#define MAKS_R 10

/* Deklaracja typu strukturalnego, opisu informacji o pojezdzie */
struct _pojazd
{
 char marka[MAKS_M];
 char model[MAKS_M];
 short int rok_prod;
 float cena;
 float przebieg;
 char nr_rej[MAKS_R];
};

typedef struct _pojazd pojazd;

Typ short int jest reprezentowany w postaci 16-to bitowej liczby ze znakiem zarówno
w kompilatorach 16-to jak i 32-u bitowych. Taka deklaracja poprawi przenośność kodu
programu oraz pliku z danymi.

Typ short int jest reprezentowany w postaci 16-to bitowej liczby ze znakiem zarówno
w kompilatorach 16-to jak i 32-u bitowych. Taka deklaracja poprawi przenośność kodu
programu oraz pliku z danymi.

T ab l i ce i p l i k i s t ruk tu rT ab l i ce i p l i k i s t ruk tu r

Potrzebujemy funkcji do odczytu/zapisu rekordu z stdioPotrzebujemy funkcji do odczytu/zapisu rekordu z stdio
Podstawy programowania w C++Podstawy programowania w C++

Copyright © Roman Simiński 7Strona :

pojazd a;

/* Przykladowe dane */
strcpy(a.marka, ”Honda”);
strcpy(a.model, ”Accord”);
a.rok_prod = 2006;
a.przebieg = 32850.5;
a.cena = 45000;
strcpy(a.nr_rej, ”S1 XXXX”);

pokaz_info(&a);

pojazd a;

czytaj_info(&a);
. . .

if(zmiana_rocznika) /* Zmniejsz cene o 10% */
 a.cena -= a.cena * 0.9;

pokaz_info(&a);

T ab l i ce i p l i k i s t ruk tu rT ab l i ce i p l i k i s t ruk tu r

Funkcja wczytująca zawartość struktury z stdinFunkcja wczytująca zawartość struktury z stdin
Podstawy programowania w C++Podstawy programowania w C++

Copyright © Roman Simiński 8Strona :

void czytaj_info(pojazd * info)
{
 char bufor[128];
 printf("\nMarka: "); gets(bufor);
 if(strlen(bufor) >= MAKS_M) bufor[MAKS_M - 1] = '\0';
 strcpy(info->marka, bufor);

 printf("Model: "); gets(bufor);
 if(strlen(bufor) >= MAKS_M) bufor[MAKS_M - 1] = '\0';
 strcpy(info->model, bufor);

 printf("Rok produkcji: "); gets(bufor);
 info->rok_prod = atoi(bufor);

 printf("Cena: "); gets(bufor);
 info->cena = atof(bufor);

 printf("Przebieg: "); gets(bufor);
 info->przebieg = atof(bufor);

 printf("Numer rejestracyjny: "); gets(bufor);
 if(strlen(bufor) >= MAKS_R) bufor[MAKS_R - 1] = '\0';
 strcpy(info->nr_rej, bufor);
}

T ab l i ce i p l i k i s t ruk tu rT ab l i ce i p l i k i s t ruk tu r

Funkcja wyprowadzająca zawartość struktury do stdoutFunkcja wyprowadzająca zawartość struktury do stdout
Podstawy programowania w C++Podstawy programowania w C++

Copyright © Roman Simiński 9Strona :

void pokaz_info(pojazd * info)
{
 printf(”\nMarka: %s”, info->marka);
 printf(”\nModel: %s”, info->model);
 printf(”\nRok produkcji: %d”, info->rok_prod);
 printf(”\nCena: %g”, info->cena);
 printf(”\nPrzebieg: %g”, info->przebieg);
 printf(”\nNr rejestracyjny: %s”, info->nr_rej);
}`

T ab l i ce i p l i k i s t ruk tu rT ab l i ce i p l i k i s t ruk tu r

Zapis blokowy struktury do plikuZapis blokowy struktury do pliku
Podstawy programowania w C++Podstawy programowania w C++

Copyright © Roman Simiński 10Strona :

T ab l i ce i p l i k i s t ruk tu rT ab l i ce i p l i k i s t ruk tu r

pojazd a;
FILE * f;

czytaj_info(&a);

if((f = fopen(”pojazdy.dat”, ”wb”)) != NULL)
{
 fwrite(&a, sizeof(pojazd), 1, f);

 fclose(f);
} a

Mazda

1999

12000

626

marka

model

rok_prod

cena

przebieg

nr_rej KTA1234

134500

fwrite(&a, sizeof(pojazd), 1, plik);fwrite(&a, sizeof(pojazd), 1, plik);

Odczyt blokowy struktury z plikuOdczyt blokowy struktury z pliku
Podstawy programowania w C++Podstawy programowania w C++

Copyright © Roman Simiński 11Strona :

T ab l i ce i p l i k i s t ruk tu rT ab l i ce i p l i k i s t ruk tu r

pojazd a;
FILE * f;

if((f = fopen(”pojazdy.dat”, ”rb”)) != NULL)
{
 fread(&a, sizeof(pojazd), 1, f);

 pokaz_info(&a);

 fclose(f);
} a

Mazda

1999

12000

626

marka

model

rok_prod

cena

przebieg

nr_rej KTA1234

134500

fread(&a, sizeof(pojazd), 1, plik);fread(&a, sizeof(pojazd), 1, plik);

Odczyt struktury z pliku — wykorzystanie funkcjiOdczyt struktury z pliku — wykorzystanie funkcji
Podstawy programowania w C++Podstawy programowania w C++

Copyright © Roman Simiński 12Strona :

T ab l i ce i p l i k i s t ruk tu rT ab l i ce i p l i k i s t ruk tu r

int info_z_pliku(pojazd * info, FILE * file)
{
 return (fread(info, sizeof(pojazd), 1, file) == 1);
}

. . .

if((f = fopen(”auta.dat”, ”rb”)) != NULL)
{
 if(info_z_pliku(&a, f))
 pokaz_info(&a);
 else
 printf(”Blad odczytu danych”);

 fclose(f);
}

Zapis struktury do pliku — wykorzystanie funkcjiZapis struktury do pliku — wykorzystanie funkcji
Podstawy programowania w C++Podstawy programowania w C++

Copyright © Roman Simiński 13Strona :

T ab l i ce i p l i k i s t ruk tu rT ab l i ce i p l i k i s t ruk tu r

int info_do_pliku(pojazd * info, FILE * file)
{
 return (fwrite(info, sizeof(pojazd), 1, file) == 1);
}

. . .

czytaj_info(&a);

if((f = fopen(”auta.dat”, ”wb”)) != NULL)
{
 if(info_do_pliku(&a, f))
 printf(”Dane zapisane poprawnie”);
 else
 printf(”Blad zapisu danych”);

 fclose(f);
}

Tablica struktur — pseudotabela z danymiTablica struktur — pseudotabela z danymi
Podstawy programowania w C++Podstawy programowania w C++

Copyright © Roman Simiński 14Strona :

/* Maksymalna liczba ewidencjonowanych pojazdow */
#define MAKS_P 200

/* Tablica struktur opisujacych pojazdy */
pojazd pojazdy[MAKS_P];

• • •

0 1 2 3 MAKS_P - 2 MAKS_P - 1

pojazd pojazdy [MAKS_P];pojazd pojazdy [MAKS_P];

Typ elementów tablicyTyp elementów tablicy Maks. liczba elementów tablicyMaks. liczba elementów tablicy

Tablica struktur

T ab l i ce i p l i k i s t ruk tu rT ab l i ce i p l i k i s t ruk tu r

Tablica struktur — jak odwoływać się do pól struktur w tablicy?Tablica struktur — jak odwoływać się do pól struktur w tablicy?
Podstawy programowania w C++Podstawy programowania w C++

Copyright © Roman Simiński 15Strona :

/* Maksymalna liczba ewidencjonowanych pojazdow */
#define MAKS_P 200

/* Tablica struktur opisujacych pojazdy */
pojazd pojazdy[MAKS_P];

Mazda

123000
• • •

0 1 2 3 MAKS_P - 2 MAKS_P - 1

pojazdy[0].przebieg = 123000;
strcpy(pojazdy[0].marka, ”Mazda”);
pojazdy[0].przebieg = 123000;
strcpy(pojazdy[0].marka, ”Mazda”);

Tablica struktur

T ab l i ce i p l i k i s t ruk tu rT ab l i ce i p l i k i s t ruk tu r

Tablica struktur — pusty magazyn na dane o pojazdachTablica struktur — pusty magazyn na dane o pojazdach
Podstawy programowania w C++Podstawy programowania w C++

Copyright © Roman Simiński 16Strona :

/* Maksymalna liczba ewidencjonowanych pojazdow */
#define MAKS_P 200

/* Tablica struktur opisujacych pojazdy */
pojazd pojazdy[MAKS_P];

/* Aktualna liczba ewidencjonowanych pojazdow, domy lnie zerowana */ś
short int lb_pojazdow = 0;

/* Nazwa pliku danych ewidencji pojazdow */
const char nazwa_pliku[] = "pojazdy.dat";

• • •

0 1 2 3 MAKS_P - 2 MAKS_P - 1

pojazdy

lb_pojazdow 0
W sensie logicznym tabela jest pustaW sensie logicznym tabela jest pusta

T ab l i ce i p l i k i s t ruk tu rT ab l i ce i p l i k i s t ruk tu r

Tablica struktur — dopisanie rekordu do ewidencjiTablica struktur — dopisanie rekordu do ewidencji
Podstawy programowania w C++Podstawy programowania w C++

Copyright © Roman Simiński 17Strona :

. . .
czytaj_info(&pojazdy[lb_pojazdow]);
lb_pojazdow++;
. . .

. . .
czytaj_info(&pojazdy[lb_pojazdow++]);
. . .

lub

• • •

0 1 2 3 MAKS_P - 2 MAKS_P - 1

Mazda
626

123000
pojazdy

lb_pojazdow 1
Pierwszy wolny rekordPierwszy wolny rekord

T ab l i ce i p l i k i s t ruk tu rT ab l i ce i p l i k i s t ruk tu r

Tablica struktur — dopisywanie kolejnych rekordów do ewidencjiTablica struktur — dopisywanie kolejnych rekordów do ewidencji
Podstawy programowania w C++Podstawy programowania w C++

Copyright © Roman Simiński 18Strona :

void dopisz_pojazd(void)
{
 int jeszcze_jeden; /* Czy wczytac dane nastepnego pojazdu? */

 if(lb_pojazdow < MAKS_P) /* Czy jest miejsce w tablicy? */
 do
 {
 czytaj_info(&pojazdy[lb_pojazdow]);
 lb_pojazdow++;

 printf("\nCzy wprowadzasz nastepny pojazd? (t/n): ");

 jeszcze_jeden = (tolower(getchar()) == 't');
 fflush(stdin);

 }
 while(jeszcze_jeden && lb_pojazdow < MAKS_P);

 if(lb_pojazdow == MAKS_P) /* Czy wyczerpano miejsce w tablicy? */
 printf("\nEwidencja pelna!");
}

T ab l i ce i p l i k i s t ruk tu rT ab l i ce i p l i k i s t ruk tu r

Tablica struktur — wypisywanie kolejnych rekordów z ewidencjiTablica struktur — wypisywanie kolejnych rekordów z ewidencji
Podstawy programowania w C++Podstawy programowania w C++

Copyright © Roman Simiński 19Strona :

void pokaz_pojazdy(void)
{
 int nr;

 if(lb_pojazdow == 0)
 printf("\nEwidencja jest pusta.");

 for(nr = 0; nr < lb_pojazdow; nr++)
 {

 printf("\nDane pojazdu nr: %d\n", nr + 1);
 pokaz_info(&pojazdy[nr]);

 if(nr < lb_pojazdow - 1)
 printf("\n\n[Enter] = Nastepny pojazd >>");
 else
 printf("\n\n[Enter] = Zakoncz przeglad");

 (void)getchar(); fflush(stdin);
 }
}

T ab l i ce i p l i k i s t ruk tu rT ab l i ce i p l i k i s t ruk tu r

Tablica struktur — zapis z tablicy do plikuTablica struktur — zapis z tablicy do pliku
Podstawy programowania w C++Podstawy programowania w C++

Copyright © Roman Simiński 20Strona :

ProgramProgram

Zapis liczby pojazdów:
1-en blok o rozmiarze sizeof(lb_pojazdow) ,

spod adresu &lb_pojazdow

Zapis liczby pojazdów:
1-en blok o rozmiarze sizeof(lb_pojazdow) ,

spod adresu &lb_pojazdow

• • •

0 1 2 3 MAKS_P - 2 MAKS_P - 1

Honda

Accord
Mazda

626

123000

lb_pojazdow 3 Pierwszy wolny rekordPierwszy wolny rekord

Volvo
V40

pojazdy

Zapis info o pojazdach:
 tyle bloków o rozmiarze sizeof(pojazd) ile wynosi

lb_pojazdow, spod adresu pojazdy

Zapis info o pojazdach:
 tyle bloków o rozmiarze sizeof(pojazd) ile wynosi

lb_pojazdow, spod adresu pojazdy

T ab l i ce i p l i k i s t ruk tu rT ab l i ce i p l i k i s t ruk tu r

Struktura pliku ewidencji pojazdówStruktura pliku ewidencji pojazdów
Podstawy programowania w C++Podstawy programowania w C++

Copyright © Roman Simiński 21Strona :

3 Mazda • • •626 Honda • • •Accord Volvo • • •V40 EOF

3 rekordy opisu pojazdówLiczba rekordów

Fizycznie

Logicznie

T ab l i ce i p l i k i s t ruk tu rT ab l i ce i p l i k i s t ruk tu r

Tablica struktur — zapis liczby pojazdówTablica struktur — zapis liczby pojazdów
Podstawy programowania w C++Podstawy programowania w C++

Copyright © Roman Simiński 22Strona :

ProgramProgram

fwrite(&lb_pojazdow, sizeof(lb_pojazdow), 1, plik);fwrite(&lb_pojazdow, sizeof(lb_pojazdow), 1, plik);

• • •

0 1 2 3 MAKS_P - 2 MAKS_P - 1

Honda

Accord
Mazda

626

123000

lb_pojazdow 3 Pierwszy wolny rekordPierwszy wolny rekord

Volvo
V40

pojazdy

T ab l i ce i p l i k i s t ruk tu rT ab l i ce i p l i k i s t ruk tu r

ProgramProgram

Tablica struktur — zapis rekordów z danymi pojazdówTablica struktur — zapis rekordów z danymi pojazdów
Podstawy programowania w C++Podstawy programowania w C++

Copyright © Roman Simiński 23Strona :

fwrite(pojazdy, sizeof(pojazd), lb_pojazdow, plik);fwrite(pojazdy, sizeof(pojazd), lb_pojazdow, plik);

• • •

0 1 2 3 MAKS_P - 2 MAKS_P - 1

Honda

Accord
Mazda

626

123000

lb_pojazdow 3 Pierwszy wolny rekordPierwszy wolny rekord

Volvo
V40

pojazdy

T ab l i ce i p l i k i s t ruk tu rT ab l i ce i p l i k i s t ruk tu r

Tablica struktur — zapis rekordów z kontrolą poprawnościTablica struktur — zapis rekordów z kontrolą poprawności
Podstawy programowania w C++Podstawy programowania w C++

Copyright © Roman Simiński 24Strona :

 int n;

 n = fwrite(&lb_pojazdow, sizeof(lb_pojazdow), 1, plik);

 if(n != 1)
 printf("\nBlad zapisu pliku ewidencji pojazdow.");

 if(lb_pojazdow > 0)
 {
 n = fwrite(pojazdy, sizeof(pojazd), lb_pojazdow, plik);

 if(n != lb_pojazdow)
 printf("\nBlad w pliku ewidencji pojazdow.");
 }

Liczba zapisanych bloków jest
niezgodna

T ab l i ce i p l i k i s t ruk tu rT ab l i ce i p l i k i s t ruk tu r

Tablica struktur — zapis z wykorzystaniem funkcjiTablica struktur — zapis z wykorzystaniem funkcji
Podstawy programowania w C++Podstawy programowania w C++

Copyright © Roman Simiński 25Strona :

void z_tablicy_do_pliku(void)
{
 FILE * plik;

 printf("\nZapisywanie ewidencji...");

 if((plik = fopen(nazwa_pliku, "wb")) == NULL)
 printf(" blad aktualizacji pliku.");
 else
 {
 int n;

 n = fwrite(&lb_pojazdow, sizeof(lb_pojazdow), 1, plik);
 if(n != 1)
 printf("\nBlad zapisu pliku ewidencji pojazdow.");

 if(lb_pojazdow > 0)
 {
 n = fwrite(pojazdy, sizeof(pojazd), lb_pojazdow, plik);
 if(n != lb_pojazdow)
 printf("\nBlad w pliku ewidencji pojazdow.");
 }
 fclose(plik);
 }
}

Zapis liczby pojazdów w ewidencji

Zapis blokowy rekordów z tablicy

T ab l i ce i p l i k i s t ruk tu rT ab l i ce i p l i k i s t ruk tu r

Tablica struktur — odczyt liczby pojazdów z plikuTablica struktur — odczyt liczby pojazdów z pliku
Podstawy programowania w C++Podstawy programowania w C++

Copyright © Roman Simiński 26Strona :

ProgramProgram

fread(&lb_pojazdow, sizeof(lb_pojazdow), 1, plik);fread(&lb_pojazdow, sizeof(lb_pojazdow), 1, plik);

• • •

0 1 2 3 MAKS_P - 2 MAKS_P - 1

lb_pojazdow 3 Tyle rekordów należy odczytaćTyle rekordów należy odczytać

pojazdy

T ab l i ce i p l i k i s t ruk tu rT ab l i ce i p l i k i s t ruk tu r

Tablica struktur — odczyt danych z pliku, do rekordów w tablicyTablica struktur — odczyt danych z pliku, do rekordów w tablicy
Podstawy programowania w C++Podstawy programowania w C++

Copyright © Roman Simiński 27Strona :

ProgramProgram

fread(pojazdy, sizeof(pojazd), lb_pojazdow, plik);fread(pojazdy, sizeof(pojazd), lb_pojazdow, plik);

• • •

0 1 2 3 MAKS_P - 2 MAKS_P - 1

Honda

Accord
Mazda

626

123000

lb_pojazdow 3 Pierwszy wolny rekordPierwszy wolny rekord

Volvo
V40

pojazdy

T ab l i ce i p l i k i s t ruk tu rT ab l i ce i p l i k i s t ruk tu r

Tablica struktur — odczyt z wykorzystaniem funkcjiTablica struktur — odczyt z wykorzystaniem funkcji
Podstawy programowania w C++Podstawy programowania w C++

Copyright © Roman Simiński 28Strona :

void z_pliku_do_tablicy(void)
{
 FILE * plik;

 printf("\nLadowanie ewidencji...");

 if((plik = fopen(nazwa_pliku, "rb")) == NULL)
 printf("plik ewidencji pojazdow nie istnieje.");
 else
 {
 int n;

 n = fread(&lb_pojazdow, sizeof(lb_pojazdow), 1, plik);
 if(n != 1)
 printf("\nBlad w pliku ewidencji pojazdow.");

 n = fread(pojazdy, sizeof(pojazd), lb_pojazdow, plik);
 if(n != lb_pojazdow)
 printf("\nBlad w pliku ewidencji pojazdow.");

 fclose(plik);
 }
}

Odczyt liczby pojazdów w ewidencji

Odczyt blokowy rekordów z pliku

T ab l i ce i p l i k i s t ruk tu rT ab l i ce i p l i k i s t ruk tu r

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21
	Slajd 22
	Slajd 23
	Slajd 24
	Slajd 25
	Slajd 26
	Slajd 27
	Slajd 28

