

Podstawy programowaniaPodstawy programowania
w jw języku C++ęzyku C++

Przetwarzanie plików amorficznych
Konwencja języka C

Część dwunasta

Niniejsze opracowanie zawiera skrót treści wykładu, lektura tych materiałów nie zastąpi uważnego w nim uczestnictwa.
Opracowanie to jest chronione prawem autorskim. Wykorzystywanie jakiegokolwiek fragmentu w celach innych niż nauka własna jest nielegalne.

Dystrybuowanie tego opracowania lub jakiejkolwiek jego części oraz wykorzystywanie zarobkowe bez zgody autora jest zabronione.

Roman Simiński

roman.siminski@us.edu.pl
www.programowanie.siminskionline.pl

Autor

Kontakt

Przetwarzanie plików binarnych, motywacjaPrzetwarzanie plików binarnych, motywacja

Często pliki nie zawierają danych tekstowych.
Przykładem są pliki graficzne, dźwiękowe czy
multimedialne.

Ich zawartość to najczęściej binarny obraz
zawartości pamięci operacyjnej (np. ciąg bajtów
opisujących kolory piksela) uzupełniony o
dodatkowe informacje (np. nagłówek pliku BMP,
czy dane EXIF).

Do przetwarzania plików, których zawartość ma
charakter binarny, wykorzystuje się najczęściej
odczyt/zapis bloków.

Pod pojęciem bloku rozumieć będziemy ciąg
bajtów o określonej długości, nie zakładamy, że
ciąg taki ma jakakolwiek strukturę. Rozmiar
takiego bloku jest określony liczbą jego bajtów.

Plik PDF w podglądzie
tekstowym

Plik JPG w podglądzie
tekstowym

22

Przetwarzanie plików binarnych, koncepcjaPrzetwarzanie plików binarnych, koncepcja

Aby korzystać z blokowego odczytu i zapisu musimy spełnić dwa warunki:

musimy dysponować otwartym plikiem, zaleca się, aby plik taki otwarty był
w trybie binarnym;

musimy w programie posiadać zmienną — która realizuje funkcję bufora —
z której będą pobierane dane do zapisu, lub do której będą pobierane dane
w przypadku odczytu.

ProgramProgram
Zmienna buforowa

Odczyt bloku
fread

Odczyt bloku
fread

Zapis bloku
fwrite

Zapis bloku
fwrite

33

Przetwarzanie plików binarnych, przykładPrzetwarzanie plików binarnych, przykład

Załóżmy, że chcemy napisać program, którego zadaniem jest:

utworzenie nowego pliku binarnego, zapisanie do niego liczby typu float
 o wartości 123.321, zamknięcie pliku;

powtórne jego otwarcie w trybie do odczytu, odczytanie zapisanej wcześniej
liczby i wyprowadzenie jej do stdout.

44

Przetwarzanie plików binarnych, otwarcie pliku, zapis liczby typu floatPrzetwarzanie plików binarnych, otwarcie pliku, zapis liczby typu float

#include <cstdio>
#include <cstdlib>

int main()
{
 FILE * fp;
 float num = 123.321;

 if((fp = fopen("d.dat", "wb")) != NULL)
 {
 cout << "\nZapis liczby: " << num;
 fwrite(&num, sizeof(num), 1, fp);
 fclose(fp);
 }

 .
 .
 .

 return EXIT_SUCCESS;
}

55

Przetwarzanie plików binarnych, zapis zmiennej numPrzetwarzanie plików binarnych, zapis zmiennej num

 fwrite(&num , sizeof(num) , 1 , fp); fwrite(&num , sizeof(num) , 1 , fp);

Wskaźnik na zmienną num,
która ma być zapisana do
pliku fp.
Zmienna ta, jest blokiem
zapisywanym do pliku.

Wskaźnik na zmienną num,
która ma być zapisana do
pliku fp.
Zmienna ta, jest blokiem
zapisywanym do pliku.

Rozmiar zapisywanego
bloku.
Rozmiar zapisywanego
bloku.

Liczba zapisywanych
bloków.
Liczba zapisywanych
bloków.

Wskaźnik pliku
otwartego do zapisu.
Wskaźnik pliku
otwartego do zapisu.

66

Zawartość pliku d.datZawartość pliku d.dat

Przetwarzanie plików binarnych, otwarcie pliku, zapis liczby typu floatPrzetwarzanie plików binarnych, otwarcie pliku, zapis liczby typu float

Szesnastkowo Jako tekst

77

Opis funkcji blokowego zapisu — fwriteOpis funkcji blokowego zapisu — fwrite

Funkcja zapisuje dane z obszaru pamięci wskazywanego przez ptr do strumienia
stream.

Zapisuje n bloków o rozmiarze size.

Łączna liczba zapisanych bajtów to n*size.

Rezultatem funkcji jest liczba zapisanych bloków (nie bajtów!).

W przypadku wystąpienia końca pliku lub błędu, rezultatem funkcji jest liczba,
potencjalnie zerowa, bezbłędnie zapisanych bloków.

size_t fwrite(void * ptr, size_t size, size_t n, FILE * stream);

88

Zapis liczby jako tekstu a zapis jej binarnej reprezentacjiZapis liczby jako tekstu a zapis jej binarnej reprezentacji

int main()
{
 FILE * fp;
 float num = 123.321;

 if((fp = fopen("d.dat", "wt")) != NULL)
 {
 fwrite(&num, sizeof(num), 1, fp);

 fputc('\n', fp);

 fprintf(fp, "%g", num);

 fclose(fp);
 }
 . . .
}

99

Przetwarzanie plików binarnych, otwarcie pliku, odczyt liczby typu floatPrzetwarzanie plików binarnych, otwarcie pliku, odczyt liczby typu float

#include <cstdio>
#include <cstdlib>

int main()
{
 FILE * fp;
 float num = 123.321;
 .
 .
 .
 num = 0;
 if((fp = fopen("d.dat", "rb")) != NULL)
 {
 fread(&num, sizeof(num), 1, fp);
 cout << "\nOdczyt liczby: " << num;
 fclose(fp);
 }

 cout << "\n\nNacisnij Enter by zakonczyc...";
 (void)getchar();
 return EXIT_SUCCESS;
}

1010

Przetwarzanie plików binarnych, odczyt do zmiennej numPrzetwarzanie plików binarnych, odczyt do zmiennej num

 fread(&num , sizeof(num) , 1 , fp); fread(&num , sizeof(num) , 1 , fp);

Wskaźnik na zmienną num,
ty ma być zapisany blok
odczytany z pliku fp.

Wskaźnik na zmienną num,
ty ma być zapisany blok
odczytany z pliku fp.

Rozmiar odczytywanego
bloku.
Rozmiar odczytywanego
bloku.

Liczba odczytywanych
bloków.
Liczba odczytywanych
bloków.

Wskaźnik pliku
otwartego do odczytu.
Wskaźnik pliku
otwartego do odczytu.

1111

Opis funkcji blokowego odczytu — freadOpis funkcji blokowego odczytu — fread

Funkcja czyta dane ze strumienia stream do obszaru pamięci wskazywanego
przez ptr.

Odczytuje n bloków o rozmiarze size.

Łączna liczba odczytanych bajtów to n*size.

Rezultatem funkcji jest liczba przeczytanych bloków (nie bajtów!).

W przypadku napotkania końca pliku lub błędu, rezultatem jest liczba bezbłędnie
odczytanych bloków, która potencjalnie może być równa zero.

size_t fread(void * ptr, size_t size, size_t n, FILE * stream);

1212

Odczyt i zapis z kontrolą poprawnościOdczyt i zapis z kontrolą poprawności

Funkcje fread i fwrite pozwalają na kontrolę poprawności wykonywanych
operacji odczytu i zapisu.

Wystarczy kontrolować rezultat wywołania tych funkcji i porównywać z liczbą
określonych bloków.

if((fp = fopen("d.dat", "wb")) != NULL)
{
 if(fwrite(&num, sizeof(num), 1, fp) != 1)
 cout << "\nBlad zapisu!";
 else
 cout << "\nZapis wykonany";
 fclose(fp);
}

if((fp = fopen("d.dat", "rb")) != NULL)
{
 if(fread(&num, sizeof(num), 1, fp) != 1)
 cout << "\nBlad odczytu!";
 else
 cout << "\nOdczyt liczby: " << num;
 fclose(fp);
}

1313

Zapis i odczyt ciągów danychZapis i odczyt ciągów danych

Załóżmy, że zapisujemy do pliku 12-cie liczb typu float reprezentujących dochody
z kolejnych miesięcy roku podatkowego.

Dane źródłowe są zapisane w dwunastoelementowej tablicy o nazwie d:

Pierwszym narzucającym się rozwiązaniem jest zapisanie kolejno każdego
elementu tablicy jako bloku, wykorzystując funkcję fwrite.

const int LB_MIES = 12;
. . .
float d[LB_MIES];

2000 1530 2450 800

0 1 2 3

3200 2560 1540 2300

4 5 6 7

2100 2800 3400 4200

8 9 10 11Tablica

d

2000 1530 2450 800

0 1 2 3

3200 2560 1540 2300

4 5 6 7

2100 2800 3400 4200

8 9 10 11

EOF

12

Plik

fwrite fwrite fwrite fwrite fwrite fwrite fwrite fwrite fwrite fwrite fwrite fwrite

1414

Zapis i odczyt ciągów danych, przykład 1-szyZapis i odczyt ciągów danych, przykład 1-szy

#include <cstdio>
#include <cstdlib>
const int LB_MIES = 12

int main()
{
 FILE * fp;
 float d[LB_MIES];
 int nr;

 // Wstawiamy do tablicy przykładowe dane
 for(nr = 0; nr < LB_MIES; nr++)
 d[nr] = 1000 * (nr + 1);

 // Zapis tablicy d, element po elemencie, do pliku d.dat
 if((fp = fopen("d.dat", "wb")) != NULL)
 {
 for(nr = 0; nr < LB_MIES; nr++)
 if(fwrite(&d[nr], sizeof(d[nr]), 1, fp) != 1)
 cout << "\nBlad zapisu!";
 else
 cout << "\nZapisano: " << d[nr];
 fclose(fp);
 }
 . . .

1515

Zapis i odczyt ciągów danych, przykład 1-szy, cd ...Zapis i odczyt ciągów danych, przykład 1-szy, cd ...

 . . .
 // Zerujemy tablice by stwierdzic czy odczyt dziala
 for(nr = 0; nr < LB_MIES; nr++)
 d[nr] = 0;

 // Odczyt danych z d.dat do tablicy d, element po elemencie
 if((fp = fopen("d.dat", "rb")) != NULL)
 {
 for(nr = 0; nr < LB_MIES; nr++)
 if(fread(&d[nr], sizeof(d[nr]), 1, fp) != 1)
 cout << "\nBlad odczytu!";
 else
 cout << "\nOdczytano: " << d[nr];
 fclose(fp);
 }

 cout << "\n\nNacisnij Enter by zakonczyc...";
 (void)getchar();
 return EXIT_SUCCESS;
}

1616

Zapis i odczyt ciągów danych, rozwiązanie 2-gieZapis i odczyt ciągów danych, rozwiązanie 2-gie

Cała tablica może być blokiem, zapisywanym/odczytywanym jednym
wywołaniem instrukcji fwrite/fread.

2000 1530 2450 800

0 1 2 3

3200 2560 1540 2300

4 5 6 7

2100 2800 3400 4200

8 9 10 11Tablica

d

2000 1530 2450 800

0 1 2 3

3200 2560 1540 2300

4 5 6 7

2100 2800 3400 4200

8 9 10 11

EOF

12

Plik

fwrite lub fread

1717

Zapis i odczyt ciągów danych, przykład 2-giZapis i odczyt ciągów danych, przykład 2-gi

#include <cstdio>
#include <cstdlib>
const int LB_MIES = 12

int main()
{
 FILE * fp;
 float d[LB_MIES];
 int nr;

 // Wstawiamy do tablicy przykładowe dane
 for(nr = 0; nr < LB_MIES; nr++)
 cout << "\nZapis: " << (d[nr] = 1000 * (nr + 1));

 if((fp = fopen("d.dat", "wb")) != NULL)
 {
 if(fwrite(&d[0], sizeof(d[0]), LB_MIES, fp) != LB_MIES)
 cout << "\nBlad zapisu!";
 fclose(fp);
 }

 . . .

1818

Zapis i odczyt ciągów danych, przykład 2-giZapis i odczyt ciągów danych, przykład 2-gi

 fwrite(&d[0], sizeof(d[0]), LB_MIES, fp) fwrite(&d[0], sizeof(d[0]), LB_MIES, fp)

Wskaźnik na pierwszy
element tablicy d, czyli
początek bloku, który ma być
zapisany do pliku fp.

Wskaźnik na pierwszy
element tablicy d, czyli
początek bloku, który ma być
zapisany do pliku fp.

Rozmiar zapisywanego
elementu.
Rozmiar zapisywanego
elementu.

Liczba zapisywanych
elementów.
Liczba zapisywanych
elementów.

Wskaźnik pliku
otwartego do zapisu.
Wskaźnik pliku
otwartego do zapisu.

Rozmiar zapisywanego bloku = sizeof(d[0]) * LB_MIESRozmiar zapisywanego bloku = sizeof(d[0]) * LB_MIES

1919

Zapis i odczyt ciągów danych, przykład 2-giZapis i odczyt ciągów danych, przykład 2-gi

 . . .

 // Zerujemy tablice by stwierdzic czy odczyt dziala
 for(nr = 0; nr < LB_MIES; nr++)
 d[nr] = 0;

 if((fp = fopen("d.dat", "rb")) != NULL)
 {
 if(fread(&d[0], sizeof(d[0]), LB_MIES, fp) != LB_MIES)
 cout << "\nBlad odczytu!";
 fclose(fp);
 }

 for(nr = 0; nr < LB_MIES; nr++)
 cout << "\nOdczyt:” << d[nr];

 cout << "\n\nNacisnij Enter by zakonczyc...";
 (void)getchar();
 return EXIT_SUCCESS;
}

2020

Zapis i odczyt ciągów danych, przykład 2-giZapis i odczyt ciągów danych, przykład 2-gi

 fread(&d[0], sizeof(d[0]), LB_MIES, fp) fread(&d[0], sizeof(d[0]), LB_MIES, fp)

Wskaźnik na pierwszy
element tablicy d, czyli
początek bloku, który ma być
odczytany z pliku fp.

Wskaźnik na pierwszy
element tablicy d, czyli
początek bloku, który ma być
odczytany z pliku fp.

Rozmiar odczytywanego
elementu.
Rozmiar odczytywanego
elementu.

Liczba odczytywanych
elementów.
Liczba odczytywanych
elementów.

Wskaźnik pliku
otwartego do odczytu.
Wskaźnik pliku
otwartego do odczytu.

Rozmiar odczytywanego bloku = sizeof(d[0]) * LB_MIESRozmiar odczytywanego bloku = sizeof(d[0]) * LB_MIES

2121

Zapis i odczyt ciągów danych, uzupełnienieZapis i odczyt ciągów danych, uzupełnienie

 fread(&d[0], sizeof(d[0]), LB_MIES, fp) fread(&d[0], sizeof(d[0]), LB_MIES, fp)

Nazwa tablicy jest ustalonym wskaźnikiem na jej poczatek, czyli na pierwszy
element.

Zatem zamiast &d[0] można napisać po prostu d:

 fread(d, sizeof(d[0]), LB_MIES, fp) fread(d, sizeof(d[0]), LB_MIES, fp)

2222

Zapis i odczyt blokowy — dana typu intZapis i odczyt blokowy — dana typu int

int zmiennaInt = 10;
FILE * fp;
. . .
if(fwrite(&zmiennaInt, sizeof(zmiennaInt), 1, fp) != 1)
 cout << "\nBlad zapisu!";
else
 cout << "\nZapisano liczbe: " << zmiennaInt;

int zmiennaInt = 10;
FILE * fp;
. . .
bool writeInt(int i, FILE * f)
{
 return fwrite(&i, sizeof(i), 1, f) == 1;
}

if(!writeInt(zmiennaInt, fp))
 cout << "\nBlad zapisu!";
else
 cout << "\nZapisano liczbe: " << zmiennaInt;

Możemy napisać funkcję, realizującą zapis pojedynczej danej typu int:

2323

Zapis i odczyt blokowy — dana typu floatZapis i odczyt blokowy — dana typu float

float zmiennaFloat = 10;
FILE * fp;
. . .
if(fwrite(&zmiennaFloat, sizeof(zmiennaFloat), 1, fp) != 1)
 cout << "\nBlad zapisu!";
else
 cout << "\nZapisano liczbe: " << zmiennaFloat;

float zmienna_float = 10;
FILE * fp;
. . .
bool write_float(float n, FILE * f)
{
 return fwrite(&n, sizeof(n), 1, f) == 1;
}

if(! write_float(zmienna_float, fp))
 cout << "\nBlad zapisu!";
else
 cout << "\nZapisano liczbe: " << zmiennaFloat;

Możemy napisać funkcję, realizującą zapis pojedynczej danej typu float:

2424

Warto napisać sobie zestaw przydatnych funkcjiWarto napisać sobie zestaw przydatnych funkcji

. . .
bool writeInt(int n, FILE * f)
{
 return fwrite(&n, sizeof(n), 1, f) == 1;
}

bool writeFloat(float n, FILE * f)
{
 return fwrite(&n, sizeof(n), 1, f) == 1;
}

bool writeDouble(double n, FILE * f)
{
 return fwrite(&n, sizeof(n), 1, f) == 1;
}

bool writeWord(unsigned short int n, FILE * f)
{
 return fwrite(&n, sizeof(n), 1, f) == 1;
}

. . .

2525

Kopiowanie zawartości plików blok po blokuKopiowanie zawartości plików blok po bloku

/*---
 Funkcja bpbFileCopy realizuje kopiowanie zawarto ci rodłowegoś ź
 pliku src do pliku docelowego dst. Wykorzystywane s blokoweą
 operacje zapisu i odczytu. Funkcja nie zamyka strumieni src i dst.
 Parametry : Wska niki na prawidłowo otwarte strumienie binarneź
 src, dst - odpowiednio dla pliku ródlowego i docelowego.ź
 Rezultat : true je eli kopiowanie zako czyło si poprawnież ń ę
 false je eli wyst pił bł d podczas kopiowaniaż ą ą
---*/
int bpbFileCopy(FILE * dst, FILE * src)
{
 char * copyBuff = 0; // Wska nik na bufor kopiowania ź
 size_t buffSize = 30 * 1024; // Rozmiar bufora kopiowania
 size_t in = 0; // Liczba przeczytanych bloków

 if((copyBuff = new (nothrow) char[buffSize]) == 0)
 return false;

 while((in = fread(copyBuff, 1, buffSize, src)) != 0)
 if(fwrite(copyBuff, 1, in, dst) != in)
 return false;

 delete [] copyBuff;
 return true;
}

2626

Uwaga, algorytm wykorzystuje drobny trikUwaga, algorytm wykorzystuje drobny trik

 while((in = fread(copyBuff, 1, buffSize, src)) != 0)

 if(fwrite(copyBuff, 1, in, dst) != in)

 return false;

 while((in = fread(copyBuff, 1, buffSize, src)) != 0)

 if(fwrite(copyBuff, 1, in, dst) != in)

 return false;

Tutaj trafia liczba
odczytanych bloków 1-no
bajtowych, czyli liczba
odczytanych bajtów.

Tutaj trafia liczba
odczytanych bloków 1-no
bajtowych, czyli liczba
odczytanych bajtów.

Rozmiar odczytywanego
elementu, uwaga: 1!
Rozmiar odczytywanego
elementu, uwaga: 1!

Liczba odczytywanych
elementów.
Liczba odczytywanych
elementów.

Zapisujemy tyle
bajtów, ile
udało sie
odczytać.

Zapisujemy tyle
bajtów, ile
udało sie
odczytać.

Rozmiar odczytywanego bloku = 1 * buff_sizeRozmiar odczytywanego bloku = 1 * buff_size

2727

Wyświetlanie zawartości pliku w widoku: szesnastkowo-ASCIIWyświetlanie zawartości pliku w widoku: szesnastkowo-ASCII

 while((in_chars = fread(buffer, 1, BUFFER_LEN, file)) > 0)
 {
 /* Wypisz : hex, dwie pozycje, wiod ce zera, du e litery */ą ż
 for(i = 0; i < in_chars; i++)
 printf("%02X ", buffer[i]);

 printf("| "); /* Separator cz ci szesnastkowej od ASCII */ęś

 /* Wypisz bufor jako ASCII o ile mo na, je li nie to '.' */ż ś
 for(i = 0; i < in_chars; i++)
 printf("%c", isprint(buffer[i]) ? buffer[i] : '.');
 putchar('\n');
 }
}

Jakiś plik o dowolnej zawartości:

2828

Wyświetlanie zawartości pliku w widoku: szesnastkowo-ASCIIWyświetlanie zawartości pliku w widoku: szesnastkowo-ASCII

/*---
 Funkcja hex_dump wyprowadza do stdout zawarto ć pliku wy wietlanś ś ą
 w postaci szesnastkowej oraz ASCII.
 Parmetry : file - Wska nik na prawidłowo otwarty strumie binarnyź ń
 Uwaga – funkcja nie zatrzymuje wy wietlania np. co 24 linie.ś
---*/
void hex_dump(FILE * file)
{
 #define BUFFER_LEN 19 /* Tyle znaków b dzie w linii na ekranie */ę
 unsigned char buffer[BUFFER_LEN]; /* Bufor na odczytywane znaki */
 int i = 0;

 while((in_chars = fread(buffer, 1, BUFFER_LEN, file)) > 0)
 {
 /* Wypisz : hex, dwie pozycje, wiod ce zera, du e litery */ą ż
 for(i = 0; i < in_chars; i++)
 printf("%02X ", buffer[i]);

 printf("| "); /* Separator cz ci szesnastkowej od ASCII */ęś

 /* Wypisz bufor jako ASCII o ile mo na, je li nie to '.' */ż ś
 for(i = 0; i < in_chars; i++)
 printf("%c", isprint(buffer[i]) ? buffer[i] : '.');
 putchar('\n');
 }
}

2929

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21
	Slajd 22
	Slajd 23
	Slajd 24
	Slajd 25
	Slajd 26
	Slajd 27
	Slajd 28
	Slajd 29

