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Przetwarzanie plikow binarnych, motywacja

» Czesto pliki nie zawieraja danych tekstowych.
Przykladem sa pliki graficzne, dZzwiekowe czy
multimedialne.

» Ich zawarto$¢ to najcze$ciej binarny obraz
zawartoS$ci pamieci operacyjnej (np. ciag bajtow
opisujacych kolory piksela) uzupehlmiony o

dodatkowe informacje (np. nagltowek pliku BMP,

czy dane EXIF).

» Do przetwarzania plikow, ktérych zawarto$é ma
charakter binarny, wykorzystuje sie najczesciej
odczyt/zapis blokow.

» Pod pojeciem bloku rozumieé bedziemy cigg
bajtow o okreslonej dtugosci, nie zakladamy, ze
cigg taki ma jakakolwiek strukture. Rozmiar
takiego bloku jest okreslony liczbqg jego bajtow.

Plik PDF w podgladzie
tekstowym
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Przetwarzanie plikow binarnych, koncepcja

Aby korzystac z blokowego odczytu i zapisu musimy spelni¢ dwa warunki:

» musimy dysponowaé otwartym plikiem, zaleca sie, aby plik taki otwarty byl
w trybie binarnym;

» musimy w programie posiadaé¢ zmienng — ktéra realizuje funkcje bufora —

z ktorej beda pobierane dane do zapisu, lub do ktorej beda pobierane dane
w przypadku odczytu.

Program

Zmienna buforowa
<__
Odczyt bloku
fread

\>[ Zapis bloku

fwrite




Przetwarzanie plikow binarnych, przyktad

Zaloézmy, ze chcemy napisa¢ program, ktorego zadaniem jest:

» utworzenie nowego pliku binarnego, zapisanie do niego liczby typu float
o warto$ci 123.321, zamkniecie pliku;

» powtdrne jego otwarcie w trybie do odczytu, odcezytanie zapisanej wezeéniej
liczby i wyprowadzenie jej do stdout.

Lapis liczby: 123.321
Odczyt liczby: 123.321

Macisnij Enter by zakonczyc...




Przetwarzanie plikow binarnych, otwarcie pliku, zapis liczby typul float

#include <cstdio>
#include <cstdlib>

int main()

{
FILE * fp;
float num = 123.321;

if( ( fp = fopen( "d.dat", "wb" ) ) !'= NULL )

{
cout << "\nZapis liczby: " << num;
fwrite( &num, sizeof( num ), 1, fp );
fclose( fp );

}

return EXIT SUCCESS;

1



Przetwarzanie plikow binarnych, zapis zmiennej num

Rozmiar zapisywanego Liczba zapisywanych
bloku. blokow.

furite( &num ,  sizeof( num ) , fp] ); ‘

/ N

Wskaznik na zmienna num, Wskaznik pliku
ktéra ma by¢ zapisana do otwartego do zapisu.
pliku fp.

Zmienna ta, jest blokiem
zapisywanym do pliku.




Przetwarzanie plikow binarnych, otwarcie pliku, zapis liczby typu filc

if¢ ¢ fp = fopen< "d.dat", ""wh" » > ¥*= HULL >
{

printf ¢ "~nZapis liczby: ¥g", num >;

fclosed fp >;
b

[=1] Watch —4=[1 1= Output —3
HZnum, M: 5A A4 F& 42

fapis liczhy: 123.321

MName Bd |Size |
L <DIR>
|L,]..F?. ................................................................ o1\ 4.

Zawartosc pliku d.dat

4 N [ )
[ ZHEE
\_ J J

Szesnastkowo Jako tekst




Opis funkcji blokowego zapisu — fwrite

size t fwrite( void * ptr, size t size, size t n, FILE * stream );

» Funkcja zapisuje dane z obszaru pamieci wskazywanego przez ptr do strumienia
Stream.

» Zapisuje n blokéw o rozmiarze size.

» Laczna liczba zapisanych bajtoéw to n*size.

» Rezultatem funkeji jest liczba zapisanych blokéw (nie bajtow!).

» W przypadku wystapienia korica pliku lub bledu, rezultatem funkeji jest liczba,
potencjalnie zerowa, bezblednie zapisanych blokow.

(eX]



Zapis liczby jako tekstu a zapis jej binarnej reprezentacji

int main()

{
FILE * fp;
float num = 123.321;

if( ( fp = fopen( "d.dat", "wt" ) ) != NULL )

{
fwrite( &num, sizeof( num ), 1, fp );%\\\\\\\Eﬂ d.dat |

o [ 1> zrozeREE
fputc( '\n', fp ); | 2s{123.321
fprintf( fp, "%g", num ): — L
fclose( fp );

}



Przetwarzanie plikow binarnych, otwarcie pliku, odczyt liczby typu float

#include <cstdio>
#include <cstdlib>

int main()
{
FILE * fp;
float num = 123.321;

ﬁum = 0;
if( ( fp = fopen( "d.dat", "rb" ) ) !'= NULL )
{
fread( &num, sizeof( num ), 1, fp );
cout << "\nOdczyt liczby: " << num;
fclose( fp );
}

cout << "\n\nNacisnij Enter by zakonczyc...";
( void )getchar();
return EXIT SUCCESS;



Przetwarzanie plikow binarnych, odczyt do zmiennej num

Rozmiar odczytywanego Liczba odczytywanych
bloku. blokow.

fread( &num , sizeof( num ) , ; ‘

/

Wskaznik na zmienng num,
ty ma by¢ zapisany blok
odczytany z pliku fp.

Wskaznik pliku
otwartego do odczytu.




Opis funkcji blokowego odczytu — fread

size t fread( void * ptr, size t size, size t n, FILE * stream );

» Funkcja czyta dane ze strumienia stream do obszaru pamieci wskazywanego
przez ptr.

» Odczytuje n blokéw o rozmiarze size.

» Laczna liczba odezytanych bajtow to n*size.

» Rezultatem funkeji jest liczba przeczytanych blokéw (nie bajtow!).

» W przypadku napotkania korica pliku lub bledu, rezultatem jest liczba bezblednie
odczytanych blokéw, ktora potencjalnie moze by¢ rowna zero.



Odczyt i zapis z kontrolg poprawnosci

» Funkcje fread i fuwrite pozwalaja na kontrole poprawnosci wykonywanych
operacji odczytu i zapisu.

» Wrystarczy kontrolowa¢ rezultat wywolania tych funkeji i poréwnywacé z liczba

okreslonych blokow.
if( ( fp = fopen( "d.dat", "wb" ) ) != NULL )
{
if( fwrite( &num, sizeof( num ), 1, fp ) I=1 )
cout << "\nBlad zapisu!";
else
cout << "\nZapis wykonany";
fclose( fp );
}

if( ( fp = fopen( "d.dat", "rb" ) ) !'= NULL )
{
if( fread( &num, sizeof( num ), 1, fp ) !'=1)
cout << "\nBlad odczytu!";
else
cout << "\nOdczyt liczby: " << num;
fclose( fp );



Zapis i odczyt ciggow danych

» Zalézmy, ze zapisujemy do pliku 12-cie liczb typu float reprezentujacych dochody
z kolejnych miesiecy roku podatkowego.

» Dane Zrodlowe sa zapisane w dwunastoelementowej tablicy o nazwie d:

const int LB MIES = 12;

float d[ LB MIES |;

» Pierwszym narzucajacym sie rozwigzaniem jest zapisanie kolejno kazdego
elementu tablicy jako bloku, wykorzystujac funkcje fwrite.

Tablica 0 1 2 3 4 5 6 7 8 9 10 11

=

fwrite | | fwrite | | fwrite || fwrite | | fwrite | fwrite | | fwrite | | fwrite | | fwrite || fwrite | | fwrite || fwrite

R A A A A A A A

Plik 2000 | 1530 | 2450 3200 | 2560 | 1540 | 2300 | 2100 | 2800 | 3400 | 4200 -

0 1 2 3 4 5 6 7 8 9 10 11 12



Zapis i odczyt ciagow danych, przyktad 1-szy

#include <cstdio>
#include <cstdlib>
const int LB MIES = 12

int main()

{
FILE * fp;
float d[ LB MIES ];
int nr;

// Wstawiamy do tablicy przyktadowe dane
for( nr = 0; nr < LB _MIES; nr++ )
d[ nr ] = 1000 * ( nr + 1 );

// Zapis tablicy d, element po elemencie, do pliku d.dat
if( ( fp = fopen( "d.dat", "wb" ) ) != NULL )
{
for( nr = 0; nr < LB MIES; nr++ )
if( fwrite( &d[ nr 1, sizeof( d[ nr 1 ), 1, fp ) '= 1)
cout << "\nBlad zapisu!";
else
cout << "\nZapisano: " << d[ nr ];
fclose( fp );

}



Zapis i odczyt ciagow danych, przyktad 1-szy, cd ...

// Zerujemy tablice by stwierdzic czy odczyt dziala
for( nr = 0; nr < LB MIES; nr++ )
d[ nr ] = 0;

// 0dczyt danych z d.dat do tablicy d, element po elemencie
if( ( fp = fopen( "d.dat", "rb" ) ) != NULL )
{
for( nr = 0; nr < LB MIES; nr++ )
if( fread( &d[ nr ], sizeof( d[ nr ] ), 1, fp ) !=1)
cout << "\nBlad odczytu!";
else
cout << "\nOdczytano: " << d[ nr ];
fclose( fp );

}

cout << "\n\nNacisnij Enter by zakonczyc...";
( void )getchar();
return EXIT SUCCESS;



Zapis i odczyt ciagow danych, rozwigzanie 2-gie

» Cala tablica moze by¢ blokiem, zapisywanym/odczytywanym jednym
wywolaniem instrukcji fwrite/fread.

Tablica 0 1 2 3 4 5 6 7 8 9 10 11
fwrite lub fread
Plik 2000 | 1530 | 2450 | 800 | 3200 | 2560 @ 1540 @ 2300 | 2100 | 2800 | 3400 | 4200 -
0 1 2 3 4 5 6 7 8 9 10 11 12
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Zapis i odczyt ciagow danych, przyktad 2-gi

#include <cstdio>
#include <cstdlib>
const int LB MIES = 12

int main()

{
FILE * fp;
float d[ LB MIES ];
int nr;

// Wstawiamy do tablicy przyktadowe dane
for( nr = 0; nr < LB MIES; nr++ )
cout << "\nZapis: " << ( d[ nr ] =1000 * ( nr + 1) );

if( ( fp = fopen( "d.dat", "wb" ) ) != NULL )
{
if( fwrite( &d[0O], sizeof( d[O] ), LB MIES, fp ) !'= LB MIES )
cout << "\nBlad zapisu!";
fclose( fp );

}



Zapis i odczyt ciagow danych, przyktad 2-gi

Rozmiar zapisywanego bloku = sizeof( d[0] ) * LB MIES

Rozmiar zapisywanego Liczba zapisywanych
elementu. elementow.

e —

furite( &d[0], sizeof( d[0] ), LB MIES, fp ) ‘

/ .

Wskaznik na pierwszy Wskaznik pliku
element tablicy d, czyli otwartego do zapisu.
poczatek bloku, ktory ma by¢
zapisany do pliku fp.




Zapis i odczyt ciagow danych, przyktad 2-gi

// Zerujemy tablice by stwierdzic czy odczyt dziala
for( nr = 0; nr < LB MIES; nr++ )

dl nr ] = 0;
if( ( fp = fopen( "d.dat", "rb" ) ) != NULL )
{
if( fread( &d[0], sizeof( d[O] ), LB MIES, fp ) != LB MIES )
cout << "\nBlad odczytu!";
fclose( fp );
}

for( nr = 0; nr < LB MIES; nr++ )
cout << "\nOdczyt:” << d[ nr ];

cout << "\n\nNacisnij Enter by zakonczyc...";
( void )getchar();
return EXIT SUCCESS;



Zapis i odczyt ciagow danych, przyktad 2-gi

Rozmiar odczytywanego bloku = sizeof( d[0] ) * LB MIES

Rozmiar odczytywanego
elementu.

e

Liczba odczytywanych
elementow.

///////'

fread( &d[0], sizeof( d[@] ), LB MIES, fp )

/

Wskaznik na pierwszy
element tablicy d, czyli
poczatek bloku, ktéry ma by¢
odczytany z pliku fp.

.

Wskaznik pliku

otwartego do odczytu.




Zapis i odczyt ciggow danych, uzupetnienie

» Nazwa tablicy jest ustalonym wskaznikiem na jej poczatek, czyli na pierwszy
element.

» Zatem zamiast &d[ © ] mozna napisaé po prostu d:

fread( &d[O], sizeof( d[O] ), LB MIES, fp ) ‘

|

fread( d, sizeof( d[0] ), LB MIES, fp ) ‘




Zapis i odczyt blokowy — dana typu int

int zmiennalInt = 10;

FILE * fp;

if( fwrite( &zmiennalnt, sizeof( zmiennalInt ), 1, fp ) =1 )
cout << "\nBlad zapisu!";

else
cout << "\nZapisano liczbe: " << zmiennalnt;

Mozemy napisac funkcje, realizujaca zapis pojedynczej danej typu int:

int zmiennalInt = 10;

FILE * fp:
bool writeInt( int i, FILE * f )
{
return fwrite( &i, sizeof( i ), 1, f ) == 1;
}

if( !'writeInt( zmiennalInt, fp ) )
cout << "\nBlad zapisu!";
else
cout << "\nZapisano liczbe: " << zmiennalnt;



Zapis i odczyt blokowy — dana typu float

float zmiennaFloat = 10;

FILE * fp;

if( fwrite( &zmiennaFloat, sizeof( zmiennaFloat ), 1, fp ) !'=1 )
cout << "\nBlad zapisu!";

else
cout << "\nZapisano liczbe: " << zmiennaFloat;

Mozemy napisac funkcje, realizujaca zapis pojedynczej danej typu float:

float zmienna float = 10;

FILE * fp;
Boéliwrite_float( float n, FILE * f )
{
return fwrite( &n, sizeof( n ), 1, f ) == 1;
}

if( ! write float( zmienna float, fp ) )
cout << "\nBlad zapisu!'";

else
cout << "\nZapisano liczbe: " << zmiennaFloat;



Warto napisac sobie zestaw przydatnych funkcji

bool writeInt( int n, FILE * f )

{

return fwrite( &n, sizeof( n ), 1, f ) == 1;
}
bool writeFloat( float n, FILE * f )
{

return fwrite( &, sizeof( n ), 1, f ) == 1;
}
bool writeDouble( double n, FILE * f )
{

return fwrite( &n, sizeof( n ), 1, f ) == 1;
}
bool writeWord( unsigned short int n, FILE * f )
{

return fwrite( &n, sizeof( n ), 1, f ) == 1;

}



Kopiowanie zawartosci plikow blok po bloku

{

Funkcja bpbFileCopy realizuje kopiowanie zawartosci zrodtowego
pliku src do pliku docelowego dst. Wykorzystywane sg blokowe
operacje zapisu 1 odczytu. Funkcja nie zamyka strumieni src i dst.
Parametry : Wskazniki na prawidtowo otwarte strumienie binarne

src, dst - odpowiednio dla pliku zrédlowego i docelowego.
Rezultat : true jezeli kopiowanie zakohczyto sie poprawnie

false jezeli wystgpit btgd podczas kopiowania

_______________________________________________________________________ */
int bpbFileCopy( FILE * dst, FILE * src )

char * copyBuff = 0; // Wskaznik na bufor kopiowania

size t buffSize = 30 * 1024; // Rozmiar bufora kopiowania

size t in = 0; // Liczba przeczytanych blokow

if( ( copyBuff = new (nothrow) char[ buffSize ] ) == 0 )
return false;

while( ( in = fread( copyBuff, 1, buffSize, src ) ) !'=0 )
if( fwrite( copyBuff, 1, in, dst ) != in )
return false;

delete [] copyBuff;
return true;




Uwaga, algorytm wykorzystuje drobny trik

~ » Rozmiar odczytywanego bloku =1 * buff size I
Rozmiar odczytywanego Liczba odczytywanych
elementu, uwaga: 1! elementow.

/

while( ( in = fread( copyBuff, 1, buffSize, src ) ) I= 0 )
if( fwrite( copyBuff, 1, @ dst ) != in )
return false;

A4 A
Tutaj trafia liczba Zapisujemy tyle
odczytanych blokéw 1-no bajtow, ile
bajtowych, czyli liczba udalo sie
odczytanych bajtow. odczytac.




Wyswietlanie zawartosci pliku w widoku: szesnastkowo-

Jakis$ plik o dowolnej zawarto$ci:

while( ( in chars = fread( buffer, 1, BUFFER LEN, file ) ) >0 )
{

/* Wypisz : hex, dwie pozycje, wiodace zera, duze litery */
for( i = 0; i < in chars; i++)
printf( "%02X ", buffer[ i ] );

printf("| "); /* Separator czesci szesnastkowej od ASCII */

/* Wypisz bufor jako ASCII o ile| )zna, jesli nie to '.' */

J.. printf(
@28 "', bufferl i
[ - prin

tfC"i Y>3 % Separ

ator c=2..ci s=esnas
tkowej od ASCII =-.

- % Wysyiet

1 bufor jako ASCII

o ile mozna, Jjak ni

e to wysyietl *.' =

A for{ 1 = 9

: 1 < dn_chars; i++
Y. printf

("', isprint< buf

Ferl 1 1 > 7 buffer

L3 1 2 *ot At

putchapr<'~n’ »;
if¢ ¢ ++]1
» PAGE_LENGTH
B> % Czy ek
ran zape.niony? =7

N
(&N}



Wyswietlanie zawartosci pliku w widoku: szesnastkowo-ASCI|

Funkcja hex dump wyprowadza do stdout zawartos$¢ pliku wyswietlang
w postaci szesnastkowej oraz ASCII.

Parmetry : file - Wskaznik na prawidtowo otwarty strumien binarny
Uwaga — funkcja nie zatrzymuje wyswietlania np. co 24 linie.

_________________________________________________________________________ */

void hex dump( FILE * file )

{
#define BUFFER LEN 19 /* Tyle znakéw bedzie w linii na ekranie */
unsigned char buffer[ BUFFER LEN 1]; /* Bufor na odczytywane znaki */
int i = 0;

while( ( in chars = fread( buffer, 1, BUFFER LEN, file ) ) > 0 )

{
/* Wypisz : hex, dwie pozycje, wiodace zera, duze litery */
for( 1 = 0; i < in chars; i++)

printf( "%02X ", buffer[ 1 ] );
printf("| "); /* Separator czesci szesnastkowej od ASCII */
/* Wypisz bufor jako ASCII o ile mozna, jesli nie to '.' */
for( 1 = 0; i < in chars; i++ )
printf( "%c", isprint( buffer[ i ] ) ? buffer[ 1 ] : "."' );

putchar('\n');

}
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