podstawy | lh‘z\;i«.l
Programowanie

Podstawy programowania
w jezyku C++

Czes$¢ dwunasta

Przetwarzanie plikéw amorficznych
Konwencjajezyka C

Autor
Roman Siminski

Kontakt

roman.siminski@us.edu.pl
www.programowanie.siminskionline.pl

Niniejsze opracowanie zawiera skrot tre$ci wykladu, lektura tych materialow nie zastapi uwaznego w nim uczestnictwa.
Opracowanie to jest chronione prawem autorskim. Wykorzystywanie jakiegokolwiek fragmentu w celach innych niz nauka wlasna jest nielegalne.
Dystrybuowanie tego opracowania lub jakiejkolwiek jego czesci oraz wykorzystywanie zarobkowe bez zgody autora jest zabronione.



Przetwarzanie plikow binarnych, motywacja

» Czesto pliki nie zawieraja danych tekstowych.
Przykladem sa pliki graficzne, dZzwiekowe czy
multimedialne.

» Ich zawarto$¢ to najcze$ciej binarny obraz
zawartoS$ci pamieci operacyjnej (np. ciag bajtow
opisujacych kolory piksela) uzupehlmiony o

dodatkowe informacje (np. nagltowek pliku BMP,

czy dane EXIF).

» Do przetwarzania plikow, ktérych zawarto$é ma
charakter binarny, wykorzystuje sie najczesciej
odczyt/zapis blokow.

» Pod pojeciem bloku rozumieé bedziemy cigg
bajtow o okreslonej dtugosci, nie zakladamy, ze
cigg taki ma jakakolwiek strukture. Rozmiar
takiego bloku jest okreslony liczbqg jego bajtow.

Plik PDF w podgladzie
tekstowym

%PDF-1. 3%562”5 i} uhj((.-'Length 6 8 R/Filter /F
WU—rq ;2-Rip3 qHLmD AT c§ "ART uu ittt Bufnl
n'&Ew, -7l Tya_ ufgz yl*LSI;ﬂcu QDU‘?zru ]U ui
—IJ§§ R’ R- ZMS.fl]B H}nszUztBSE—ZEtUa(&eU el 11!
z Hii:je_Z nJEy?zHu€ydpD D-ii%,L1Ha- 2T
uupt Hﬂﬂhl ‘?ﬂ$kDFe\uuDT—a':'U5Td‘2rx$1Da]c:& DE}
XELNH A, tCeZ&F 5C: "'DL><1?U Ignnna &«u$u 8|8
irzs sHatpd) - 07 @7 EQ={Os iidi, -»,E&2p“2E-
gi™- z1fiouy” =p'=‘c1xw ”1+—Hté?ﬁn2§P»?BSZﬁuI
d@,+$‘ag|t -F' alu "W R H-“ 40N TRNBKZ,$ N i,
i El]BEnE«IuFI‘\ il T JfIH+1C|'|&t’|::T—u+HI]2ﬁ|DE\p
EDERLLEL T ~AlSS-— _98,=B]6-{ “eGZ_ |21 Lpe
-HeERFLECe, /B |Babiel .q ), SEB[GREID° {Hx 4 gF
e(UE> [=8k™ 6-ANBK- Epg $27$132PH)™ cCRE1~ m2"

Plik JPG w podgladzie
tekstowym

LI

‘B¢ LJFIF e hynqte
¢44~ﬂ+ ﬂ““ﬂ*ﬂ mEn 4 A
3 4L Jq[1t1A-1Qae’ gﬂE‘“D#B+H¢
HH?chEthljstuuwxyzu JHaswre— "5k
aalcgcegnnuuuu Fad i o ? 0/HCF

v

ﬂhED”2+>{uuqﬂq”?f—1u 5zley4UﬂljluxE2
teritaDqiigd  TEMA[\E" ,, -1° geNtLLA>E?
Hut “Ef ng-xe1géiﬂvéglggJNﬂ“zﬁ}—ﬂlu
i-lifz H<?f[ #iliCOEdGY ,BAs[KY-17:R} 4c

Lo- én-tTe?7 &7 T6FI" cpZ:- nATAzi

G-IHxy—-L2TAUES><122% 0 —,v<kulZ" "6

>H”2U§uﬂ TERyqK,y;Gh" ﬂszzch“ut*frq



Przetwarzanie plikow binarnych, koncepcja

Aby korzystac z blokowego odczytu i zapisu musimy spelni¢ dwa warunki:

» musimy dysponowaé otwartym plikiem, zaleca sie, aby plik taki otwarty byl
w trybie binarnym;

» musimy w programie posiadaé¢ zmienng — ktéra realizuje funkcje bufora —

z ktorej beda pobierane dane do zapisu, lub do ktorej beda pobierane dane
w przypadku odczytu.

Program

Zmienna buforowa
<__
Odczyt bloku
fread

\>[ Zapis bloku

fwrite




Przetwarzanie plikow binarnych, przyktad

Zaloézmy, ze chcemy napisa¢ program, ktorego zadaniem jest:

» utworzenie nowego pliku binarnego, zapisanie do niego liczby typu float
o warto$ci 123.321, zamkniecie pliku;

» powtdrne jego otwarcie w trybie do odczytu, odcezytanie zapisanej wezeéniej
liczby i wyprowadzenie jej do stdout.

Lapis liczby: 123.321
Odczyt liczby: 123.321

Macisnij Enter by zakonczyc...




Przetwarzanie plikow binarnych, otwarcie pliku, zapis liczby typul float

#include <cstdio>
#include <cstdlib>

int main()

{
FILE * fp;
float num = 123.321;

if( ( fp = fopen( "d.dat", "wb" ) ) !'= NULL )

{
cout << "\nZapis liczby: " << num;
fwrite( &num, sizeof( num ), 1, fp );
fclose( fp );

}

return EXIT SUCCESS;

1



Przetwarzanie plikow binarnych, zapis zmiennej num

Rozmiar zapisywanego Liczba zapisywanych
bloku. blokow.

furite( &num ,  sizeof( num ) , fp] ); ‘

/ N

Wskaznik na zmienna num, Wskaznik pliku
ktéra ma by¢ zapisana do otwartego do zapisu.
pliku fp.

Zmienna ta, jest blokiem
zapisywanym do pliku.




Przetwarzanie plikow binarnych, otwarcie pliku, zapis liczby typu filc

if¢ ¢ fp = fopen< "d.dat", ""wh" » > ¥*= HULL >
{

printf ¢ "~nZapis liczby: ¥g", num >;

fclosed fp >;
b

[=1] Watch —4=[1 1= Output —3
HZnum, M: 5A A4 F& 42

fapis liczhy: 123.321

MName Bd |Size |
L <DIR>
|L,]..F?. ................................................................ o1\ 4.

Zawartosc pliku d.dat

4 N [ )
[ ZHEE
\_ J J

Szesnastkowo Jako tekst




Opis funkcji blokowego zapisu — fwrite

size t fwrite( void * ptr, size t size, size t n, FILE * stream );

» Funkcja zapisuje dane z obszaru pamieci wskazywanego przez ptr do strumienia
Stream.

» Zapisuje n blokéw o rozmiarze size.

» Laczna liczba zapisanych bajtoéw to n*size.

» Rezultatem funkeji jest liczba zapisanych blokéw (nie bajtow!).

» W przypadku wystapienia korica pliku lub bledu, rezultatem funkeji jest liczba,
potencjalnie zerowa, bezblednie zapisanych blokow.

(eX]



Zapis liczby jako tekstu a zapis jej binarnej reprezentacji

int main()

{
FILE * fp;
float num = 123.321;

if( ( fp = fopen( "d.dat", "wt" ) ) != NULL )

{
fwrite( &num, sizeof( num ), 1, fp );%\\\\\\\Eﬂ d.dat |

o [ 1> zrozeREE
fputc( '\n', fp ); | 2s{123.321
fprintf( fp, "%g", num ): — L
fclose( fp );

}



Przetwarzanie plikow binarnych, otwarcie pliku, odczyt liczby typu float

#include <cstdio>
#include <cstdlib>

int main()
{
FILE * fp;
float num = 123.321;

ﬁum = 0;
if( ( fp = fopen( "d.dat", "rb" ) ) !'= NULL )
{
fread( &num, sizeof( num ), 1, fp );
cout << "\nOdczyt liczby: " << num;
fclose( fp );
}

cout << "\n\nNacisnij Enter by zakonczyc...";
( void )getchar();
return EXIT SUCCESS;



Przetwarzanie plikow binarnych, odczyt do zmiennej num

Rozmiar odczytywanego Liczba odczytywanych
bloku. blokow.

fread( &num , sizeof( num ) , ; ‘

/

Wskaznik na zmienng num,
ty ma by¢ zapisany blok
odczytany z pliku fp.

Wskaznik pliku
otwartego do odczytu.




Opis funkcji blokowego odczytu — fread

size t fread( void * ptr, size t size, size t n, FILE * stream );

» Funkcja czyta dane ze strumienia stream do obszaru pamieci wskazywanego
przez ptr.

» Odczytuje n blokéw o rozmiarze size.

» Laczna liczba odezytanych bajtow to n*size.

» Rezultatem funkeji jest liczba przeczytanych blokéw (nie bajtow!).

» W przypadku napotkania korica pliku lub bledu, rezultatem jest liczba bezblednie
odczytanych blokéw, ktora potencjalnie moze by¢ rowna zero.



Odczyt i zapis z kontrolg poprawnosci

» Funkcje fread i fuwrite pozwalaja na kontrole poprawnosci wykonywanych
operacji odczytu i zapisu.

» Wrystarczy kontrolowa¢ rezultat wywolania tych funkeji i poréwnywacé z liczba

okreslonych blokow.
if( ( fp = fopen( "d.dat", "wb" ) ) != NULL )
{
if( fwrite( &num, sizeof( num ), 1, fp ) I=1 )
cout << "\nBlad zapisu!";
else
cout << "\nZapis wykonany";
fclose( fp );
}

if( ( fp = fopen( "d.dat", "rb" ) ) !'= NULL )
{
if( fread( &num, sizeof( num ), 1, fp ) !'=1)
cout << "\nBlad odczytu!";
else
cout << "\nOdczyt liczby: " << num;
fclose( fp );



Zapis i odczyt ciggow danych

» Zalézmy, ze zapisujemy do pliku 12-cie liczb typu float reprezentujacych dochody
z kolejnych miesiecy roku podatkowego.

» Dane Zrodlowe sa zapisane w dwunastoelementowej tablicy o nazwie d:

const int LB MIES = 12;

float d[ LB MIES |;

» Pierwszym narzucajacym sie rozwigzaniem jest zapisanie kolejno kazdego
elementu tablicy jako bloku, wykorzystujac funkcje fwrite.

Tablica 0 1 2 3 4 5 6 7 8 9 10 11

=

fwrite | | fwrite | | fwrite || fwrite | | fwrite | fwrite | | fwrite | | fwrite | | fwrite || fwrite | | fwrite || fwrite

R A A A A A A A

Plik 2000 | 1530 | 2450 3200 | 2560 | 1540 | 2300 | 2100 | 2800 | 3400 | 4200 -

0 1 2 3 4 5 6 7 8 9 10 11 12



Zapis i odczyt ciagow danych, przyktad 1-szy

#include <cstdio>
#include <cstdlib>
const int LB MIES = 12

int main()

{
FILE * fp;
float d[ LB MIES ];
int nr;

// Wstawiamy do tablicy przyktadowe dane
for( nr = 0; nr < LB _MIES; nr++ )
d[ nr ] = 1000 * ( nr + 1 );

// Zapis tablicy d, element po elemencie, do pliku d.dat
if( ( fp = fopen( "d.dat", "wb" ) ) != NULL )
{
for( nr = 0; nr < LB MIES; nr++ )
if( fwrite( &d[ nr 1, sizeof( d[ nr 1 ), 1, fp ) '= 1)
cout << "\nBlad zapisu!";
else
cout << "\nZapisano: " << d[ nr ];
fclose( fp );

}



Zapis i odczyt ciagow danych, przyktad 1-szy, cd ...

// Zerujemy tablice by stwierdzic czy odczyt dziala
for( nr = 0; nr < LB MIES; nr++ )
d[ nr ] = 0;

// 0dczyt danych z d.dat do tablicy d, element po elemencie
if( ( fp = fopen( "d.dat", "rb" ) ) != NULL )
{
for( nr = 0; nr < LB MIES; nr++ )
if( fread( &d[ nr ], sizeof( d[ nr ] ), 1, fp ) !=1)
cout << "\nBlad odczytu!";
else
cout << "\nOdczytano: " << d[ nr ];
fclose( fp );

}

cout << "\n\nNacisnij Enter by zakonczyc...";
( void )getchar();
return EXIT SUCCESS;



Zapis i odczyt ciagow danych, rozwigzanie 2-gie

» Cala tablica moze by¢ blokiem, zapisywanym/odczytywanym jednym
wywolaniem instrukcji fwrite/fread.

Tablica 0 1 2 3 4 5 6 7 8 9 10 11
fwrite lub fread
Plik 2000 | 1530 | 2450 | 800 | 3200 | 2560 @ 1540 @ 2300 | 2100 | 2800 | 3400 | 4200 -
0 1 2 3 4 5 6 7 8 9 10 11 12

17



Zapis i odczyt ciagow danych, przyktad 2-gi

#include <cstdio>
#include <cstdlib>
const int LB MIES = 12

int main()

{
FILE * fp;
float d[ LB MIES ];
int nr;

// Wstawiamy do tablicy przyktadowe dane
for( nr = 0; nr < LB MIES; nr++ )
cout << "\nZapis: " << ( d[ nr ] =1000 * ( nr + 1) );

if( ( fp = fopen( "d.dat", "wb" ) ) != NULL )
{
if( fwrite( &d[0O], sizeof( d[O] ), LB MIES, fp ) !'= LB MIES )
cout << "\nBlad zapisu!";
fclose( fp );

}



Zapis i odczyt ciagow danych, przyktad 2-gi

Rozmiar zapisywanego bloku = sizeof( d[0] ) * LB MIES

Rozmiar zapisywanego Liczba zapisywanych
elementu. elementow.

e —

furite( &d[0], sizeof( d[0] ), LB MIES, fp ) ‘

/ .

Wskaznik na pierwszy Wskaznik pliku
element tablicy d, czyli otwartego do zapisu.
poczatek bloku, ktory ma by¢
zapisany do pliku fp.




Zapis i odczyt ciagow danych, przyktad 2-gi

// Zerujemy tablice by stwierdzic czy odczyt dziala
for( nr = 0; nr < LB MIES; nr++ )

dl nr ] = 0;
if( ( fp = fopen( "d.dat", "rb" ) ) != NULL )
{
if( fread( &d[0], sizeof( d[O] ), LB MIES, fp ) != LB MIES )
cout << "\nBlad odczytu!";
fclose( fp );
}

for( nr = 0; nr < LB MIES; nr++ )
cout << "\nOdczyt:” << d[ nr ];

cout << "\n\nNacisnij Enter by zakonczyc...";
( void )getchar();
return EXIT SUCCESS;



Zapis i odczyt ciagow danych, przyktad 2-gi

Rozmiar odczytywanego bloku = sizeof( d[0] ) * LB MIES

Rozmiar odczytywanego
elementu.

e

Liczba odczytywanych
elementow.

///////'

fread( &d[0], sizeof( d[@] ), LB MIES, fp )

/

Wskaznik na pierwszy
element tablicy d, czyli
poczatek bloku, ktéry ma by¢
odczytany z pliku fp.

.

Wskaznik pliku

otwartego do odczytu.




Zapis i odczyt ciggow danych, uzupetnienie

» Nazwa tablicy jest ustalonym wskaznikiem na jej poczatek, czyli na pierwszy
element.

» Zatem zamiast &d[ © ] mozna napisaé po prostu d:

fread( &d[O], sizeof( d[O] ), LB MIES, fp ) ‘

|

fread( d, sizeof( d[0] ), LB MIES, fp ) ‘




Zapis i odczyt blokowy — dana typu int

int zmiennalInt = 10;

FILE * fp;

if( fwrite( &zmiennalnt, sizeof( zmiennalInt ), 1, fp ) =1 )
cout << "\nBlad zapisu!";

else
cout << "\nZapisano liczbe: " << zmiennalnt;

Mozemy napisac funkcje, realizujaca zapis pojedynczej danej typu int:

int zmiennalInt = 10;

FILE * fp:
bool writeInt( int i, FILE * f )
{
return fwrite( &i, sizeof( i ), 1, f ) == 1;
}

if( !'writeInt( zmiennalInt, fp ) )
cout << "\nBlad zapisu!";
else
cout << "\nZapisano liczbe: " << zmiennalnt;



Zapis i odczyt blokowy — dana typu float

float zmiennaFloat = 10;

FILE * fp;

if( fwrite( &zmiennaFloat, sizeof( zmiennaFloat ), 1, fp ) !'=1 )
cout << "\nBlad zapisu!";

else
cout << "\nZapisano liczbe: " << zmiennaFloat;

Mozemy napisac funkcje, realizujaca zapis pojedynczej danej typu float:

float zmienna float = 10;

FILE * fp;
Boéliwrite_float( float n, FILE * f )
{
return fwrite( &n, sizeof( n ), 1, f ) == 1;
}

if( ! write float( zmienna float, fp ) )
cout << "\nBlad zapisu!'";

else
cout << "\nZapisano liczbe: " << zmiennaFloat;



Warto napisac sobie zestaw przydatnych funkcji

bool writeInt( int n, FILE * f )

{

return fwrite( &n, sizeof( n ), 1, f ) == 1;
}
bool writeFloat( float n, FILE * f )
{

return fwrite( &, sizeof( n ), 1, f ) == 1;
}
bool writeDouble( double n, FILE * f )
{

return fwrite( &n, sizeof( n ), 1, f ) == 1;
}
bool writeWord( unsigned short int n, FILE * f )
{

return fwrite( &n, sizeof( n ), 1, f ) == 1;

}



Kopiowanie zawartosci plikow blok po bloku

{

Funkcja bpbFileCopy realizuje kopiowanie zawartosci zrodtowego
pliku src do pliku docelowego dst. Wykorzystywane sg blokowe
operacje zapisu 1 odczytu. Funkcja nie zamyka strumieni src i dst.
Parametry : Wskazniki na prawidtowo otwarte strumienie binarne

src, dst - odpowiednio dla pliku zrédlowego i docelowego.
Rezultat : true jezeli kopiowanie zakohczyto sie poprawnie

false jezeli wystgpit btgd podczas kopiowania

_______________________________________________________________________ */
int bpbFileCopy( FILE * dst, FILE * src )

char * copyBuff = 0; // Wskaznik na bufor kopiowania

size t buffSize = 30 * 1024; // Rozmiar bufora kopiowania

size t in = 0; // Liczba przeczytanych blokow

if( ( copyBuff = new (nothrow) char[ buffSize ] ) == 0 )
return false;

while( ( in = fread( copyBuff, 1, buffSize, src ) ) !'=0 )
if( fwrite( copyBuff, 1, in, dst ) != in )
return false;

delete [] copyBuff;
return true;




Uwaga, algorytm wykorzystuje drobny trik

~ » Rozmiar odczytywanego bloku =1 * buff size I
Rozmiar odczytywanego Liczba odczytywanych
elementu, uwaga: 1! elementow.

/

while( ( in = fread( copyBuff, 1, buffSize, src ) ) I= 0 )
if( fwrite( copyBuff, 1, @ dst ) != in )
return false;

A4 A
Tutaj trafia liczba Zapisujemy tyle
odczytanych blokéw 1-no bajtow, ile
bajtowych, czyli liczba udalo sie
odczytanych bajtow. odczytac.




Wyswietlanie zawartosci pliku w widoku: szesnastkowo-

Jakis$ plik o dowolnej zawarto$ci:

while( ( in chars = fread( buffer, 1, BUFFER LEN, file ) ) >0 )
{

/* Wypisz : hex, dwie pozycje, wiodace zera, duze litery */
for( i = 0; i < in chars; i++)
printf( "%02X ", buffer[ i ] );

printf("| "); /* Separator czesci szesnastkowej od ASCII */

/* Wypisz bufor jako ASCII o ile| )zna, jesli nie to '.' */

J.. printf(
@28 "', bufferl i
[ - prin

tfC"i Y>3 % Separ

ator c=2..ci s=esnas
tkowej od ASCII =-.

- % Wysyiet

1 bufor jako ASCII

o ile mozna, Jjak ni

e to wysyietl *.' =

A for{ 1 = 9

: 1 < dn_chars; i++
Y. printf

("', isprint< buf

Ferl 1 1 > 7 buffer

L3 1 2 *ot At

putchapr<'~n’ »;
if¢ ¢ ++]1
» PAGE_LENGTH
B> % Czy ek
ran zape.niony? =7

N
(&N}



Wyswietlanie zawartosci pliku w widoku: szesnastkowo-ASCI|

Funkcja hex dump wyprowadza do stdout zawartos$¢ pliku wyswietlang
w postaci szesnastkowej oraz ASCII.

Parmetry : file - Wskaznik na prawidtowo otwarty strumien binarny
Uwaga — funkcja nie zatrzymuje wyswietlania np. co 24 linie.

_________________________________________________________________________ */

void hex dump( FILE * file )

{
#define BUFFER LEN 19 /* Tyle znakéw bedzie w linii na ekranie */
unsigned char buffer[ BUFFER LEN 1]; /* Bufor na odczytywane znaki */
int i = 0;

while( ( in chars = fread( buffer, 1, BUFFER LEN, file ) ) > 0 )

{
/* Wypisz : hex, dwie pozycje, wiodace zera, duze litery */
for( 1 = 0; i < in chars; i++)

printf( "%02X ", buffer[ 1 ] );
printf("| "); /* Separator czesci szesnastkowej od ASCII */
/* Wypisz bufor jako ASCII o ile mozna, jesli nie to '.' */
for( 1 = 0; i < in chars; i++ )
printf( "%c", isprint( buffer[ i ] ) ? buffer[ 1 ] : "."' );

putchar('\n');

}



	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21
	Slajd 22
	Slajd 23
	Slajd 24
	Slajd 25
	Slajd 26
	Slajd 27
	Slajd 28
	Slajd 29

