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Operacje na plikach w jezyku C

Jezyk C nie zawiera zadnego wbudowanego typu plikowego! Operacje na plikach nie sa
czeScia jezyka C.

» Przetwarzanie plikow realizowane jest zwykle przez funkcje z biblioteki obstugi
standardowego wejscia 1 wyjscia (identyfikowanej przez stdio.h).

» Mozna jednak korzystaé z funkeji nizszego poziomu (np. io.h) lub napisaé¢ wlasne
funkcje.

» Operacje na standardowym wejéciu i wyjéciu sa buforowane — dzieje sie to bez
dodatkowego zadnego udzialu programisty.
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Reprezentacja plikébw w postaci strumieni

» Plik jest reprezentowany przez strumien znakéw (bajtéw) o zmiennej dlugoéci.
Koniec strumienia identyfikowany jest znacznikiem konca pliku — EOF.

» Zkazdym strumieniem zwigzany jest wskaznik biezacej pozycji — od tej pozycji
realizowane bedzie czytanie lub pisanie.

» Kazdy zapis i odezyt zmienia wskaznik biezgcej pozycji.

» Zkazdym strumieniem zwigzany jest znacznik osiggniecia konca pliku oraz
znacznik bledu.
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Otwarcie pliku — tryby otwarcia

Strumienie mogaq by¢ otwierane w trybie:

» Binarnym — strumien jest ciagiem jednakowo traktowanych bajtow, kazdy zapis
1 odczyt realizowany jest bez zadnych konwers;ji.

» Tekstowym — strumien jest ciggiem linii tekstu zakonczonych znacznikiem
konica linii — znak \n’. W trakcie odczytu i zapisu do takiego strumienia mogg
zachodzi¢ konwersje spowodowane np. r6zng fizyczng reprezentacjq znacznika
konca wiersza (np. para \r\n w plikach tekstowych DOS/Windows, pojedynczy
znak \n w systemach Unix’owych, \r na komputerach Macintosh).

» Uwaga — w systemach Unix'owych tryb binarny i tekstowy sa réwnowazne.



Otwarcie pliku — definiowanie wskaznika plikowego

» Aby rozpoczaé operacje na plikach nalezy zadeklarowaé w programie zmienng
stanowigcg ,,dojScie” do takiego pliku.

» W przypadku obstugi standardowych strumieni deklaruje sie zmienng
wskaznikowa.

» Typem wskazywanym jest FILE, jest to zdefiniowany w pliku nagléwkowym
stdio.h typ rekordowy, zawierajacy informacje o otwartym dojsciu do pliku.

#include <stdio.h> // Kompilacja w trybie C++ #include <cstdio>

FILE * fp = NULL;
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Otwarcie pliku — wykorzystanie funkcji fopen

» Wykorzystanie pliku rozpoczyna operacja jego otwarcia, realizowana zwykle

przez funkcje fopen. Otwarcie pliku dane.txt do odczytu w trybie tekstowym
moze wygladaé nastepujaco:

#include <stdio.h>
FILE * fp = NULL;

%p.=.fopen( "dane.txt", "rt" );
if( fp !'= NULL )

// Otwarcie OK, wykonaj operacje na pliku
else

// Otwarcie nieudane, obstuga sytuacji btednej

Lub krocej:

#include <stdio.h>
FILE * fp = NULL;

ifi i fp = fopen( "dane.txt", "rt" ) ) != NULL )
// Otwarcie OK, wykonaj operacje na pliku
else

// Otwarcie nieudane, obstuga sytuacji btednej



Otwarcie pliku — opis funkcji fopen

FILE * fopen( const char *filename, const char *mode );

» Otwiera strumien zwigzany z plikiem o nazwie przekazanej parametrem

filename. Nazwa moze zawiera¢ Sciezke dostepu do pliku. Strumien otwierany
jest w trybie mode.

» Jezeli otwarcie zakonczylo sie sukcesem, funkcja udostepnia wskaznik do

dynamicznie alokowanej struktury typu FILE, stanowigcej programowa
reprezentacje fizycznego pliku.

» Jezeli pliku nie udalo sie otworzyé¢, rezultatem funkeji jest NULL.



Otwarcie pliku — dziatanie funkcji fopen

\
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#include <stdio.h>
FILE * fp = NULL;

if( ( fp = fopen( "dane.txt", "rt" ) ) != NULL )
// Otwarcie 0K, wykonaj operacje na pliku
else
// Otwarcie nieudane, obstuga sytuacji btednej
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Tryby otwarcia pliku

Specyfikacja typu otwieranego pliku:

t otwarcie w trvbie tekstowyvm b otwarcie w trybie binarnvm
Tryb otwarecia:

r otwarecie istniejacego pliku r+ | otwarcie istniejacego pliku do
wylacznie do odezytu odczytu i zapisu

a zapis do istniejacego lub a+ | odczytizapis do istniejacego
utworzenie nowego pliku lub utwo-rzenie nowego pliku
Ustawienie w pozycji koncowej Ustawienie w pozvcji

koncowej

w utworzenie pliku wyvlacznie do w+ | utworzenie pliku do odeczyvtu i
zapisu, jezeli plik istnieje jest zapisu, jezeli plik istnieje jest
obcinany do pliku pustego obcinany do pliku pustego

» Znak + w trybie otwarcia oznacza aktualizacje — mozliwo$¢ czytania i pisania do
otwartego strumienia.

» Jednak zapis odczyt i zapis (albo zapis i odezyt) nie moga po sobie nastepowaé
bezposrednio. Nalezy uzy¢ funkeji ,wymiatania” bufora fflush lub jednej z funkcji
pozycjonowania pozycji — fseek, fsetpos, rewind.
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Domyslny typ pliku — binarny czy tekstowy?

» Jezeli informacja o trybie otwarcia (¢ lub b) nie wystepuje, przyjmowany jest tryb
otwarcia zgodnie z warto$cig globalnej zmiennej _ fmode.

» Jezeli_fimode posiada warto$¢ O_BINARY, plik jest otwierany w trybie
binarnym.

» Jezeli_fmode posiada warto$é O_TEXT, plik jest otwierany w trybie tekstowym.
» DomyS$lna warto$é_fmode to O_TEXT.

» Symbole O _TEXTi O_BINARY s3 zdefiniowane w pliku fentl.h.



Przyktady réznych typow i trybow otwarcia plikow

Otwarcie pliku dane.txt jako pliku tekstowego, wylacznie do odczytu.

fp = fopen( "dane.txt", "rt" );

Otwarcie pliku tlo.bmp jako pliku binarnego, wylacznie do odczytu.

fp = fopen( "tlo.bmp", "rb" );

Otwarcie pliku podanie.doc jako pliku tekstowego, wylacznie do zapisu, plik
ustawiany jest w pozycji koncowej, jezeli nie istnieje, tworzony jest nowy, pusty.

fp = fopen( "podanie.doc", "at" );
Otwarcie pliku image.jpg jako pliku binarnego, do zapisu i odczytu, jezeli plik
istnieje, obcinany jest do pliku pustego.

fp = fopen( "image.jpg", "w+b" );



Zamykanie otwartych plikéw — fclose

int fclose( FILE * stream );

» Funkcja zamyka strumien stream i zapisuje wszystkie bufory.

» Rezultat EOF oznacza blad zamykania, rezultat rowny zero oznacza bezbledne
zamKkniecie.

» Pamie¢ przydzielona strukturze wskazywanej przez wskaznik stream jest
zwalniana.

Typowy scenariusz otwarcia i zamkniecia pliku:
#include <stdio.h>

FILE * fp = NULL;

%f& i fp = fopen( "dane.txt", "rt" ) ) !'= NULL )

// Otwarcie OK, wykonaj operacje na pliku
fclose( fp );

}



Odczyt pojedynczych znakow

int fgetc( FILE * stream );

» Funkcja pobiera nastepny znak ze strumienia identyfikowanego przez stream
1 uaktualnia wskaznik biezgcej pozycji w pliku. Znak pobierany jest jako
unsigned char i przeksztalcany jest do typu int.

» W przypadku napotkania kofica strumienia, rezultatem jest warto§é EOF oraz
ustawiany jest znacznik napotkania korica strumienia.

» W przypadku wystapienia bledu odczytu, rezultatem funkeji jest warto§é EOF
oraz ustawiany jest znacznik bledu strumienia.

Przykladowe wykorzystanie — odczyt znaku z uprzednio otwartego pliku fp:

int znak;

énék.=\fgetc( fp b;




Odczyt pojedynczych znakéw, wykorzystanie funkcji fgetc

#include <stdio.h>
FILE * fp = NULL:
ifi i fp = fopen( "dane.txt", "rt" ) ) != NULL )
{ int znak;
znak = fgetc( fp );

printf( "Przeczytano znak %c", znak );

fclose( fp );
}




Odczyt pojedynczych znakéw, wykorzystanie funkcji fgetc

#include <stdio.h>
FILE * fp = NULL:
ifi i fp = fopen( "dane.txt", "rt" ) ) != NULL )
{ int znak;
znak = fgetc( fp );

printf( "Przeczytano znak %c", znak );

fclose( fp );
}




Zapis pojedynczych znakow

int fputc( int c, FILE * stream );

» Funkcja wyprowadza znak ¢ do strumienia stream zgodnie ze wskaznikiem
biezacej pozycji w pliku.

» W przypadku, gdy funkcja fputc zakonczyla swoje dzialanie bez bledu,
rezultatem funkcji jest znak c. W przeciwnym wypadku warto§¢ EOF.



Zapis pojedynczych znakéw — wykorzystanie funkcji fputc

#include <stdio.h>

FILE * fp = NULL:

ifi i fp = fopen( "dane.txt",
{ fputc( 'P', fp );

fclose( fp );
}

IIW.t 1]

) )

= NULL )




Zapis pojedynczych znakéw — wykorzystanie funkcji fputc

#include <stdio.h>

FILE * fp = NULL:

ifi i fp = fopen( "dane.txt", "wt" ) ) != NULL )
{ fputc( 'P', fp );

fclose( fp );
}




Uwaga — plik powieksza sie tylko przy dopisywaniu (zapis na koncu pliku)

#include <stdio.h>
Plik istnieje i zawiera napis ,,c/C++” |

FILE * fp = NULL;

ifi i fp = fopen([}dane.txt", "r+t" ) ) != NULL )
{
fputc( 'C', fp );

fclose( fp );
}

W trybie r plik jest w pozycji poczatkowej




Uwaga — plik powieksza sie tylko przy dopisywaniu (zapis na koncu pliku)

#include <stdio.h>

FILE * fp = NULL;

ifi i fp = fopen( "dane.txt", "r+t" ) ) != NULL )

{
fotecc e

}

fclose( fp );

Zapis zgodnie z biezaca pozycja w pliku

Nadpisanie znaku i przesuniecie wskaznika




Testowanie osiggniecia znacznika konca pliku

int feof( FILE * stream );

» Rezultatem funkeji jest warto$é rézna od zera, jezeli strumien jest w pozycji
koncowej, zero w przeciwnym wypadku.

» Strumien jest w pozycji koricowej, jezeli w wyniku ostatnio przeprowadzone;
operacji odczytano znacznik konca pliku.



Sekwencyjne przetwarzanie pliku z wykorzystaniem feof

Wypisz do stdout zawarto$¢ pliku i policz, ile w tym pliku jest znakow:

FILE * fp;
long int counter = 0;

if( ( fp = fopen( "d.txt", "rt" ) ) != NULL )
{
while( ! feof( fp ) )
{
putchar( fgetc( fp ) );
counter++;
}
fclose( fp );
printf( "\nLiczba znakow w pliku: %ld", counter - 1 );

}



Sekwencyjne przetwarzanie pliku z wykorzystaniem feof

Wypisz do stdout zawarto$¢ pliku i policz, ile w tym pliku jest znakow:

FILE * fp;
long int counter = 0;

if( ( fp = fopen( "d.txt", "rt" ) ) !'= NULL )
{
while( ! feof( fp ) )
{
putchar( fgetc( fp ) );
counter++;
}
fclose( fp );
printf( "\nLiczba znakow w pliku: %ld", counter - 1 );

}

Czy przeczytano EOF?

counter 0




Sekwencyjne przetwarzanie pliku z wykorzystaniem feof

Wypisz do stdout zawarto$¢ pliku i policz, ile w tym pliku jest znakow:

FILE * fp;
long int counter = 0;

if( ( fp = fopen( "d.txt", "rt" ) ) !'= NULL )
{
while( ! feof( fp ) )
{
putchar( fgetc( fp ) );
counter++;

}
fclose( fp );

printf( "\nLiczba znakow w pliku: %ld", counter - 1 );

}
= -
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counter 1

putchar( fgetc( fp ) );
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Sekwencyjne przetwarzanie pliku z wykorzystaniem feof

Wypisz do stdout zawarto$¢ pliku i policz, ile w tym pliku jest znakow:

FILE * fp;
long int counter = 0;

if( ( fp = fopen( "d.txt", "rt" ) ) !'= NULL )
{
while( ! feof( fp ) )
{
putchar( fgetc( fp ) );
counter++;
}
fclose( fp );
printf( "\nLiczba znakow w pliku: %ld", counter - 1 );

}

Czy przeczytano EOF?

counter 1




Sekwencyjne przetwarzanie pliku z wykorzystaniem feof

Wypisz do stdout zawarto$¢ pliku i policz, ile w tym pliku jest znakow:

FILE * fp;
long int counter = 0;

if( ( fp = fopen( "d.txt", "rt" ) ) !'= NULL )
{
while( ! feof( fp ) )
{
putchar( fgetc( fp ) );
counter++;

}
fclose( fp );
printf( "\nLiczba znakow w pliku: %ld", counter - 1 );

}
- g
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+ counter | 2
putchar( fgetc( fp ) );




Sekwencyjne przetwarzanie pliku z wykorzystaniem feof

Wypisz do stdout zawarto$¢ pliku i policz, ile w tym pliku jest znakow:

FILE * fp;
long int counter = 0;

if( ( fp = fopen( "d.txt", "rt" ) ) !'= NULL )
{
while( ! feof( fp ) )
{
putchar( fgetc( fp ) );
counter++;

}
fclose( fp );
printf( "\nLiczba znakow w pliku: %ld", counter - 1 );

}
- Czy przeczytano EOF?
0 1 3 4 5
c/
counter | 2
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Sekwencyjne przetwarzanie pliku z wykorzystaniem feof

Wypisz do stdout zawarto$¢ pliku i policz, ile w tym pliku jest znakow:

FILE * fp;
long int counter = 0;

if( ( fp = fopen( "d.txt", "rt" ) ) !'= NULL )
{
while( ! feof( fp ) )

{
putchar( fgetc( fp ) );
counter++;

}
fclose( fp );
printf( "\nLiczba znakow w pliku: %ld", counter - 1 );

= e

+ counter | 3
putchar( fgetc( fp ) );
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Sekwencyjne przetwarzanie pliku z wykorzystaniem feof

Wypisz do stdout zawarto$¢ pliku i policz, ile w tym pliku jest znakow:

FILE * fp;
long int counter = 0;

if( ( fp = fopen( "d.txt", "rt" ) ) !'= NULL )
{
while( ! feof( fp ) )
{
putchar( fgetc( fp ) );
counter++;

}
fclose( fp );

printf( "\nLiczba znakow w pliku: %ld", counter - 1 );

}
- Czy przeczytano EOF?

counter 2

w*k




Sekwencyjne przetwarzanie pliku z wykorzystaniem feof

Wypisz do stdout zawarto$¢ pliku i policz, ile w tym pliku jest znakow:

FILE * fp;
long int counter = 0;

if( ( fp = fopen( "d.txt", "rt" ) ) !'= NULL )
{
while( ! feof( fp ) )
{
putchar( fgetc( fp ) );
counter++;

}
fclose( fp );
printf( "\nLiczba znakow w pliku: %ld", counter - 1 );

}
- Hisg
c/Ct 0 1 2 3 4 5
+ counter | 4
putchar( fgetc( fp ) );




Sekwencyjne przetwarzanie pliku z wykorzystaniem feof

Wypisz do stdout zawarto$¢ pliku i policz, ile w tym pliku jest znakow:

FILE * fp;
long int counter = 0;

if( ( fp = fopen( "d.txt", "rt" ) ) !'= NULL )
{
while( ! feof( fp ) )
{
putchar( fgetc( fp ) );
counter++;
}
fclose( fp );
printf( "\nLiczba znakow w pliku: %ld", counter - 1 );

}

Czy przeczytano EOF?

counter 4




Sekwencyjne przetwarzanie pliku z wykorzystaniem feof

Wypisz do stdout zawarto$¢ pliku i policz, ile w tym pliku jest znakow:

FILE * fp;
long int counter = 0;

if( ( fp = fopen( "d.txt", "rt" ) ) !'= NULL )
{
while( ! feof( fp ) )
{
putchar( fgetc( fp ) );
counter++;
}
fclose( fp );
printf( "\nLiczba znakow w pliku: %ld", counter - 1 );

}

counter | §
putchar( fgetc( fp ) );



Sekwencyjne przetwarzanie pliku z wykorzystaniem feof

Wypisz do stdout zawarto$¢ pliku i policz, ile w tym pliku jest znakow:

FILE * fp;
long int counter = 0;

if( ( fp = fopen( "d.txt", "rt" ) ) !'= NULL )
{
while( ! feof( fp ) )
{
putchar( fgetc( fp ) );
counter++;
}
fclose( fp );
printf( "\nLiczba znakow w pliku: %ld", counter - 1 );

}

Czy przeczytano EOF?

counter 5




Sekwencyjne przetwarzanie pliku z wykorzystaniem feof

Wypisz do stdout zawarto$¢ pliku i policz, ile w tym pliku jest znakow:

FILE * fp;
long int counter = 0;

if( ( fp = fopen( "d.txt", "rt" ) ) !'= NULL )
{
while( ! feof( fp ) )
{
putchar( fgetc( fp ) );
counter++;

}
fclose( fp );
printf( "\nLiczba znakow w pliku: %ld", counter - 1 );

}
#
IiiiiiIIIIIIIIIIIII | | | | | |
+ counter | 6
putchar( fgetc( fp ) );
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Sekwencyjne przetwarzanie pliku z wykorzystaniem feof

Wypisz do stdout zawarto$¢ pliku i policz, ile w tym pliku jest znakow:

FILE * fp;
long int counter = 0;

if( ( fp = fopen( "d.txt", "rt" ) ) !'= NULL )
{
while( ! feof( fp ) )
{
putchar( fgetc( fp ) );
counter++;
}
fclose( fp );
printf( "\nLiczba znakow w pliku: %ld", counter - 1 );

}

L Czy przeczytano EOF?

C / C + +#<

0 1 2 3 4 5

counter 6




Sekwencyjne przetwarzanie pliku z wykorzystaniem feof

Wypisz do stdout zawarto$¢ pliku i policz, ile w tym pliku jest znakow:

FILE * fp;
long int counter = 0;

if( ( fp = fopen( "d.txt", "rt" ) ) !'= NULL )
{
while( ! feof( fp ) )
{
putchar( fgetc( fp ) );
counter++;
}
fclose( fp );
printf( "\nLiczba znakow w pliku: %ld", counter - 1 );

}

C/C++

Liczba znakow w pliku:

counter




Sekwencyjne przetwarzanie pliku bez wykorzystania feof

Wypisz do stdout zawartos¢ pliku i policz, ile w tym pliku jest znakéw, inna
wersja:

FILE * fp;
long int counter = 0;
int c;

if( ( fp = fopen( "d.txt", "rt" ) ) !'= NULL )

{
while( ( ¢ = fgetc( fp ) ) !'= EOF )
{
putchar( c );
counter++;
}

fclose( fp );
printf( "\nLiczba znakow w pliku: %ld", counter );

}



Wyznaczanie rozmiaru pliku, Windows i... maty problem

Sprobujmy wykorzysta¢ podobng sekwencje dla wyznaczenia rozmiaru pliku
liczonego w bajtach, tym razem wykorzystajmy iteracje for:

if( ( fp = fopen( "d.txt", "rt" ) ) !'= NULL )

{
for( counter = 0; fgetc( fp ) !'= EOF; counter++ )

fclose( fp );
printf( "\nRozmiar pliku: %ld bajtow", counter );
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Dlaczego rozmiary sie nie zgadzajg?

Przyczyng wadliwego dzialania programu sg konwersje znacznikow konca linii w
trybie tekstowym. W systemach DOS/Windows znacznik konca linii to para \ri \n
(czyli CR 1 LF). W trakcie odczytu w trybie tekstowym, kazda para \r\n
zamieniana jest na pojedynczy znak |n.

0 1 2 3 4 5 6 7 8 9 10 11

Rezultaty odczytu przy otwarciu w trybie binarnym N

|1| I2l |3l l4l |5| l\ r.l I\ r]l l1 ] l2| |3| I4l |5|
‘AAAAAAAAAAA/

Strumien: | 1 2 3 4 3) \r | \n | 1 2 3 4 5 | EOF

- /
Y
\J y y y \J ¢ y \/ y \J y
|1| I2I I3I |4| |5| |\ r]l I1I |2| |3| I4I |5|

Rezultaty odczytu przy otwarciu w trybie tekstowym

0 1 2 3 4 5 6 7 8 9 10 11

\r | \n | Znacznik konica wiersza




Otwarcie jako plik binarny gdy nie przetwarzamy tekstow

Konwersje nie zachodza przy otwieraniu pliku w trybie binarnym. W drugim
parametrze wywolania fopen nalezy uzy¢ litery b, oznaczajacej otwarcie w trybie
binarnym. Poprawiona wersja kodu wkomponowana w funkcje file size:

long int file size( char * fname )

{
FILE * fp;
long int counter = 0;

if( ( fp = fopen( fname, "rb" ) ) != NULL )
{

for( counter = 0; fgetc( fp ) != EOF; counter++ )

fclése( fp );
}

return counter;

}
printf( "\nRozmiar pliku: %ld bajtow", file size( "d.txt" ) ):



Kopiowanie zawartosci plikow

Wykonaj kopie pliku dane.txt w pliku dane.bak:

FILE * src = NULL;
FILE * dst = NULL;
if( ( src = fopen( "dane.txt", "rb" ) ) != NULL )
{
if( ( dst = fopen( "dane.bak", "wb" ) ) != NULL )
{
int c;
while( ( ¢ = fgetc( src ) ) != EOF )
fputc( c, dst );
fclose( dst );
}
else

printf( "Blad tworzenia pliku kopii zapasowej" );

fclose( src );

}
else

printf( "Blad otwarcia pliku zrodlowego" );
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Kopiowanie zawartosci plikow — funkcja cpc_file_copy

Funkcja cpc file copy realizuje kopiowanie zawartosci zrodtowego
pliku src do pliku docelowego dst. Wykorzystywane sg znakowe
operacje odczytu i zapisu. Funkcja nie zamyka strumieni src 1
dst.

Prametry : Wskazniki na prawidtowo otwarte strumienie binarne
src, dst - odpowiednio dla pliku zrodtowego 1
docelowego

Rezultat : true jezeli kopiowanie zakonczyto sie poprawnie
false jezeli wystapit btad podczas kopiowania

bool cpc file copy( FILE * dst, FILE * src )
{

int c;

for( ; ( ¢ = fgetc( src ) ) != EOF ; fputc( c, dst ) )
if( ferror( src ) || ferror( dst ) )
return false;
return true;

}



Kopiowanie ze zmiang zawartosci, przyktad 1-szy

Funkcja toupper file copy realizuje kopiowanie zawartosci

zrodtowego

pliku src do pliku docelowego dst. W trakcie kopiowanie wszystkie

litery mate sg zamieniane na duze a tzw. "biale spacje” na znak

myslnika '-'. Wykorzystywane sg znakowe operacje odczytu i zapisu.

Funkcja nie zamyka strumieni src i dst.

Parametry : Wskazniki na prawidtowo otwarte strumienie binarne
src, dst - odpowiednio dla pliku zrodlowego 1

docelowego
Rezultat : true jezeli kopiowanie zakonczyto sie poprawnie
false jezeli wystapit btad podczas kopiowania
_________________________________________________________________ */
bool toupper file copy( FILE * dst, FILE * src )
{
int c;

while( ( ¢ = fgetc( src ) ) '= EOF )

{
fputc( ( isspace( c ) ) ? '-' : toupper( c ), dst );
if( ferror( src ) || ferror( dst ) )
return false;
}

return true;
}



Kopiowanie ze zmiang zawartosci, przyktad 2-gi i 3-ci

W trakcie kopiowania mozna realizowac filtrowanie znakéw, np. kopiowanie tylko
liter 1 cyfr:

while( ( ¢ = fgetc( src ) ) !'= EOF )

{

if( isalnum( c ) )
fputc( c, dst );

Zamiana liter duzych na male:

while( ( ¢ = fgetc( src ) ) !'= EOF )
fputc( tolower( c ), dst );

Zamiana liter malych na duze:

while( ( c = fgetc( src ) ) != EOF )
fputc( toupper( c ), dst );
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Przetwarzanie plikow tekstowych linia po linii

» Pliki tekstowe reprezentowane sa rowniez jako strumienie bajtéw. Mozna je

jednak przetwarzaé¢ wierszami, od strony programu separatorem wierszy jest
znak |n.

» Do przetwarzania pliku tekstowego linia po linii stuza funkcje odczytu/zapisu
linii — buforem linii sg tablice znakowe.

Zawartos¢ pliku:

J e Z y k C \n i \n C + + \n -

Przy przetwarzaniu linia po linii mozna zalozy¢, ze plik wyglada tak:

e z |y Kk C | \n _H‘“*““l“
\n 1 Jezyk C

In ~|
-
B

-

+




Przetwarzanie plikow tekstowych linia po linii

int fputs( const char * s, FILE * stream );

» Funkcja fputs wyprowadza napis s do pliku stream, nie dopisuje znacznikow
konca wiersza ani konca napisu. Rezultatem funkcji jest ostatni zapisany znak,
w przypadku gdy zapis zakonczyt sie sukcesem lub EOF, gdy wystapil blad.

#include <stdio.h>
#include <stdlib.h>

File Edit Options Help

int main() Jestem C, jezyk ]
{
FILE * fp = NULL;

if( ( fp = fopen( "dane.txt", "wt" ) ) != NULL )
{

fputs( "Jestem C", fp );

fputs( ", jezyk C", fp );

fclose( fp );

}
return EXIT SUCCESS;



Wykorzystanie funkcji fputs

#include <stdio.h>
#include <stdlib.h>

int main()

{
FILE * fp = NULL;

if( ( fp = fopen( "dane.txt", "wt" ) ) !'= NULL )
{
fputs( "Jestem C", fp );

fputs( ",\njezyk C.\nKoniec wiadomosci.", fp );

fclose( fp );

}
return EXIT_SUCCESS;
}

|| File Edit Options Help
Jestem G,

| jezyk C.
Koniec wiadomosci.|




Funkcja fprintf

int fprintf( FILE * stream, const char * format [, argument, ...] );

» Funkcja fprintf wyprowadza do pliku stream napis format oraz opcjonalne
argumenty, w postaci okreSlonej przez sekwencje formatujgce zapisane
w napisie format.

» Rezultatem funkgji jest liczba wyprowadzonych bajtéw, w przypadku gdy zapis
zakonczyl sie sukcesem lub EOF, gdy wystapil blad..

» Wszystkie zasady formatowania znane z wykorzystania funkeji printf obowiazuja
dla funkcji fprintf.

Zamiast wywolania funkcji printf:
printf( "printf to fprintf piszacy do stdout" );

mozna napisac:

fprintf( stdout, "printf to fprintf piszacy do stdout" );



Wykorzystanie funkcji fprintf, wersja 1-sza

#include <stdio.h>

#include <stdlib.h> TIHE Edit Options Help
Dane samochodu:
i : Fiat
int main() S
{ 1978
FILE * fp = NULL; 12823

if( ( fp = fopen( "dane.txt", "wt" ) ) != NULL )
{

char marka[ 80 ] = "Fiat";

char model[ 80 ] = "126p";

int rocznik = 1970;

float przebieg = 128.23;

fprintf( fp, "Dane samochodu:\n%s\n%s\n%d\n%g", marka, model,
rocznik, przebieg );

fclose( fp );

}
return EXIT SUCCESS;

}



Wykorzystanie funkcji fprintf, wersja 2-ga

#include <stdio.h>

#include <stdlib.h> File Edit Options Help
Dane samochodu:
: : Marka: Fiat
int maln() Mgzei: 1;gp
{ Rocznik: 1978
FILE * fp = NULL; Przebieg: 128.23]
if( ( fp = fopen( "dane.txt", "wt" ) ) !'= NULL )
{
char marka[ 80 ] = "Fiat";
char model[ 80 ] = "126p";
int rocznik = 1970;
float przebieg = 128.23;
fprintf( fp, "Dane samochodu:\n\tMarka: %s\n\tModel: %s\n", marka, model);
fprintf( fp, "\tRocznik: %d\n\tPrzebieg: %g", rocznik, przebieg );
fclose( fp );
}

return EXIT SUCCESS;



Funkcja fgets

char * fgets( char * s, int n, FILE * stream );

>

Pierwszy parametr s okresla bufor, do ktérego maja by¢ zapisane wczytywane
dane.

Drugi parametr n okresla maksymalng pojemno$¢ bufora, uwzgledniajacg
miejsce na znacznik konca napisu.

Trzeci parametr stream okreSla strumien (plik), z ktérego funkcja ma odczytywacé
dane, moze to by¢ réwniez standardowy strumien wejSciowy — stdin.

Dzialanie funkcji koniczy sie gdy funkcja odezyta n — 1 znakow lub wezesniej
zostanie odczytany znak nowego wiersza (Enter).

Znacznik konica napisu dopisywany jest na jego koncu.



Wykorzystanie funkcji fgets, uwaga na znacznik konca wiersza

#include <stdio.h>
#include <stdlib.h>

Dane szamochodu:

Marka: Fiat
- Model: 126
#define MAKS DL 256 Rocanik: 1978
Przebieqg: 128.23m

int main()

{
FILE * fp = NULL;

if( ( fp = fopen( "dane.txt", "rt" ) ) != NULL )
{
char linia[ MAKS DL ];

while( fgets( linia, MAKS DL, fp ) != NULL )

prlntf( -Llnla ) y #include <{stdio.h>
#linclude <stdlih.h>

fclose( fp ) : H#idefine MAKS_DL 256
} {i:nt main<>
return EXIT SUCCESS; ELLE = = MO
} o {i:f( ¢ fp = fopent "dane.txt", “pt" > > *= NULL >

char linial MAKS_DL 1;

while< fgets< linia. MAKS_DL, fp > *= HULL >

Funkcja fgets pozostawia w

. , fclose< fp 235 r H———— R m!.i#:-:‘t:ﬁl}_:".
buforze znacznik konca : 3 EHIT_succE[ nic- "Dane samochodu:\
wiersza.
15:16




Wykorzystanie funkcji fgets, uwaga na znacznik konca wiersza

Uwaga, przed znacznikiem konca pliku EOF moze nie by¢ znacznika konca wier-
sza \n. Funkcja fgets nie przeczyta go zatem.

Zawartos¢ pliku:
J e y4 y k C \n i \n C + + -

Przy przetwarzaniu linia po linii mozna zalozy¢, ze plik wyglada tak:

J e y y k C | \n ___=+____1.
i \n Jezyk C
C + + - i

bz cH

while¢ fgets{ linia. MAKS_DL, fp > *= NULL >

fclosed fp >; [0 ]——— Watch —=[1 1=
by |El:i.n:i.a: e et

return ESAIT_SUCCE

C
e



Wykorzystanie fgets w funkcji list_file

Wyprowadza do stdout zawartos¢ pliku o nazwie fname.

Parametry: char * fname — wskaznik na tablice zawierajacg nazwe
pliku.

Rezultat: Brak.

#define MAX LINE 256
void list file( char * fname )

{
FILE * fp;
char buffer[ MAX_LINE ];

if( ( fp = fopen( fname, "rt" ) ) !'= NULL )
{
while( fgets( buffer, MAX LINE, fp ) != NULL )

. no o 1 .
prlntf( 6S ’ bUffer ) b Funkcja: long int nlist_file¢ char * fname »

. Uyprowadza do stdout zawartotd pliku o nazwie fname. kajda linia
fC-Lose( fp ) ’ popr=zedzona jest jej numerem.
} Rezultat:
Liczbha linii pliku o nazwie zapiszane w fname

} fidef ine MAX_LINE 256
%ung int nlist_file< char =* fname 2>

FILE = fp;
long int counter = @;
chayr buffer[ MAX_LINE 1;

if{ ¢ fp = fopen? fname. ""wt'" > > *= HNULL »

list_file( "przyklad4. c" ) -{ while{ fgets¢ buffer, MAX_LINE — 1. fp > t= NULL >

printf{ "x31d: xs", ++counter,. buffer >;
fclosed fp >;
¥

return counter;




Funkcja list_file zawija za dtugie wiersze

To jest plik tekstowy przeznaczony do testowania funkcji przetuwarzajacych pliki.
pizanych w Je"yku

Ten pllk zawiera dwie dlugie linie.sa one dluzsze od 8@-—ciu znakow, czyli zuycza

jowej s=Zerokosci ekranu w tryhie konsolowym.

Ta linia,. i nastepna. za krotkie.

Druga krotka linia.

Mozna zmodyfikowa¢ funkcje list_file tak, by nie lamata za dlugich wierszy
a umieszczala na ich konicu symbol informujacy, ze wiersz jest dhuzszy od szerokos$ci

ekranu. i

To jest plik tekstowy przeznaczony do testowania fﬁnkcal przetuarzajacych pliki’
Ten plik zawiera dwie dlugie linie.sa one dluzsze od 88—ciu znakow. czyli zwuyczl

Ta linia,. i nastepna,. sa krotkie.
Druga krotka linia.

N
1



Funkcja list_file_nowrap przycina za dtugie wiersze

#define MAX LINE 256
#define MAX CHARS IN _LINE 80

void list file nowrap( char * fname )

{

FILE * fp;
char buffer[ MAX LINE ];

if( ( fp = fopen( fname, "rt" ) ) !'= NULL )
{
while( fgets( buffer, MAX LINE, fp ) != NULL )
{
if( strlen( buffer ) > MAX CHARS IN LINE )

{
buffer[ MAX_CHARS_ IN LINE - 1 ]

|>| .

buffer[ MAX CHARS IN LINE ] = '\0:;
}
printf( "%s", buffer );
}
fclose( fp );

}




Funkcja nlist_file_nowrap dodatkowo nhumeruje wiersze

#define MAX LINE 256
#define MAX CHARS IN LINE 80

void nlist file nowrap( char * fname ) f

{

FILE * fp;
int counter = 0;
char buffer[ MAX LINE ];

if( ( fp = fopen( fname, "rt" ) ) != NULL )

{ while( fgets( buffer, MAX LINE, fp ) != NULL )
{ if( strlen( buffer ) > MAX CHARS IN LINE - 5 )
{ buffer[ MAX CHARS IN LINE - 6 ] =
buffer[ MAX CHARS IN LINE - 5 ] = '\0"
;rintf( "%03d: %s", ++counter, buffer );
\ iclose( fp );



Funkcja pattern_list_file wyswietla linie z wzorcem

void pattern list file( char * fname, char * pattern )

{
FILE * fp;
int counter = 0;
char buffer[ MAX LINE ];

if( ( fp = fopen( fname, "rt" ) ) !'= NULL )

{
while( fgets( buffer, MAX LINE - 1, fp ) != NULL )
{
++counter;
if( strstr( buffer, pattern ) != NULL )
{
if( strlen( buffer ) > MAX CHARS IN LINE - 5 )
{
buffer[ MAX CHARS IN LINE - 6 ] = '>';
buffer[ MAX CHARS IN LINE - 5] = '\0';
}
printf( "%03ld: %s", counter, buffer );
} :
} ;T ir strotad bufter. pattern > 1- NULL >
fclose( fp ); D ifC < EiieS'i"%ﬁ“En'é“ﬁ“i;'_ﬁa.?.e'f“--ri-- > > *= NULL >
}

} pattern list file( "przyklad6.c" , "if" );

C
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Strumienie standardowe jako otwarte pliki

W pliku stdio.h zdefiniowana sg trzy wskazniki przypisane trzem strumieniom,
automatycznie otwieranym dla programu:

» standardowy strumien wyjSciowy: stdout,
» standardowy strumien wejéciowy: stdin,

» standardowy strumien wyjSciowy dla bledéw: stderr.

Wskazniki stdin, stdout i stderr sg typu FILE *, mozna z nich korzystac jak z
otwartych plikow:

printf( "wWitaj!" ); < p fprintf( stdout, "Witaj!" );

putchar( 'A' ); <«  » fputc( 'A', stdout );

c = getchar(); <«  » C = fgetc( stdin );



Przyktad 1: Dane z tablicy do pliku

Dana jest N-elementowa tablica liczb rzeczywistych kursy, zawierajaca cene
zakupu waluty EURO wyrazona w zlotowkach. Jak zapisac¢ zawartosc tablicy do
pliku tekstowego?

#include <cstdio>
#include <cstdlib>

using namespace std; 5 sy |
1 4
const int N = 5; Z2 4.01
int main() 2 3.95
{ . , , 2 3.38
// Tablica z przyktadowymi danymi = 4.1
float kursyEURO[ N ] = { 4, 4.01, 3.95, 3.98, 4.1 }; 6
FILE * fp = NULL; A

if( ( fp = fopen( "kursy.txt", "wt" ) ) !'= NULL )
{
for( int i = 0; i < N; ++1i )
[fprintf( fp, "%g\n", kursyEURO[ i ] );}

fclose( fp );

}
return EXIT SUCCESS;
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Przyktad 2: Dane z pliku do tablicy

Jak odczyta¢ dane z pliku tekstowego do tablicy kursow?

éoﬁsf int N = 5;

int main()

{
// Tablica na dane
float kursyEURO[ N ];

Jak to dziata?

FILE * fp = NULL;
if( ( fp = fopen( "kursy.txt", "rt" ) ) !'= NULL )
{

int 1 = 0;

while( fscanf( fp, "%g", &kursyEURO[ i++ ] ) == 1 )
if( 1 == N w<
break;

for( 1 =0; i < N; ++1 )
printf( “\n%g", kursyEURO[ 1 ] );

fclose( fp );

Zabezpieczenie przed
’ przekroczeniem
return EXIT SUCCESS; zakresu tablicy

}

]



Przyktad 2: Dane z pliku do tablicy — funkcja fscanf

Funkcja fscanf to przedstawiciel rodziny funkcji (scanf, sscanf, ...) realizujacych
pobieranie danych (,skanowanie”) z pewnego zrédta i zapisanie ich do zmiennych
programu zgodnie z zadanym formatem. Zrédlem danych dla funkeji fscanf jest
uprzednio otwarty plik.

Funkcja fscanf jest:

» bardzo uzyteczna,
» posiada szereg ciekawych mozliwosci,
» wymaga uwagi i przemyslanego stosowania,

» stosowana nieuwaznie jest kaprysna i niebezpieczna.

Bardzo interesujacy opis wykorzystania funkcji fscanf zawiera ksigzka:

Adam Sapek, Wglqb jezyka C, Helion, Gliwice, 1993



Przyktad 2: Dane z pliku do tablicy — funkcja fscanf

fscanf( FILE * file, const char * format );

Funkcja fscanf posiada dwa obowigzkowe parametery:

» FILE * file — wskaznik pliku otwartego do odczytu,

» const char * format — ciag znakow sterujacy odezytem i formatowaniem
danych (zwanym dalej tancuchem sterujgcym odczytem),

» kolejne parametry muszq byé wskaznikami na zmienne, do ktérych zostana
zapisane dane odczytane z pliku zgodnie z informacjami formatujacymi

zapisanymiw format.

Rezultatem funkcji fscanf jest liczba przeczytanych, sformatowanych 1 zapamie-
tanych danych (dane niezapamietane nie sq zliczane!).

W przypadku napotkania konca pliku przed zakonczeniem odczytu rezultatem funkcji
jest EOF.

77
09



Przyktad 2: Dane z pliku do tablicy — funkcja fscanf

Odczytaj z pliku fp liczbe rzeczywistg, potraktujg ja jako dang typu float i zapisz do
zmiennej wskazywanej przez &num.

float num;

fscanf( fp, "%g", &num );

Odczytaj z pliku fp liczbe rzeczywistq, potraktuja ja jako dana typu double i zapisz
do zmiennej wskazywanej przez &num — uwaga na znak [ poprzedzajacy f.

double num;

fscanf( fp, "%lg", &num );
Odczytaj z pliku fp liczbe rzeczywistq, potraktuja ja jako dana typu double i zapisz
do elementu tablicy wskazywanego przez &kursyEURO[ 1 |.

float kursyEURO[ N ];

fscanf( fp, "%g9", &kursyEURO[ 1 ] );



Przyktad 2: Dane z pliku do tablicy — funkcja fscanf

Powtarzaj dopoki udaje sie z pliku odczytac, sformatowac i zapisac jedng liczbe
rzeczywista:

while( fscanf( fp, "%g", &kursyEURO[ i++ ] ) ==1 )
{

}

Inny zapis, podobne dzialanie

while( fscanf( fp, "%g", &kursyEURO[ i++ ] ) !'= EOF )
{

, L.



Przyktad 3: Odczyt kilku elementéow w pojedynczym wywotaniu fscanf

#include <cstdio>
#include <cstdlib>
using namespace std;

const int N = 20;

int main()

{ = auta b IE leursy l
char marka[ N ]; : - - -
char model[ N ]: 1 Fiat 126p 1990 250000
int rokProd; 2

float przebieg;

FILE * fp = NULL;
if( ( fp = fopen( "auta.txt", “rt" ) ) != NULL )
{

\ fscanf( fp, "%s %s %d %g", marka, model, &rokProd, &przebieg ); <

printf( "\nMarka: %s\nModel: %s\nRocznik: %d\nPrzebieg: %g",
marka, model, rokProd, przebieg );

fclose( fp );
}

Rocznik: 1998
return EXIT SUCCESS: Preohiey: 250000

7 7
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Przyktad 3: Odczyt kilku elementéow w pojedynczym wywotaniu fscanf

Poniewaz nazwy tablic sg interpretowane jako wskazniki na ich pierwsze elementy,
w przypadku tablic nie stosujemy operatora &:

fscanf( fp, "%S %s %d %Q", marka, model, &rokProd, &przebieg );

Zawsze jednak mozna wykorzystac zapis:

» Kolejne wezytywane elementy rozdzielane sg tzw. ,,bialtymi znakami” (spacja,
tabulacja, przejScie do nowego wiersza).

» Jezeli napotkany znak nie pasuje do specyfikacji okre$lonej w tanicuchu
sterujacym odczytem, dzialanie funkcji fscanf jest przerywane.

» Specyfikacja %s zaklada, ze pole wej$ciowe jest ograniczone bialymi znakami,
co nie pozwala na wezytanie tancucha znakow zawierajgcego odstepy.
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Przyktad 4: Jak Przyktad 3 tylko wiele razy

#include <cstdio>
#include <cstdlib>
using namespace std;

const int N = 20;

int main()
{ =
char marka[ N ]; = autabd lEl aursy ¢ |
char model[ N ]; 1 Fiat 126p 1990 250000
int rokProd; 2 Ford T 1908 250
f'l.oat przebieg' 3 Syrena Bosto 1966 SS000

FILE * fp = NULL;
if( ( fp = fopen( "auta.txt", "rt" ) ) !'= NULL )
{
while( fscanf(fp, "%s %S %d %g", marka,model,&rokProd,&przebieg) !'= EOF )
printf( "\nMarka: %s\nModel: %s\nRocznik: %d\nPrzebieg: %g\n",
marka, model, rokProd, przebieg );

fclose( fp );
}

return EXIT SUCCESS;

I §
Przehieg: 25A

Marka: Surena
Model: Bosto
Rocznik: 1766
Przehieg: 55880




Przyktad 5: Zapis danych z rekordu do pliku tekstowego

#include <cstdio>
#include <cstdlib>
using namespace std;

const int MAKS M
const int MAKS R

20;
10;

struct pojazd
{
char marka[ MAKS M 1;
char model[ MAKS M 1;
int rok prod;
float cena;
float przebieg;
char nr rej[ MAKS R 1;
b
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Przyktad 5: Zapis danych z rekordu do pliku tekstowego

int main()

{
pojazd p = { "Syrena", "Bosto", 1966, 1, 12000, "KTA1234" };

FILE * fp = NULL;
if( ( fp = fopen( "auta2.txt", "wt" ) ) != NULL )
{
fprintf( fp, "%s %S %d %g %g %s\n",
p.marka, p.model, p.rok prod, p.cena, p.przebieg, p.nr_rej );
fclose( fp );
}
I=| auta?hd |E autal bd | = auta bd | = beursy ot |
return EXIT SUCCESS;

} 1 Syrena Bosto 1966 1 12000 KTAlZ234
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Przyktad 6: Odczyt danych z pliku tekstowego do rekordu

int main()

{

= autalbd IE auta tad IE keuirsy et l

pojazd p; 1  Fiat 126p 1990 300 250000 KDN1234

=
L

FILE * fp = NULL;
if( ( fp = fopen( "autal.txt", "rt" ) ) != NULL )
{
fscanf( fp, "%s %s %d %g %g %s", p.marka, p.model, &p.rok prod,
&p.cena, &p.przebieg, p.nr rej );

printf( "\nMarka: %s\nModel: %s\nRok: %d\nCena: %Q"
"\nPrzebieg: %g\nNr rej.: %s",
p.marka, p.model, p.rok prod, p.cena, p.przebieg, p.nr_rej );

fclose( fp );
}

return EXIT SUCCESS;
- Marka: Fiat
Model: 126p

Rok: 1994

Cena: 384
Przebhieqg: 258480
Mr rej.: KDM1234_

Przy okazji: dwa sasiadujace ze sobag napisy, niczym nie
oddzielone, sa przez kompilator tagczone w jeden napis, np.:

"C" "++" taczone jestw "C++"
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Przyktad 7: Jak przyktad 6 tylko z pominieciem wybranych danych

int main()

{

pojazd p;

FILE * fp = NULL;
if( ( fp = fopen( "autal.txt", "rt" ) ) !'= NULL )
{

// Czytaj z pominieciem roku produkcji i numeru rejestracyjnego

fscanf( fp, "%s %s %*d %g %g %*s", +<
p.marka, p.model, &p.cena, &p.przebieg );

printf( "\nMarka: %s\nModel: %s\nCena: %g\nPrzebieg: %g\n",
p.marka, p.model, p.cena, p.przebieg );

fclose( fp );

} Umieszczenie znaku * na poczatku
specyfikacji formatu powoduje
return EXIT SUCCESS; pominiecie danych.

Doktadniej - dane sg odczytywane
lecz ignorowane.




Przyktad 8: Odczyt danych o zadanej szerokosci pola

» VIN (Vehicle Identification Number) jest zlozonym zestawem znakow, ktory

zostaje nadany pojazdowi przez producenta w celu jego identyfikacji (istnieje
norma ISO 3779 - 1983, ktora okresla tres¢ i budowe numeru identyfikacyjnego
pojazdu).

1G1|YY21P2/E59999929
» VIN sklada sie z:

WMI — 3 znaki, Swiatowy symbol producenta: rejon geograficzny, kraj,
producent,

VDS — 6 znakow, czesé opisujgca pojazd: konstrukeje samochodu, rodzaj
nadwozia, rodzaj i odmiane silnika , uklad przeniesienia naped, kolejno$¢
i znaczenie okreSlane sg przez producenta.

VIS — 8 znakoéw, cze$¢ wyrdzniajgea pojazd : identyfikuje dany egzemplarz
samochodu, powinna zawiera¢ numer fabryczny pojazdu. W czeSci tej pierwsze

cztery znaki sg literowo-cyfrowe, a pozostale cztery musza by¢ cyfrowe.
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Przyktad 8: Odczyt danych o zadanej szerokosci pola

const int WMI DL
const int VDS DL
const int VIS DL

i nu
(oo lie) UV}

struct VIN

{
char wmi[ WMI DL + 1 ];
char vds[ VDS DL + 1 1;
char vis]| VIS DL + 1 ];

b
_ _ Okreslenie szerokosci wczytywanego pola, liczone w znakach.
int main()
{ 0
WL 2l =] wvinbd ]E auta? b ]E autal bd
FILE * fp = NULL; 1 1G1YY21P2E5599999%9
if( ( fp = fopen( "vin.txt", "rt" ) ) != NULL ) 2 |
{
\fscanf( fp, "%35%65%8s", id.wmi, id.vds, id.vis );}4
printf( "\nVIN: %s %S %s\nWMI: %s\nVDI: %s\nVIS: %s\n",
id.wmi, id.vds, id.vis, id.wmi, id.vds, id.vis
fclose( fp ); : 1G1 YY21P2 E5999999
] DI: Y¥21p2
! return EXIT SUCCESS; : EL099999

7



Przyktad 9: Jak przyktad 8 tylko z wykorzystaniem sscanf

const int STR DL = 128;

struct VIN

{

char wmi[ WMI DL + 1 ];
char vds[ VDS DL + 1 ];
char vis[ VIS DL + 1 ];

b

int main() Wczytaj linie z pliku, zapisz w tablicy znakow, a nastepnie

{ wczytaj elementy numeru VIN z tablicy znakow.
VIN id;
char linia[ STR DL ];
FILE * fp = NULL; =] vinba ]E auta b ]E auta b
if( ( fp = fopen( "vin.txt", "rt" ) ) != NULL ) 1 1G1YY21P2E5999993
{ 2 |

fgets( linia, STR DL, fp ); +<
sscanf( linia, "%3s5%6s%8s", id.wmi, id.vds, id.vis );

printf( "\nVIN: %s %S %s\nWMI: %s\nVDI: %s\nVIS: %s\n",
id.wmi, id.vds, id.vis, id.wmi, id.vds, id.vis

fclose( fp );
} JMI: 1G1

: 2 YY21P2
return EXIT SUCCESS; : E5999999

: 1G1 YY21P2 ES99999%




Przyktad 9: Rodzina funkcji printf i scanf

» Funkcje printfi scanf wystepuja w kilku odmianach.
» Drzialaja zwykle tak samo, r6znig sie miejscem:
o do ktérego zapisujq wyniki swego dzialania — rodzina printf,

o 7z ktorego odczytujq dane — rodzina scanf.

® int printf( const char * format, ... )
int scanf ( const char * format, )

= wwm

int fprintf( FILE * stream, const char * format,
int fscanf ( FILE * stream, const char * format,

@ int sprintf( const char * str, const char * format, ... );
~ int sscanf ( const char * str, const char * format, );



Przyktad 9: Funkcje sprintf i sscanf

» Funkcja sprintf pobiera zawarto$é kolejnych poél rekordu id, formatuje zgodnie

z ustalonym formatem, zapisuje do tablicy znakéw linia, funkcja puts wyprowadza
zawarto$c¢ tej tablicy do stdout.

VIN id = { "1G1", "YY21P2", "E5999999" };
char linia[ STR DL J;

sprintf( linia

s , "%35:%65:%8s", id.wmi, id.vds, id.vis ); pEpTEEETEEETTTIG
puts( linia );

» Funkcja gets odczytuje ciag znakow z stdin, zapisuje do tablicy linia, sscanf traktuje
te tablice jako zrodlo danych, odczytuje z niej informacje zgodnie z zawarto$cia
lancucha formatujacego, zapisuje je do p6l rekordu id, funkcja printf wyprowadza
zawarto$¢ kolejnych pdl tego rekordu do stdout zgodnie z ustalonym formatem.

VIN id;
char linia[ STR DL ];

printf( "\nPodaj VIN: " );
gets( linia );

ini "9.35%65%8s" . i i i ' Podaj UIN: 1G1YY¥21P2E5999999
sscanf ( }3n1a 350?5085 id.wmi, id.vds, 1d.vis ); beniuigiiT et
printf( "%35:%65:%8s id.wmi, id.vds, 1id.vis );
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Przyktad 10: Odczyt danych rozdzielonych separatorem

» Gdy wezytywane napisy moga zawieraé biale znaki — np. spacje — wezytywanie
specyfikatorem %s staje sie niemozliwe, poniewaz zatrzymuje on wczytywanie po
napotkaniu bialego znaku.

» Do wezytywania takich napiséw stuzy specyfikacja %[ 1. Wewnatrz nawiasow
zapisuje sie ciag akceptowanych znakéw, kazdy inny znak traktowany jest jako
ogranicznik pola, jego napotkanie kornczy odczyt elementu.

» Odczyt pliku fp do tablicy znakéw s napis, ktory zawieraé¢ moze tylko litery ABC,
znaki podkreslenia'_'ispacje (np:. A B C_AB_AC_BC ABC ):

fscanf( fp, "%[ABC 1", s );

» Odczyt pliku fp do tablicy znakéw s napis, ktory zawieraé moze tylko mate litery,

L |

cyfry, i znaki podkre$lenia' ', '-' i spacje (np.: 007 james_bond j23 hans_kloss):

fscanf( fp, "%[a-z0-9 -]1", s );

ABCDEF...Z zastepuje A-Z, abcdef...z zastepuje a-z, 0123456789 zastepuje 0-9
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Przyktad 10: Odczyt danych rozdzielonych separatorem

» W specyfikacji %[znaki] ogranicznikiem wezytywanego pola jest kazdy znak nie
wymieniony w nawiasach.

» W specyfikacji %[~znaki] ogranicznikiem wezytywanego pola jest kazdy znak
wymieniony w nawiasach.

» Czytaj tylko duze litery — ogranicznikiem pola jest kazdy znak nie bedqgcy duza
literg:

fscanf( fp, "%[A-Z]", s );
» Czytaj wszystko az do duzej litery — ogranicznikiem pola jest duza litera:
fscanf( fp, "S["A-Z]", s );

» Zazwyczaj w nawiasach umieszcza sie ogranicznika pola (separatory), czytaj
wszystko az do znaku '|', pomin go:

fscanf( fp, "%[™|]1%*c", s );
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Przyktad 10: Odczyt danych rozdzielonych separatorem

Kolejne informacje o samochodzie rozdzielane sg znakami '|', znak ten jest
separatorem. Dzieki temu marka i model samochodu moga zawierac spacje. Uwaga —
separator nalezy przeczytaé i pomingé, stad %*c, ale tylko dla specyfikacji %[].

[= autalbd IE vin bd l B auta? bt l B autal bt l B auta bt l =%

Fiat|126p Sport|1990]300]|250000|KDN1234

int main() :
{ .
pojazd p;

FILE * fp = NULL;
if( ( fp = fopen( "auta3.txt", "rt" ) ) != NULL )

{
fscanf( fp, "%[™|1%*C%[™|]1%*C%d%*C%Qg%* C%q%*C%s",
p.marka, p.model, &p.rok prod, &p.cena, &p.przebieg, p.nr rej );
printf( "\nMarka: %s\nModel: %s\nRok: %d\nCena: %g"
"\nPrzebieg: %g\nNr rej.: %s",
p.marka, p.model, p.rok prod, p.cena, p.przebieg, p.nr _rej );
fclose( fp );
}

return EXIT SUCCESS;



Funkcja fscanf — podsumowanie

» Uwaga, specyfikacja %[ znaki] nie pomija bialych znakéw, zatem gdy pole ma
zawarto$¢: | 123|, dane nie zostang odczytane, gdyz spacje z poczatku pola nie
pasuja do wzorca:

fscanf( fp, "%[0-9]", s ); // s == "7"

» Specyfikacja %s pomija biale znaki, zatem pole | 123], zostanie prawidlowo
odczytane:

fscanf( fp, "%s", s ); // s == "123"

» Funkcja fscanf potrafi naprawde duzo (np. odezytywaé liczby szesnastkowe,
6semkowe, uwzglednia¢ ograniczenia szerokosci pola, itp.), potrafi tez rowniez
naprawde zaskakiwa¢ — wymaga uwagi i mys$lenia. Wiecej informacji:

@ http://www.cplusplus.com/reference/clibrary/cstdio/fscanf/
o http://pubs.opengroup.org/onlinepubs/009695399/functions/fscanf.html

o http://www.kernel.org/doc/man-pages/online/pages/man3/scanf.3.html
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