podstawy i jezyki
programowanig 1 ®

Podstawy proegramowanic

W jezyku C++

(o)
(—

Czes¢ jedenasta

Reprezentacja i przetwarzanie plikow
Konwencjajezyka C

Autor
Roman Siminski

Kontakt

roman.siminski@us.edu.pl
www.programowanie.siminskionline.pl

Niniejsze opracowanie zawiera skrot tre$ci wykladu, lektura tych materialow nie zastapi uwaznego w nim uczestnictwa.
Opracowanie to jest chronione prawem autorskim. Wykorzystywanie jakiegokolwiek fragmentu w celach innych niz nauka wlasna jest nielegalne.
Dystrybuowanie tego opracowania lub jakiejkolwiek jego czesci oraz wykorzystywanie zarobkowe bez zgody autora jest zabronione.

Operacje na plikach w jezyku C

Jezyk C nie zawiera zadnego wbudowanego typu plikowego! Operacje na plikach nie sa
czeScia jezyka C.

» Przetwarzanie plikow realizowane jest zwykle przez funkcje z biblioteki obstugi
standardowego wejscia 1 wyjscia (identyfikowanej przez stdio.h).

» Mozna jednak korzystaé z funkeji nizszego poziomu (np. io.h) lub napisaé¢ wlasne
funkcje.

» Operacje na standardowym wejéciu i wyjéciu sa buforowane — dzieje sie to bez
dodatkowego zadnego udzialu programisty.

I

Reprezentacja plikébw w postaci strumieni

» Plik jest reprezentowany przez strumien znakéw (bajtéw) o zmiennej dlugoéci.
Koniec strumienia identyfikowany jest znacznikiem konca pliku — EOF.

» Zkazdym strumieniem zwigzany jest wskaznik biezacej pozycji — od tej pozycji
realizowane bedzie czytanie lub pisanie.

» Kazdy zapis i odezyt zmienia wskaznik biezgcej pozycji.

» Zkazdym strumieniem zwigzany jest znacznik osiggniecia konca pliku oraz
znacznik bledu.

L i | k [EOF
12 3 4

Plik piecioelementowy Plik pusty

Otwarcie pliku — tryby otwarcia

Strumienie mogaq by¢ otwierane w trybie:

» Binarnym — strumien jest ciagiem jednakowo traktowanych bajtow, kazdy zapis
1 odczyt realizowany jest bez zadnych konwers;ji.

» Tekstowym — strumien jest ciggiem linii tekstu zakonczonych znacznikiem
konica linii — znak \n’. W trakcie odczytu i zapisu do takiego strumienia mogg
zachodzi¢ konwersje spowodowane np. r6zng fizyczng reprezentacjq znacznika
konca wiersza (np. para \r\n w plikach tekstowych DOS/Windows, pojedynczy
znak \n w systemach Unix’owych, \r na komputerach Macintosh).

» Uwaga — w systemach Unix'owych tryb binarny i tekstowy sa réwnowazne.

Otwarcie pliku — definiowanie wskaznika plikowego

» Aby rozpoczaé operacje na plikach nalezy zadeklarowaé w programie zmienng
stanowigcg ,,dojScie” do takiego pliku.

» W przypadku obstugi standardowych strumieni deklaruje sie zmienng
wskaznikowa.

» Typem wskazywanym jest FILE, jest to zdefiniowany w pliku nagléwkowym
stdio.h typ rekordowy, zawierajacy informacje o otwartym dojsciu do pliku.

#include <stdio.h> // Kompilacja w trybie C++ #include <cstdio>

FILE * fp = NULL;

1

Otwarcie pliku — wykorzystanie funkcji fopen

» Wykorzystanie pliku rozpoczyna operacja jego otwarcia, realizowana zwykle

przez funkcje fopen. Otwarcie pliku dane.txt do odczytu w trybie tekstowym
moze wygladaé nastepujaco:

#include <stdio.h>
FILE * fp = NULL;

%p.=.fopen("dane.txt", "rt");
if(fp !'= NULL)

// Otwarcie OK, wykonaj operacje na pliku
else

// Otwarcie nieudane, obstuga sytuacji btednej

Lub krocej:

#include <stdio.h>
FILE * fp = NULL;

ifi i fp = fopen("dane.txt", "rt")) != NULL)
// Otwarcie OK, wykonaj operacje na pliku
else

// Otwarcie nieudane, obstuga sytuacji btednej

Otwarcie pliku — opis funkcji fopen

FILE * fopen(const char *filename, const char *mode);

» Otwiera strumien zwigzany z plikiem o nazwie przekazanej parametrem

filename. Nazwa moze zawiera¢ Sciezke dostepu do pliku. Strumien otwierany
jest w trybie mode.

» Jezeli otwarcie zakonczylo sie sukcesem, funkcja udostepnia wskaznik do

dynamicznie alokowanej struktury typu FILE, stanowigcej programowa
reprezentacje fizycznego pliku.

» Jezeli pliku nie udalo sie otworzyé¢, rezultatem funkeji jest NULL.

Otwarcie pliku — dziatanie funkcji fopen

\
Sterta
Wskaznik
biezacej
pozycji
%
A4
p [U] i | « [EoH
0 1 2 3 4

#include <stdio.h>
FILE * fp = NULL;

if((fp = fopen("dane.txt", "rt")) != NULL)
// Otwarcie 0K, wykonaj operacje na pliku
else
// Otwarcie nieudane, obstuga sytuacji btednej

(eX]

Tryby otwarcia pliku

Specyfikacja typu otwieranego pliku:

t otwarcie w trvbie tekstowyvm b otwarcie w trybie binarnvm
Tryb otwarecia:

r otwarecie istniejacego pliku r+ | otwarcie istniejacego pliku do
wylacznie do odezytu odczytu i zapisu

a zapis do istniejacego lub a+ | odczytizapis do istniejacego
utworzenie nowego pliku lub utwo-rzenie nowego pliku
Ustawienie w pozycji koncowej Ustawienie w pozvcji

koncowej

w utworzenie pliku wyvlacznie do w+ | utworzenie pliku do odeczyvtu i
zapisu, jezeli plik istnieje jest zapisu, jezeli plik istnieje jest
obcinany do pliku pustego obcinany do pliku pustego

» Znak + w trybie otwarcia oznacza aktualizacje — mozliwo$¢ czytania i pisania do
otwartego strumienia.

» Jednak zapis odczyt i zapis (albo zapis i odezyt) nie moga po sobie nastepowaé
bezposrednio. Nalezy uzy¢ funkeji ,wymiatania” bufora fflush lub jednej z funkcji
pozycjonowania pozycji — fseek, fsetpos, rewind.

9

Domyslny typ pliku — binarny czy tekstowy?

» Jezeli informacja o trybie otwarcia (¢ lub b) nie wystepuje, przyjmowany jest tryb
otwarcia zgodnie z warto$cig globalnej zmiennej _ fmode.

» Jezeli_fimode posiada warto$¢ O_BINARY, plik jest otwierany w trybie
binarnym.

» Jezeli_fmode posiada warto$é O_TEXT, plik jest otwierany w trybie tekstowym.
» DomyS$lna warto$é_fmode to O_TEXT.

» Symbole O _TEXTi O_BINARY s3 zdefiniowane w pliku fentl.h.

Przyktady réznych typow i trybow otwarcia plikow

Otwarcie pliku dane.txt jako pliku tekstowego, wylacznie do odczytu.

fp = fopen("dane.txt", "rt");

Otwarcie pliku tlo.bmp jako pliku binarnego, wylacznie do odczytu.

fp = fopen("tlo.bmp", "rb");

Otwarcie pliku podanie.doc jako pliku tekstowego, wylacznie do zapisu, plik
ustawiany jest w pozycji koncowej, jezeli nie istnieje, tworzony jest nowy, pusty.

fp = fopen("podanie.doc", "at");
Otwarcie pliku image.jpg jako pliku binarnego, do zapisu i odczytu, jezeli plik
istnieje, obcinany jest do pliku pustego.

fp = fopen("image.jpg", "w+b");

Zamykanie otwartych plikéw — fclose

int fclose(FILE * stream);

» Funkcja zamyka strumien stream i zapisuje wszystkie bufory.

» Rezultat EOF oznacza blad zamykania, rezultat rowny zero oznacza bezbledne
zamKkniecie.

» Pamie¢ przydzielona strukturze wskazywanej przez wskaznik stream jest
zwalniana.

Typowy scenariusz otwarcia i zamkniecia pliku:
#include <stdio.h>

FILE * fp = NULL;

%f& i fp = fopen("dane.txt", "rt")) !'= NULL)

// Otwarcie OK, wykonaj operacje na pliku
fclose(fp);

}

Odczyt pojedynczych znakow

int fgetc(FILE * stream);

» Funkcja pobiera nastepny znak ze strumienia identyfikowanego przez stream
1 uaktualnia wskaznik biezgcej pozycji w pliku. Znak pobierany jest jako
unsigned char i przeksztalcany jest do typu int.

» W przypadku napotkania kofica strumienia, rezultatem jest warto§é EOF oraz
ustawiany jest znacznik napotkania korica strumienia.

» W przypadku wystapienia bledu odczytu, rezultatem funkeji jest warto§é EOF
oraz ustawiany jest znacznik bledu strumienia.

Przykladowe wykorzystanie — odczyt znaku z uprzednio otwartego pliku fp:

int znak;

énék.=\fgetc(fp b;

Odczyt pojedynczych znakéw, wykorzystanie funkcji fgetc

#include <stdio.h>
FILE * fp = NULL:
ifi i fp = fopen("dane.txt", "rt")) != NULL)
{ int znak;
znak = fgetc(fp);

printf("Przeczytano znak %c", znak);

fclose(fp);
}

Odczyt pojedynczych znakéw, wykorzystanie funkcji fgetc

#include <stdio.h>
FILE * fp = NULL:
ifi i fp = fopen("dane.txt", "rt")) != NULL)
{ int znak;
znak = fgetc(fp);

printf("Przeczytano znak %c", znak);

fclose(fp);
}

Zapis pojedynczych znakow

int fputc(int c, FILE * stream);

» Funkcja wyprowadza znak ¢ do strumienia stream zgodnie ze wskaznikiem
biezacej pozycji w pliku.

» W przypadku, gdy funkcja fputc zakonczyla swoje dzialanie bez bledu,
rezultatem funkcji jest znak c. W przeciwnym wypadku warto§¢ EOF.

Zapis pojedynczych znakéw — wykorzystanie funkcji fputc

#include <stdio.h>

FILE * fp = NULL:

ifi i fp = fopen("dane.txt",
{ fputc('P', fp);

fclose(fp);
}

IIW.t 1]

))

= NULL)

Zapis pojedynczych znakéw — wykorzystanie funkcji fputc

#include <stdio.h>

FILE * fp = NULL:

ifi i fp = fopen("dane.txt", "wt")) != NULL)
{ fputc('P', fp);

fclose(fp);
}

Uwaga — plik powieksza sie tylko przy dopisywaniu (zapis na koncu pliku)

#include <stdio.h>
Plik istnieje i zawiera napis ,,c/C++” |

FILE * fp = NULL;

ifi i fp = fopen([}dane.txt", "r+t")) != NULL)
{
fputc('C', fp);

fclose(fp);
}

W trybie r plik jest w pozycji poczatkowej

Uwaga — plik powieksza sie tylko przy dopisywaniu (zapis na koncu pliku)

#include <stdio.h>

FILE * fp = NULL;

ifi i fp = fopen("dane.txt", "r+t")) != NULL)

{
fotecc e

}

fclose(fp);

Zapis zgodnie z biezaca pozycja w pliku

Nadpisanie znaku i przesuniecie wskaznika

Testowanie osiggniecia znacznika konca pliku

int feof(FILE * stream);

» Rezultatem funkeji jest warto$é rézna od zera, jezeli strumien jest w pozycji
koncowej, zero w przeciwnym wypadku.

» Strumien jest w pozycji koricowej, jezeli w wyniku ostatnio przeprowadzone;
operacji odczytano znacznik konca pliku.

Sekwencyjne przetwarzanie pliku z wykorzystaniem feof

Wypisz do stdout zawarto$¢ pliku i policz, ile w tym pliku jest znakow:

FILE * fp;
long int counter = 0;

if((fp = fopen("d.txt", "rt")) != NULL)
{
while(! feof(fp))
{
putchar(fgetc(fp));
counter++;
}
fclose(fp);
printf("\nLiczba znakow w pliku: %ld", counter - 1);

}

Sekwencyjne przetwarzanie pliku z wykorzystaniem feof

Wypisz do stdout zawarto$¢ pliku i policz, ile w tym pliku jest znakow:

FILE * fp;
long int counter = 0;

if((fp = fopen("d.txt", "rt")) !'= NULL)
{
while(! feof(fp))
{
putchar(fgetc(fp));
counter++;
}
fclose(fp);
printf("\nLiczba znakow w pliku: %ld", counter - 1);

}

Czy przeczytano EOF?

counter 0

Sekwencyjne przetwarzanie pliku z wykorzystaniem feof

Wypisz do stdout zawarto$¢ pliku i policz, ile w tym pliku jest znakow:

FILE * fp;
long int counter = 0;

if((fp = fopen("d.txt", "rt")) !'= NULL)
{
while(! feof(fp))
{
putchar(fgetc(fp));
counter++;

}
fclose(fp);

printf("\nLiczba znakow w pliku: %ld", counter - 1);

}
= -
C / C + + IIIII
0
;44i

1 2 3 4 5

counter 1

putchar(fgetc(fp));

I
In
e

Sekwencyjne przetwarzanie pliku z wykorzystaniem feof

Wypisz do stdout zawarto$¢ pliku i policz, ile w tym pliku jest znakow:

FILE * fp;
long int counter = 0;

if((fp = fopen("d.txt", "rt")) !'= NULL)
{
while(! feof(fp))
{
putchar(fgetc(fp));
counter++;
}
fclose(fp);
printf("\nLiczba znakow w pliku: %ld", counter - 1);

}

Czy przeczytano EOF?

counter 1

Sekwencyjne przetwarzanie pliku z wykorzystaniem feof

Wypisz do stdout zawarto$¢ pliku i policz, ile w tym pliku jest znakow:

FILE * fp;
long int counter = 0;

if((fp = fopen("d.txt", "rt")) !'= NULL)
{
while(! feof(fp))
{
putchar(fgetc(fp));
counter++;

}
fclose(fp);
printf("\nLiczba znakow w pliku: %ld", counter - 1);

}
- g
IiIIIIIIIIIIIIIIIII | T | | | |
+ counter | 2
putchar(fgetc(fp));

Sekwencyjne przetwarzanie pliku z wykorzystaniem feof

Wypisz do stdout zawarto$¢ pliku i policz, ile w tym pliku jest znakow:

FILE * fp;
long int counter = 0;

if((fp = fopen("d.txt", "rt")) !'= NULL)
{
while(! feof(fp))
{
putchar(fgetc(fp));
counter++;

}
fclose(fp);
printf("\nLiczba znakow w pliku: %ld", counter - 1);

}
- Czy przeczytano EOF?
0 1 3 4 5
c/
counter | 2

o A

Sekwencyjne przetwarzanie pliku z wykorzystaniem feof

Wypisz do stdout zawarto$¢ pliku i policz, ile w tym pliku jest znakow:

FILE * fp;
long int counter = 0;

if((fp = fopen("d.txt", "rt")) !'= NULL)
{
while(! feof(fp))

{
putchar(fgetc(fp));
counter++;

}
fclose(fp);
printf("\nLiczba znakow w pliku: %ld", counter - 1);

= e

+ counter | 3
putchar(fgetc(fp));

I
Ce

Sekwencyjne przetwarzanie pliku z wykorzystaniem feof

Wypisz do stdout zawarto$¢ pliku i policz, ile w tym pliku jest znakow:

FILE * fp;
long int counter = 0;

if((fp = fopen("d.txt", "rt")) !'= NULL)
{
while(! feof(fp))
{
putchar(fgetc(fp));
counter++;

}
fclose(fp);

printf("\nLiczba znakow w pliku: %ld", counter - 1);

}
- Czy przeczytano EOF?

counter 2

w*k

Sekwencyjne przetwarzanie pliku z wykorzystaniem feof

Wypisz do stdout zawarto$¢ pliku i policz, ile w tym pliku jest znakow:

FILE * fp;
long int counter = 0;

if((fp = fopen("d.txt", "rt")) !'= NULL)
{
while(! feof(fp))
{
putchar(fgetc(fp));
counter++;

}
fclose(fp);
printf("\nLiczba znakow w pliku: %ld", counter - 1);

}
- Hisg
c/Ct 0 1 2 3 4 5
+ counter | 4
putchar(fgetc(fp));

Sekwencyjne przetwarzanie pliku z wykorzystaniem feof

Wypisz do stdout zawarto$¢ pliku i policz, ile w tym pliku jest znakow:

FILE * fp;
long int counter = 0;

if((fp = fopen("d.txt", "rt")) !'= NULL)
{
while(! feof(fp))
{
putchar(fgetc(fp));
counter++;
}
fclose(fp);
printf("\nLiczba znakow w pliku: %ld", counter - 1);

}

Czy przeczytano EOF?

counter 4

Sekwencyjne przetwarzanie pliku z wykorzystaniem feof

Wypisz do stdout zawarto$¢ pliku i policz, ile w tym pliku jest znakow:

FILE * fp;
long int counter = 0;

if((fp = fopen("d.txt", "rt")) !'= NULL)
{
while(! feof(fp))
{
putchar(fgetc(fp));
counter++;
}
fclose(fp);
printf("\nLiczba znakow w pliku: %ld", counter - 1);

}

counter | §
putchar(fgetc(fp));

Sekwencyjne przetwarzanie pliku z wykorzystaniem feof

Wypisz do stdout zawarto$¢ pliku i policz, ile w tym pliku jest znakow:

FILE * fp;
long int counter = 0;

if((fp = fopen("d.txt", "rt")) !'= NULL)
{
while(! feof(fp))
{
putchar(fgetc(fp));
counter++;
}
fclose(fp);
printf("\nLiczba znakow w pliku: %ld", counter - 1);

}

Czy przeczytano EOF?

counter 5

Sekwencyjne przetwarzanie pliku z wykorzystaniem feof

Wypisz do stdout zawarto$¢ pliku i policz, ile w tym pliku jest znakow:

FILE * fp;
long int counter = 0;

if((fp = fopen("d.txt", "rt")) !'= NULL)
{
while(! feof(fp))
{
putchar(fgetc(fp));
counter++;

}
fclose(fp);
printf("\nLiczba znakow w pliku: %ld", counter - 1);

}
#
IiiiiiIIIIIIIIIIIII | | | | | |
+ counter | 6
putchar(fgetc(fp));

(X
In
e

Sekwencyjne przetwarzanie pliku z wykorzystaniem feof

Wypisz do stdout zawarto$¢ pliku i policz, ile w tym pliku jest znakow:

FILE * fp;
long int counter = 0;

if((fp = fopen("d.txt", "rt")) !'= NULL)
{
while(! feof(fp))
{
putchar(fgetc(fp));
counter++;
}
fclose(fp);
printf("\nLiczba znakow w pliku: %ld", counter - 1);

}

L Czy przeczytano EOF?

C / C + +#<

0 1 2 3 4 5

counter 6

Sekwencyjne przetwarzanie pliku z wykorzystaniem feof

Wypisz do stdout zawarto$¢ pliku i policz, ile w tym pliku jest znakow:

FILE * fp;
long int counter = 0;

if((fp = fopen("d.txt", "rt")) !'= NULL)
{
while(! feof(fp))
{
putchar(fgetc(fp));
counter++;
}
fclose(fp);
printf("\nLiczba znakow w pliku: %ld", counter - 1);

}

C/C++

Liczba znakow w pliku:

counter

Sekwencyjne przetwarzanie pliku bez wykorzystania feof

Wypisz do stdout zawartos¢ pliku i policz, ile w tym pliku jest znakéw, inna
wersja:

FILE * fp;
long int counter = 0;
int c;

if((fp = fopen("d.txt", "rt")) !'= NULL)

{
while((¢ = fgetc(fp)) !'= EOF)
{
putchar(c);
counter++;
}

fclose(fp);
printf("\nLiczba znakow w pliku: %ld", counter);

}

Wyznaczanie rozmiaru pliku, Windows i... maty problem

Sprobujmy wykorzysta¢ podobng sekwencje dla wyznaczenia rozmiaru pliku
liczonego w bajtach, tym razem wykorzystajmy iteracje for:

if((fp = fopen("d.txt", "rt")) !'= NULL)

{
for(counter = 0; fgetc(fp) !'= EOF; counter++)

fclose(fp);
printf("\nRozmiar pliku: %ld bajtow", counter);

- Wiew Search Document Pro

I

iu:l.t:-:t

Typ pliky: Diakument tekstowm

Ohwierane za @ Matatnik,
pOmoca:

Lokalizacja: C:\Moje dokumentyhRomekiD

[H L S 12]]

|

e
C2

Dlaczego rozmiary sie nie zgadzajg?

Przyczyng wadliwego dzialania programu sg konwersje znacznikow konca linii w
trybie tekstowym. W systemach DOS/Windows znacznik konca linii to para \ri \n
(czyli CR 1 LF). W trakcie odczytu w trybie tekstowym, kazda para \r\n
zamieniana jest na pojedynczy znak |n.

0 1 2 3 4 5 6 7 8 9 10 11

Rezultaty odczytu przy otwarciu w trybie binarnym N

|1| I2l |3l l4l |5| l\ r.l I\ r]l l1] l2| |3| I4l |5|
‘AAAAAAAAAAA/

Strumien: | 1 2 3 4 3) \r | \n | 1 2 3 4 5 | EOF

- /
Y
\J y y y \J ¢ y \/ y \J y
|1| I2I I3I |4| |5| |\ r]l I1I |2| |3| I4I |5|

Rezultaty odczytu przy otwarciu w trybie tekstowym

0 1 2 3 4 5 6 7 8 9 10 11

\r | \n | Znacznik konica wiersza

Otwarcie jako plik binarny gdy nie przetwarzamy tekstow

Konwersje nie zachodza przy otwieraniu pliku w trybie binarnym. W drugim
parametrze wywolania fopen nalezy uzy¢ litery b, oznaczajacej otwarcie w trybie
binarnym. Poprawiona wersja kodu wkomponowana w funkcje file size:

long int file size(char * fname)

{
FILE * fp;
long int counter = 0;

if((fp = fopen(fname, "rb")) != NULL)
{

for(counter = 0; fgetc(fp) != EOF; counter++)

fclése(fp);
}

return counter;

}
printf("\nRozmiar pliku: %ld bajtow", file size("d.txt")):

Kopiowanie zawartosci plikow

Wykonaj kopie pliku dane.txt w pliku dane.bak:

FILE * src = NULL;
FILE * dst = NULL;
if((src = fopen("dane.txt", "rb")) != NULL)
{
if((dst = fopen("dane.bak", "wb")) != NULL)
{
int c;
while((¢ = fgetc(src)) != EOF)
fputc(c, dst);
fclose(dst);
}
else

printf("Blad tworzenia pliku kopii zapasowej");

fclose(src);

}
else

printf("Blad otwarcia pliku zrodlowego");

4

Kopiowanie zawartosci plikow — funkcja cpc_file_copy

Funkcja cpc file copy realizuje kopiowanie zawartosci zrodtowego
pliku src do pliku docelowego dst. Wykorzystywane sg znakowe
operacje odczytu i zapisu. Funkcja nie zamyka strumieni src 1
dst.

Prametry : Wskazniki na prawidtowo otwarte strumienie binarne
src, dst - odpowiednio dla pliku zrodtowego 1
docelowego

Rezultat : true jezeli kopiowanie zakonczyto sie poprawnie
false jezeli wystapit btad podczas kopiowania

bool cpc file copy(FILE * dst, FILE * src)
{

int c;

for(; (¢ = fgetc(src)) != EOF ; fputc(c, dst))
if(ferror(src) || ferror(dst))
return false;
return true;

}

Kopiowanie ze zmiang zawartosci, przyktad 1-szy

Funkcja toupper file copy realizuje kopiowanie zawartosci

zrodtowego

pliku src do pliku docelowego dst. W trakcie kopiowanie wszystkie

litery mate sg zamieniane na duze a tzw. "biale spacje” na znak

myslnika '-'. Wykorzystywane sg znakowe operacje odczytu i zapisu.

Funkcja nie zamyka strumieni src i dst.

Parametry : Wskazniki na prawidtowo otwarte strumienie binarne
src, dst - odpowiednio dla pliku zrodlowego 1

docelowego
Rezultat : true jezeli kopiowanie zakonczyto sie poprawnie
false jezeli wystapit btad podczas kopiowania
___ */
bool toupper file copy(FILE * dst, FILE * src)
{
int c;

while((¢ = fgetc(src)) '= EOF)

{
fputc((isspace(c)) ? '-' : toupper(c), dst);
if(ferror(src) || ferror(dst))
return false;
}

return true;
}

Kopiowanie ze zmiang zawartosci, przyktad 2-gi i 3-ci

W trakcie kopiowania mozna realizowac filtrowanie znakéw, np. kopiowanie tylko
liter 1 cyfr:

while((¢ = fgetc(src)) !'= EOF)

{

if(isalnum(c))
fputc(c, dst);

Zamiana liter duzych na male:

while((¢ = fgetc(src)) !'= EOF)
fputc(tolower(c), dst);

Zamiana liter malych na duze:

while((c = fgetc(src)) != EOF)
fputc(toupper(c), dst);

sl 41
-r

Przetwarzanie plikow tekstowych linia po linii

» Pliki tekstowe reprezentowane sa rowniez jako strumienie bajtéw. Mozna je

jednak przetwarzaé¢ wierszami, od strony programu separatorem wierszy jest
znak |n.

» Do przetwarzania pliku tekstowego linia po linii stuza funkcje odczytu/zapisu
linii — buforem linii sg tablice znakowe.

Zawartos¢ pliku:

J e Z y k C \n i \n C + + \n -

Przy przetwarzaniu linia po linii mozna zalozy¢, ze plik wyglada tak:

e z |y Kk C | \n _H‘“*““l“
\n 1 Jezyk C

In ~|
-
B

-

+

Przetwarzanie plikow tekstowych linia po linii

int fputs(const char * s, FILE * stream);

» Funkcja fputs wyprowadza napis s do pliku stream, nie dopisuje znacznikow
konca wiersza ani konca napisu. Rezultatem funkcji jest ostatni zapisany znak,
w przypadku gdy zapis zakonczyt sie sukcesem lub EOF, gdy wystapil blad.

#include <stdio.h>
#include <stdlib.h>

File Edit Options Help

int main() Jestem C, jezyk]
{
FILE * fp = NULL;

if((fp = fopen("dane.txt", "wt")) != NULL)
{

fputs("Jestem C", fp);

fputs(", jezyk C", fp);

fclose(fp);

}
return EXIT SUCCESS;

Wykorzystanie funkcji fputs

#include <stdio.h>
#include <stdlib.h>

int main()

{
FILE * fp = NULL;

if((fp = fopen("dane.txt", "wt")) !'= NULL)
{
fputs("Jestem C", fp);

fputs(",\njezyk C.\nKoniec wiadomosci.", fp);

fclose(fp);

}
return EXIT_SUCCESS;
}

|| File Edit Options Help
Jestem G,

| jezyk C.
Koniec wiadomosci.|

Funkcja fprintf

int fprintf(FILE * stream, const char * format [, argument, ...]);

» Funkcja fprintf wyprowadza do pliku stream napis format oraz opcjonalne
argumenty, w postaci okreSlonej przez sekwencje formatujgce zapisane
w napisie format.

» Rezultatem funkgji jest liczba wyprowadzonych bajtéw, w przypadku gdy zapis
zakonczyl sie sukcesem lub EOF, gdy wystapil blad..

» Wszystkie zasady formatowania znane z wykorzystania funkeji printf obowiazuja
dla funkcji fprintf.

Zamiast wywolania funkcji printf:
printf("printf to fprintf piszacy do stdout");

mozna napisac:

fprintf(stdout, "printf to fprintf piszacy do stdout");

Wykorzystanie funkcji fprintf, wersja 1-sza

#include <stdio.h>

#include <stdlib.h> TIHE Edit Options Help
Dane samochodu:
i : Fiat
int main() S
{ 1978
FILE * fp = NULL; 12823

if((fp = fopen("dane.txt", "wt")) != NULL)
{

char marka[80] = "Fiat";

char model[80] = "126p";

int rocznik = 1970;

float przebieg = 128.23;

fprintf(fp, "Dane samochodu:\n%s\n%s\n%d\n%g", marka, model,
rocznik, przebieg);

fclose(fp);

}
return EXIT SUCCESS;

}

Wykorzystanie funkcji fprintf, wersja 2-ga

#include <stdio.h>

#include <stdlib.h> File Edit Options Help
Dane samochodu:
: : Marka: Fiat
int maln() Mgzei: 1;gp
{ Rocznik: 1978
FILE * fp = NULL; Przebieg: 128.23]
if((fp = fopen("dane.txt", "wt")) !'= NULL)
{
char marka[80] = "Fiat";
char model[80] = "126p";
int rocznik = 1970;
float przebieg = 128.23;
fprintf(fp, "Dane samochodu:\n\tMarka: %s\n\tModel: %s\n", marka, model);
fprintf(fp, "\tRocznik: %d\n\tPrzebieg: %g", rocznik, przebieg);
fclose(fp);
}

return EXIT SUCCESS;

Funkcja fgets

char * fgets(char * s, int n, FILE * stream);

>

Pierwszy parametr s okresla bufor, do ktérego maja by¢ zapisane wczytywane
dane.

Drugi parametr n okresla maksymalng pojemno$¢ bufora, uwzgledniajacg
miejsce na znacznik konca napisu.

Trzeci parametr stream okreSla strumien (plik), z ktérego funkcja ma odczytywacé
dane, moze to by¢ réwniez standardowy strumien wejSciowy — stdin.

Dzialanie funkcji koniczy sie gdy funkcja odezyta n — 1 znakow lub wezesniej
zostanie odczytany znak nowego wiersza (Enter).

Znacznik konica napisu dopisywany jest na jego koncu.

Wykorzystanie funkcji fgets, uwaga na znacznik konca wiersza

#include <stdio.h>
#include <stdlib.h>

Dane szamochodu:

Marka: Fiat
- Model: 126
#define MAKS DL 256 Rocanik: 1978
Przebieqg: 128.23m

int main()

{
FILE * fp = NULL;

if((fp = fopen("dane.txt", "rt")) != NULL)
{
char linia[MAKS DL];

while(fgets(linia, MAKS DL, fp) != NULL)

prlntf(-Llnla) y #include <{stdio.h>
#linclude <stdlih.h>

fclose(fp) : H#idefine MAKS_DL 256
} {i:nt main<>
return EXIT SUCCESS; ELLE = = MO
} o {i:f(¢ fp = fopent "dane.txt", “pt" > > *= NULL >

char linial MAKS_DL 1;

while< fgets< linia. MAKS_DL, fp > *= HULL >

Funkcja fgets pozostawia w

. , fclose< fp 235 r H———— R m!.i#:-:‘t:ﬁl}_:".
buforze znacznik konca : 3 EHIT_succE[nic- "Dane samochodu:\
wiersza.
15:16

Wykorzystanie funkcji fgets, uwaga na znacznik konca wiersza

Uwaga, przed znacznikiem konca pliku EOF moze nie by¢ znacznika konca wier-
sza \n. Funkcja fgets nie przeczyta go zatem.

Zawartos¢ pliku:
J e y4 y k C \n i \n C + + -

Przy przetwarzaniu linia po linii mozna zalozy¢, ze plik wyglada tak:

J e y y k C | \n ___=+____1.
i \n Jezyk C
C + + - i

bz cH

while¢ fgets{ linia. MAKS_DL, fp > *= NULL >

fclosed fp >; [0]——— Watch —=[1 1=
by |El:i.n:i.a: e et

return ESAIT_SUCCE

C
e

Wykorzystanie fgets w funkcji list_file

Wyprowadza do stdout zawartos¢ pliku o nazwie fname.

Parametry: char * fname — wskaznik na tablice zawierajacg nazwe
pliku.

Rezultat: Brak.

#define MAX LINE 256
void list file(char * fname)

{
FILE * fp;
char buffer[MAX_LINE];

if((fp = fopen(fname, "rt")) !'= NULL)
{
while(fgets(buffer, MAX LINE, fp) != NULL)

. no o 1 .
prlntf(6S ’ bUffer) b Funkcja: long int nlist_file¢ char * fname »

. Uyprowadza do stdout zawartotd pliku o nazwie fname. kajda linia
fC-Lose(fp) ’ popr=zedzona jest jej numerem.
} Rezultat:
Liczbha linii pliku o nazwie zapiszane w fname

} fidef ine MAX_LINE 256
%ung int nlist_file< char =* fname 2>

FILE = fp;
long int counter = @;
chayr buffer[MAX_LINE 1;

if{ ¢ fp = fopen? fname. ""wt'" > > *= HNULL »

list_file("przyklad4. c") -{ while{ fgets¢ buffer, MAX_LINE — 1. fp > t= NULL >

printf{ "x31d: xs", ++counter,. buffer >;
fclosed fp >;
¥

return counter;

Funkcja list_file zawija za dtugie wiersze

To jest plik tekstowy przeznaczony do testowania funkcji przetuwarzajacych pliki.
pizanych w Je"yku

Ten pllk zawiera dwie dlugie linie.sa one dluzsze od 8@-—ciu znakow, czyli zuycza

jowej s=Zerokosci ekranu w tryhie konsolowym.

Ta linia,. i nastepna. za krotkie.

Druga krotka linia.

Mozna zmodyfikowa¢ funkcje list_file tak, by nie lamata za dlugich wierszy
a umieszczala na ich konicu symbol informujacy, ze wiersz jest dhuzszy od szerokos$ci

ekranu. i

To jest plik tekstowy przeznaczony do testowania fﬁnkcal przetuarzajacych pliki’
Ten plik zawiera dwie dlugie linie.sa one dluzsze od 88—ciu znakow. czyli zwuyczl

Ta linia,. i nastepna,. sa krotkie.
Druga krotka linia.

N
1

Funkcja list_file_nowrap przycina za dtugie wiersze

#define MAX LINE 256
#define MAX CHARS IN _LINE 80

void list file nowrap(char * fname)

{

FILE * fp;
char buffer[MAX LINE];

if((fp = fopen(fname, "rt")) !'= NULL)
{
while(fgets(buffer, MAX LINE, fp) != NULL)
{
if(strlen(buffer) > MAX CHARS IN LINE)

{
buffer[MAX_CHARS_ IN LINE - 1]

|>| .

buffer[MAX CHARS IN LINE] = '\0:;
}
printf("%s", buffer);
}
fclose(fp);

}

Funkcja nlist_file_nowrap dodatkowo nhumeruje wiersze

#define MAX LINE 256
#define MAX CHARS IN LINE 80

void nlist file nowrap(char * fname) f

{

FILE * fp;
int counter = 0;
char buffer[MAX LINE];

if((fp = fopen(fname, "rt")) != NULL)

{ while(fgets(buffer, MAX LINE, fp) != NULL)
{ if(strlen(buffer) > MAX CHARS IN LINE - 5)
{ buffer[MAX CHARS IN LINE - 6] =
buffer[MAX CHARS IN LINE - 5] = '\0"
;rintf("%03d: %s", ++counter, buffer);
\ iclose(fp);

Funkcja pattern_list_file wyswietla linie z wzorcem

void pattern list file(char * fname, char * pattern)

{
FILE * fp;
int counter = 0;
char buffer[MAX LINE];

if((fp = fopen(fname, "rt")) !'= NULL)

{
while(fgets(buffer, MAX LINE - 1, fp) != NULL)
{
++counter;
if(strstr(buffer, pattern) != NULL)
{
if(strlen(buffer) > MAX CHARS IN LINE - 5)
{
buffer[MAX CHARS IN LINE - 6] = '>';
buffer[MAX CHARS IN LINE - 5] = '\0';
}
printf("%03ld: %s", counter, buffer);
} :
} ;T ir strotad bufter. pattern > 1- NULL >
fclose(fp); D ifC < EiieS'i"%ﬁ“En'é“ﬁ“i;'_ﬁa.?.e'f“--ri-- > > *= NULL >
}

} pattern list file("przyklad6.c" , "if");

C

(&%)

Strumienie standardowe jako otwarte pliki

W pliku stdio.h zdefiniowana sg trzy wskazniki przypisane trzem strumieniom,
automatycznie otwieranym dla programu:

» standardowy strumien wyjSciowy: stdout,
» standardowy strumien wejéciowy: stdin,

» standardowy strumien wyjSciowy dla bledéw: stderr.

Wskazniki stdin, stdout i stderr sg typu FILE *, mozna z nich korzystac jak z
otwartych plikow:

printf("wWitaj!"); < p fprintf(stdout, "Witaj!");

putchar('A'); <« » fputc('A', stdout);

c = getchar(); <« » C = fgetc(stdin);

Przyktad 1: Dane z tablicy do pliku

Dana jest N-elementowa tablica liczb rzeczywistych kursy, zawierajaca cene
zakupu waluty EURO wyrazona w zlotowkach. Jak zapisac¢ zawartosc tablicy do
pliku tekstowego?

#include <cstdio>
#include <cstdlib>

using namespace std; 5 sy |
1 4
const int N = 5; Z2 4.01
int main() 2 3.95
{ . , , 2 3.38
// Tablica z przyktadowymi danymi = 4.1
float kursyEURO[N] = { 4, 4.01, 3.95, 3.98, 4.1 }; 6
FILE * fp = NULL; A

if((fp = fopen("kursy.txt", "wt")) !'= NULL)
{
for(int i = 0; i < N; ++1i)
[fprintf(fp, "%g\n", kursyEURO[i]);}

fclose(fp);

}
return EXIT SUCCESS;

50

Przyktad 2: Dane z pliku do tablicy

Jak odczyta¢ dane z pliku tekstowego do tablicy kursow?

éoﬁsf int N = 5;

int main()

{
// Tablica na dane
float kursyEURO[N];

Jak to dziata?

FILE * fp = NULL;
if((fp = fopen("kursy.txt", "rt")) !'= NULL)
{

int 1 = 0;

while(fscanf(fp, "%g", &kursyEURO[i++]) == 1)
if(1 == N w<
break;

for(1 =0; i < N; ++1)
printf(“\n%g", kursyEURO[1]);

fclose(fp);

Zabezpieczenie przed
’ przekroczeniem
return EXIT SUCCESS; zakresu tablicy

}

]

Przyktad 2: Dane z pliku do tablicy — funkcja fscanf

Funkcja fscanf to przedstawiciel rodziny funkcji (scanf, sscanf, ...) realizujacych
pobieranie danych (,skanowanie”) z pewnego zrédta i zapisanie ich do zmiennych
programu zgodnie z zadanym formatem. Zrédlem danych dla funkeji fscanf jest
uprzednio otwarty plik.

Funkcja fscanf jest:

» bardzo uzyteczna,
» posiada szereg ciekawych mozliwosci,
» wymaga uwagi i przemyslanego stosowania,

» stosowana nieuwaznie jest kaprysna i niebezpieczna.

Bardzo interesujacy opis wykorzystania funkcji fscanf zawiera ksigzka:

Adam Sapek, Wglqb jezyka C, Helion, Gliwice, 1993

Przyktad 2: Dane z pliku do tablicy — funkcja fscanf

fscanf(FILE * file, const char * format);

Funkcja fscanf posiada dwa obowigzkowe parametery:

» FILE * file — wskaznik pliku otwartego do odczytu,

» const char * format — ciag znakow sterujacy odezytem i formatowaniem
danych (zwanym dalej tancuchem sterujgcym odczytem),

» kolejne parametry muszq byé wskaznikami na zmienne, do ktérych zostana
zapisane dane odczytane z pliku zgodnie z informacjami formatujacymi

zapisanymiw format.

Rezultatem funkcji fscanf jest liczba przeczytanych, sformatowanych 1 zapamie-
tanych danych (dane niezapamietane nie sq zliczane!).

W przypadku napotkania konca pliku przed zakonczeniem odczytu rezultatem funkcji
jest EOF.

77
09

Przyktad 2: Dane z pliku do tablicy — funkcja fscanf

Odczytaj z pliku fp liczbe rzeczywistg, potraktujg ja jako dang typu float i zapisz do
zmiennej wskazywanej przez &num.

float num;

fscanf(fp, "%g", &num);

Odczytaj z pliku fp liczbe rzeczywistq, potraktuja ja jako dana typu double i zapisz
do zmiennej wskazywanej przez &num — uwaga na znak [poprzedzajacy f.

double num;

fscanf(fp, "%lg", &num);
Odczytaj z pliku fp liczbe rzeczywistq, potraktuja ja jako dana typu double i zapisz
do elementu tablicy wskazywanego przez &kursyEURO[1 |.

float kursyEURO[N];

fscanf(fp, "%g9", &kursyEURO[1]);

Przyktad 2: Dane z pliku do tablicy — funkcja fscanf

Powtarzaj dopoki udaje sie z pliku odczytac, sformatowac i zapisac jedng liczbe
rzeczywista:

while(fscanf(fp, "%g", &kursyEURO[i++]) ==1)
{

}

Inny zapis, podobne dzialanie

while(fscanf(fp, "%g", &kursyEURO[i++]) !'= EOF)
{

, L.

Przyktad 3: Odczyt kilku elementéow w pojedynczym wywotaniu fscanf

#include <cstdio>
#include <cstdlib>
using namespace std;

const int N = 20;

int main()

{ = auta b IE leursy l
char marka[N]; : - - -
char model[N]: 1 Fiat 126p 1990 250000
int rokProd; 2

float przebieg;

FILE * fp = NULL;
if((fp = fopen("auta.txt", “rt")) != NULL)
{

\ fscanf(fp, "%s %s %d %g", marka, model, &rokProd, &przebieg); <

printf("\nMarka: %s\nModel: %s\nRocznik: %d\nPrzebieg: %g",
marka, model, rokProd, przebieg);

fclose(fp);
}

Rocznik: 1998
return EXIT SUCCESS: Preohiey: 250000

7 7
09

Przyktad 3: Odczyt kilku elementéow w pojedynczym wywotaniu fscanf

Poniewaz nazwy tablic sg interpretowane jako wskazniki na ich pierwsze elementy,
w przypadku tablic nie stosujemy operatora &:

fscanf(fp, "%S %s %d %Q", marka, model, &rokProd, &przebieg);

Zawsze jednak mozna wykorzystac zapis:

» Kolejne wezytywane elementy rozdzielane sg tzw. ,,bialtymi znakami” (spacja,
tabulacja, przejScie do nowego wiersza).

» Jezeli napotkany znak nie pasuje do specyfikacji okre$lonej w tanicuchu
sterujacym odczytem, dzialanie funkcji fscanf jest przerywane.

» Specyfikacja %s zaklada, ze pole wej$ciowe jest ograniczone bialymi znakami,
co nie pozwala na wezytanie tancucha znakow zawierajgcego odstepy.

67

Przyktad 4: Jak Przyktad 3 tylko wiele razy

#include <cstdio>
#include <cstdlib>
using namespace std;

const int N = 20;

int main()
{ =
char marka[N]; = autabd lEl aursy ¢ |
char model[N]; 1 Fiat 126p 1990 250000
int rokProd; 2 Ford T 1908 250
f'l.oat przebieg' 3 Syrena Bosto 1966 SS000

FILE * fp = NULL;
if((fp = fopen("auta.txt", "rt")) !'= NULL)
{
while(fscanf(fp, "%s %S %d %g", marka,model,&rokProd,&przebieg) !'= EOF)
printf("\nMarka: %s\nModel: %s\nRocznik: %d\nPrzebieg: %g\n",
marka, model, rokProd, przebieg);

fclose(fp);
}

return EXIT SUCCESS;

I §
Przehieg: 25A

Marka: Surena
Model: Bosto
Rocznik: 1766
Przehieg: 55880

Przyktad 5: Zapis danych z rekordu do pliku tekstowego

#include <cstdio>
#include <cstdlib>
using namespace std;

const int MAKS M
const int MAKS R

20;
10;

struct pojazd
{
char marka[MAKS M 1;
char model[MAKS M 1;
int rok prod;
float cena;
float przebieg;
char nr rej[MAKS R 1;
b

59

Przyktad 5: Zapis danych z rekordu do pliku tekstowego

int main()

{
pojazd p = { "Syrena", "Bosto", 1966, 1, 12000, "KTA1234" };

FILE * fp = NULL;
if((fp = fopen("auta2.txt", "wt")) != NULL)
{
fprintf(fp, "%s %S %d %g %g %s\n",
p.marka, p.model, p.rok prod, p.cena, p.przebieg, p.nr_rej);
fclose(fp);
}
I=| auta?hd |E autal bd | = auta bd | = beursy ot |
return EXIT SUCCESS;

} 1 Syrena Bosto 1966 1 12000 KTAlZ234

70

Przyktad 6: Odczyt danych z pliku tekstowego do rekordu

int main()

{

= autalbd IE auta tad IE keuirsy et l

pojazd p; 1 Fiat 126p 1990 300 250000 KDN1234

=
L

FILE * fp = NULL;
if((fp = fopen("autal.txt", "rt")) != NULL)
{
fscanf(fp, "%s %s %d %g %g %s", p.marka, p.model, &p.rok prod,
&p.cena, &p.przebieg, p.nr rej);

printf("\nMarka: %s\nModel: %s\nRok: %d\nCena: %Q"
"\nPrzebieg: %g\nNr rej.: %s",
p.marka, p.model, p.rok prod, p.cena, p.przebieg, p.nr_rej);

fclose(fp);
}

return EXIT SUCCESS;
- Marka: Fiat
Model: 126p

Rok: 1994

Cena: 384
Przebhieqg: 258480
Mr rej.: KDM1234_

Przy okazji: dwa sasiadujace ze sobag napisy, niczym nie
oddzielone, sa przez kompilator tagczone w jeden napis, np.:

"C" "++" taczone jestw "C++"

71

Przyktad 7: Jak przyktad 6 tylko z pominieciem wybranych danych

int main()

{

pojazd p;

FILE * fp = NULL;
if((fp = fopen("autal.txt", "rt")) !'= NULL)
{

// Czytaj z pominieciem roku produkcji i numeru rejestracyjnego

fscanf(fp, "%s %s %*d %g %g %*s", +<
p.marka, p.model, &p.cena, &p.przebieg);

printf("\nMarka: %s\nModel: %s\nCena: %g\nPrzebieg: %g\n",
p.marka, p.model, p.cena, p.przebieg);

fclose(fp);

} Umieszczenie znaku * na poczatku
specyfikacji formatu powoduje
return EXIT SUCCESS; pominiecie danych.

Doktadniej - dane sg odczytywane
lecz ignorowane.

Przyktad 8: Odczyt danych o zadanej szerokosci pola

» VIN (Vehicle Identification Number) jest zlozonym zestawem znakow, ktory

zostaje nadany pojazdowi przez producenta w celu jego identyfikacji (istnieje
norma ISO 3779 - 1983, ktora okresla tres¢ i budowe numeru identyfikacyjnego
pojazdu).

1G1|YY21P2/E59999929
» VIN sklada sie z:

WMI — 3 znaki, Swiatowy symbol producenta: rejon geograficzny, kraj,
producent,

VDS — 6 znakow, czesé opisujgca pojazd: konstrukeje samochodu, rodzaj
nadwozia, rodzaj i odmiane silnika , uklad przeniesienia naped, kolejno$¢
i znaczenie okreSlane sg przez producenta.

VIS — 8 znakoéw, cze$¢ wyrdzniajgea pojazd : identyfikuje dany egzemplarz
samochodu, powinna zawiera¢ numer fabryczny pojazdu. W czeSci tej pierwsze

cztery znaki sg literowo-cyfrowe, a pozostale cztery musza by¢ cyfrowe.
73

Przyktad 8: Odczyt danych o zadanej szerokosci pola

const int WMI DL
const int VDS DL
const int VIS DL

i nu
(oo lie) UV}

struct VIN

{
char wmi[WMI DL + 1];
char vds[VDS DL + 1 1;
char vis]| VIS DL + 1];

b
_ _ Okreslenie szerokosci wczytywanego pola, liczone w znakach.
int main()
{ 0
WL 2l =] wvinbd]E auta? b]E autal bd
FILE * fp = NULL; 1 1G1YY21P2E5599999%9
if((fp = fopen("vin.txt", "rt")) != NULL) 2 |
{
\fscanf(fp, "%35%65%8s", id.wmi, id.vds, id.vis);}4
printf("\nVIN: %s %S %s\nWMI: %s\nVDI: %s\nVIS: %s\n",
id.wmi, id.vds, id.vis, id.wmi, id.vds, id.vis
fclose(fp); : 1G1 YY21P2 E5999999
] DI: Y¥21p2
! return EXIT SUCCESS; : EL099999

7

Przyktad 9: Jak przyktad 8 tylko z wykorzystaniem sscanf

const int STR DL = 128;

struct VIN

{

char wmi[WMI DL + 1];
char vds[VDS DL + 1];
char vis[VIS DL + 1];

b

int main() Wczytaj linie z pliku, zapisz w tablicy znakow, a nastepnie

{ wczytaj elementy numeru VIN z tablicy znakow.
VIN id;
char linia[STR DL];
FILE * fp = NULL; =] vinba]E auta b]E auta b
if((fp = fopen("vin.txt", "rt")) != NULL) 1 1G1YY21P2E5999993
{ 2 |

fgets(linia, STR DL, fp); +<
sscanf(linia, "%3s5%6s%8s", id.wmi, id.vds, id.vis);

printf("\nVIN: %s %S %s\nWMI: %s\nVDI: %s\nVIS: %s\n",
id.wmi, id.vds, id.vis, id.wmi, id.vds, id.vis

fclose(fp);
} JMI: 1G1

: 2 YY21P2
return EXIT SUCCESS; : E5999999

: 1G1 YY21P2 ES99999%

Przyktad 9: Rodzina funkcji printf i scanf

» Funkcje printfi scanf wystepuja w kilku odmianach.
» Drzialaja zwykle tak samo, r6znig sie miejscem:
o do ktérego zapisujq wyniki swego dzialania — rodzina printf,

o 7z ktorego odczytujq dane — rodzina scanf.

® int printf(const char * format, ...)
int scanf (const char * format,)

= wwm

int fprintf(FILE * stream, const char * format,
int fscanf (FILE * stream, const char * format,

@ int sprintf(const char * str, const char * format, ...);
~ int sscanf (const char * str, const char * format,);

Przyktad 9: Funkcje sprintf i sscanf

» Funkcja sprintf pobiera zawarto$é kolejnych poél rekordu id, formatuje zgodnie

z ustalonym formatem, zapisuje do tablicy znakéw linia, funkcja puts wyprowadza
zawarto$c¢ tej tablicy do stdout.

VIN id = { "1G1", "YY21P2", "E5999999" };
char linia[STR DL J;

sprintf(linia

s , "%35:%65:%8s", id.wmi, id.vds, id.vis); pEpTEEETEEETTTIG
puts(linia);

» Funkcja gets odczytuje ciag znakow z stdin, zapisuje do tablicy linia, sscanf traktuje
te tablice jako zrodlo danych, odczytuje z niej informacje zgodnie z zawarto$cia
lancucha formatujacego, zapisuje je do p6l rekordu id, funkcja printf wyprowadza
zawarto$¢ kolejnych pdl tego rekordu do stdout zgodnie z ustalonym formatem.

VIN id;
char linia[STR DL];

printf("\nPodaj VIN: ");
gets(linia);

ini "9.35%65%8s" . i i i ' Podaj UIN: 1G1YY¥21P2E5999999
sscanf (}3n1a 350?5085 id.wmi, id.vds, 1d.vis); beniuigiiT et
printf("%35:%65:%8s id.wmi, id.vds, 1id.vis);

77

Przyktad 10: Odczyt danych rozdzielonych separatorem

» Gdy wezytywane napisy moga zawieraé biale znaki — np. spacje — wezytywanie
specyfikatorem %s staje sie niemozliwe, poniewaz zatrzymuje on wczytywanie po
napotkaniu bialego znaku.

» Do wezytywania takich napiséw stuzy specyfikacja %[1. Wewnatrz nawiasow
zapisuje sie ciag akceptowanych znakéw, kazdy inny znak traktowany jest jako
ogranicznik pola, jego napotkanie kornczy odczyt elementu.

» Odczyt pliku fp do tablicy znakéw s napis, ktory zawieraé¢ moze tylko litery ABC,
znaki podkreslenia'_'ispacje (np:. A B C_AB_AC_BC ABC):

fscanf(fp, "%[ABC 1", s);

» Odczyt pliku fp do tablicy znakéw s napis, ktory zawieraé moze tylko mate litery,

L |

cyfry, i znaki podkre$lenia' ', '-' i spacje (np.: 007 james_bond j23 hans_kloss):

fscanf(fp, "%[a-z0-9 -]1", s);

ABCDEF...Z zastepuje A-Z, abcdef...z zastepuje a-z, 0123456789 zastepuje 0-9
78

Przyktad 10: Odczyt danych rozdzielonych separatorem

» W specyfikacji %[znaki] ogranicznikiem wezytywanego pola jest kazdy znak nie
wymieniony w nawiasach.

» W specyfikacji %[~znaki] ogranicznikiem wezytywanego pola jest kazdy znak
wymieniony w nawiasach.

» Czytaj tylko duze litery — ogranicznikiem pola jest kazdy znak nie bedqgcy duza
literg:

fscanf(fp, "%[A-Z]", s);
» Czytaj wszystko az do duzej litery — ogranicznikiem pola jest duza litera:
fscanf(fp, "S["A-Z]", s);

» Zazwyczaj w nawiasach umieszcza sie ogranicznika pola (separatory), czytaj
wszystko az do znaku '|', pomin go:

fscanf(fp, "%[™|]1%*c", s);

79

Przyktad 10: Odczyt danych rozdzielonych separatorem

Kolejne informacje o samochodzie rozdzielane sg znakami '|', znak ten jest
separatorem. Dzieki temu marka i model samochodu moga zawierac spacje. Uwaga —
separator nalezy przeczytaé i pomingé, stad %*c, ale tylko dla specyfikacji %[].

[= autalbd IE vin bd l B auta? bt l B autal bt l B auta bt l =%

Fiat|126p Sport|1990]300]|250000|KDN1234

int main() :
{ .
pojazd p;

FILE * fp = NULL;
if((fp = fopen("auta3.txt", "rt")) != NULL)

{
fscanf(fp, "%[™|1%*C%[™|]1%*C%d%*C%Qg%* C%q%*C%s",
p.marka, p.model, &p.rok prod, &p.cena, &p.przebieg, p.nr rej);
printf("\nMarka: %s\nModel: %s\nRok: %d\nCena: %g"
"\nPrzebieg: %g\nNr rej.: %s",
p.marka, p.model, p.rok prod, p.cena, p.przebieg, p.nr _rej);
fclose(fp);
}

return EXIT SUCCESS;

Funkcja fscanf — podsumowanie

» Uwaga, specyfikacja %[znaki] nie pomija bialych znakéw, zatem gdy pole ma
zawarto$¢: | 123|, dane nie zostang odczytane, gdyz spacje z poczatku pola nie
pasuja do wzorca:

fscanf(fp, "%[0-9]", s); // s == "7"

» Specyfikacja %s pomija biale znaki, zatem pole | 123], zostanie prawidlowo
odczytane:

fscanf(fp, "%s", s); // s == "123"

» Funkcja fscanf potrafi naprawde duzo (np. odezytywaé liczby szesnastkowe,
6semkowe, uwzglednia¢ ograniczenia szerokosci pola, itp.), potrafi tez rowniez
naprawde zaskakiwa¢ — wymaga uwagi i mys$lenia. Wiecej informacji:

@ http://www.cplusplus.com/reference/clibrary/cstdio/fscanf/
o http://pubs.opengroup.org/onlinepubs/009695399/functions/fscanf.html

o http://www.kernel.org/doc/man-pages/online/pages/man3/scanf.3.html

37

http://www.cplusplus.com/reference/clibrary/cstdio/fscanf/
http://pubs.opengroup.org/onlinepubs/009695399/functions/fscanf.html
http://www.kernel.org/doc/man-pages/online/pages/man3/scanf.3.html

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21
	Slajd 22
	Slajd 23
	Slajd 24
	Slajd 25
	Slajd 26
	Slajd 27
	Slajd 28
	Slajd 29
	Slajd 30
	Slajd 31
	Slajd 32
	Slajd 33
	Slajd 34
	Slajd 35
	Slajd 36
	Slajd 37
	Slajd 38
	Slajd 39
	Slajd 40
	Slajd 41
	Slajd 42
	Slajd 43
	Slajd 44
	Slajd 45
	Slajd 46
	Slajd 47
	Slajd 48
	Slajd 49
	Slajd 50
	Slajd 51
	Slajd 52
	Slajd 53
	Slajd 54
	Slajd 55
	Slajd 56
	Slajd 57
	Slajd 58
	Slajd 59
	Slajd 60
	Slajd 61
	Slajd 62
	Slajd 63
	Slajd 64
	Slajd 65
	Slajd 66
	Slajd 67
	Slajd 68
	Slajd 69
	Slajd 70
	Slajd 71
	Slajd 72
	Slajd 73
	Slajd 74
	Slajd 75
	Slajd 76
	Slajd 77
	Slajd 78
	Slajd 79
	Slajd 80
	Slajd 81

