

Podstawy programowaniaPodstawy programowania
w jw języku C++ęzyku C++

Reprezentacja i przetwarzanie plików
Konwencja języka C

Część jedenasta

Niniejsze opracowanie zawiera skrót treści wykładu, lektura tych materiałów nie zastąpi uważnego w nim uczestnictwa.
Opracowanie to jest chronione prawem autorskim. Wykorzystywanie jakiegokolwiek fragmentu w celach innych niż nauka własna jest nielegalne.

Dystrybuowanie tego opracowania lub jakiejkolwiek jego części oraz wykorzystywanie zarobkowe bez zgody autora jest zabronione.

Roman Simiński

roman.siminski@us.edu.pl
www.programowanie.siminskionline.pl

Autor

Kontakt

Przetwarzanie plików realizowane jest zwykle przez funkcje z biblioteki obsługi
standardowego wejścia i wyjścia (identyfikowanej przez stdio.h).

Można jednak korzystać z funkcji niższego poziomu (np. io.h) lub napisać własne
funkcje.

Operacje na standardowym wejściu i wyjściu są buforowane — dzieje się to bez
dodatkowego żadnego udziału programisty.

Operacje na plikach w języku COperacje na plikach w języku C

Język C nie zawiera żadnego wbudowanego typu plikowego! Operacje na plikach nie są
częścią języka C.
Język C nie zawiera żadnego wbudowanego typu plikowego! Operacje na plikach nie są
częścią języka C.

22

Reprezentacja plików w postaci strumieniReprezentacja plików w postaci strumieni

Plik jest reprezentowany przez strumień znaków (bajtów) o zmiennej długości.
Koniec strumienia identyfikowany jest znacznikiem końca pliku — EOF.

Z każdym strumieniem związany jest wskaźnik bieżącej pozycji — od tej pozycji
realizowane będzie czytanie lub pisanie.

Każdy zapis i odczyt zmienia wskaźnik bieżącej pozycji.

Z każdym strumieniem związany jest znacznik osiągnięcia końca pliku oraz
znacznik błędu.

P l i k EOF . . .

0 1 2 3 4

Wskaźnik
bieżącej
pozycji

EOF . . .

0

Wskaźnik
bieżącej
pozycji

Plik pięcioelementowy Plik pusty

33

Otwarcie pliku — tryby otwarciaOtwarcie pliku — tryby otwarcia

Binarnym — strumień jest ciągiem jednakowo traktowanych bajtów, każdy zapis
i odczyt realizowany jest bez żadnych konwersji.

Tekstowym — strumień jest ciągiem linii tekstu zakończonych znacznikiem
końca linii — znak ’\n’. W trakcie odczytu i zapisu do takiego strumienia mogą
zachodzić konwersje spowodowane np. różną fizyczną reprezentacją znacznika
końca wiersza (np. para \r\n w plikach tekstowych DOS/Windows, pojedynczy
znak \n w systemach Unix’owych, \r na komputerach Macintosh).

Uwaga — w systemach Unix'owych tryb binarny i tekstowy są równoważne.

Strumienie mogą być otwierane w trybie:

44

Otwarcie pliku — definiowanie wskaźnika plikowegoOtwarcie pliku — definiowanie wskaźnika plikowego

Aby rozpocząć operacje na plikach należy zadeklarować w programie zmienną
stanowiącą „dojście” do takiego pliku.

W przypadku obsługi standardowych strumieni deklaruje się zmienną
wskaźnikową.

Typem wskazywanym jest FILE, jest to zdefiniowany w pliku nagłówkowym
stdio.h typ rekordowy, zawierający informacje o otwartym dojściu do pliku.

#include <stdio.h> // Kompilacja w trybie C++ #include <cstdio>
. . .
FILE * fp = NULL;

55

Otwarcie pliku — wykorzystanie funkcji fopenOtwarcie pliku — wykorzystanie funkcji fopen

Wykorzystanie pliku rozpoczyna operacja jego otwarcia, realizowana zwykle
przez funkcję fopen. Otwarcie pliku dane.txt do odczytu w trybie tekstowym
może wyglądać następująco:

#include <stdio.h>
. . .
FILE * fp = NULL;
. . .
fp = fopen("dane.txt", "rt");
if(fp != NULL)
 // Otwarcie OK, wykonaj operacje na pliku
else
 // Otwarcie nieudane, obsługa sytuacji bł dnej ę

#include <stdio.h>
. . .
FILE * fp = NULL;
. . .
if((fp = fopen("dane.txt", "rt")) != NULL)
 // Otwarcie OK, wykonaj operacje na pliku
else
 // Otwarcie nieudane, obsługa sytuacji bł dnej ę

Lub krócej:

66

Otwarcie pliku — opis funkcji fopenOtwarcie pliku — opis funkcji fopen

FILE * fopen(const char *filename, const char *mode);

Otwiera strumień związany z plikiem o nazwie przekazanej parametrem
filename. Nazwa może zawierać ścieżkę dostępu do pliku. Strumień otwierany
jest w trybie mode.

Jeżeli otwarcie zakończyło się sukcesem, funkcja udostępnia wskaźnik do
dynamicznie alokowanej struktury typu FILE, stanowiącej programową
reprezentacje fizycznego pliku.

Jeżeli pliku nie udało się otworzyć, rezultatem funkcji jest NULL.

77

Sterta
Rekord

informacji
o pliku

Otwarcie pliku — działanie funkcji fopenOtwarcie pliku — działanie funkcji fopen

P l i k EOF . . .

0 1 2 3 4

Wskaźnik
bieżącej
pozycji

fp

#include <stdio.h>
. . .
FILE * fp = NULL;
. . .
if((fp = fopen("dane.txt", "rt")) != NULL)
 // Otwarcie OK, wykonaj operacje na pliku
else
 // Otwarcie nieudane, obsługa sytuacji bł dnej ę

88

Tryby otwarcia plikuTryby otwarcia pliku

Tryb otwarcia:

Znak + w trybie otwarcia oznacza aktualizację — możliwość czytania i pisania do
otwartego strumienia.

Jednak zapis odczyt i zapis (albo zapis i odczyt) nie mogą po sobie następować
bezpośrednio. Należy użyć funkcji „wymiatania” bufora fflush lub jednej z funkcji
pozycjonowania pozycji — fseek, fsetpos, rewind.

Specyfikacja typu otwieranego pliku:

99

Domyślny typ pliku — binarny czy tekstowy?Domyślny typ pliku — binarny czy tekstowy?

Jeżeli informacja o trybie otwarcia (t lub b) nie występuje, przyjmowany jest tryb
otwarcia zgodnie z wartością globalnej zmiennej _fmode.

Jeżeli _fmode posiada wartość O_BINARY, plik jest otwierany w trybie
binarnym.

Jeżeli _fmode posiada wartość O_TEXT, plik jest otwierany w trybie tekstowym.

 Domyślna wartość _fmode to O_TEXT.

Symbole O_TEXT i O_BINARY są zdefiniowane w pliku fcntl.h.

1010

Przykłady różnych typów i trybów otwarcia plikówPrzykłady różnych typów i trybów otwarcia plików

fp = fopen("dane.txt", "rt");

Otwarcie pliku dane.txt jako pliku tekstowego, wyłącznie do odczytu.

fp = fopen("tlo.bmp", "rb");

Otwarcie pliku tlo.bmp jako pliku binarnego, wyłącznie do odczytu.

fp = fopen("podanie.doc", "at");

Otwarcie pliku podanie.doc jako pliku tekstowego, wyłącznie do zapisu, plik
ustawiany jest w pozycji końcowej, jeżeli nie istnieje, tworzony jest nowy, pusty.

fp = fopen("image.jpg", "w+b");

Otwarcie pliku image.jpg jako pliku binarnego, do zapisu i odczytu, jeżeli plik
istnieje, obcinany jest do pliku pustego.

1111

Zamykanie otwartych plików — fcloseZamykanie otwartych plików — fclose

int fclose(FILE * stream);

Funkcja zamyka strumień stream i zapisuje wszystkie bufory.

Rezultat EOF oznacza błąd zamykania, rezultat równy zero oznacza bezbłędne
zamknięcie.

Pamięć przydzielona strukturze wskazywanej przez wskaźnik stream jest
zwalniana.

#include <stdio.h>
. . .
FILE * fp = NULL;
. . .
if((fp = fopen("dane.txt", "rt")) != NULL)
{
 // Otwarcie OK, wykonaj operacje na pliku
 fclose(fp);
}

Typowy scenariusz otwarcia i zamknięcia pliku:

1212

Odczyt pojedynczych znakówOdczyt pojedynczych znaków

int fgetc(FILE * stream);

Funkcja pobiera następny znak ze strumienia identyfikowanego przez stream
i uaktualnia wskaźnik bieżącej pozycji w pliku. Znak pobierany jest jako
unsigned char i przekształcany jest do typu int.

W przypadku napotkania końca strumienia, rezultatem jest wartość EOF oraz
ustawiany jest znacznik napotkania końca strumienia.

W przypadku wystąpienia błędu odczytu, rezultatem funkcji jest wartość EOF
oraz ustawiany jest znacznik błędu strumienia.

int znak;
. . .
znak = fgetc(fp);

Przykładowe wykorzystanie — odczyt znaku z uprzednio otwartego pliku fp:

P l i k EOF . . .

0 1 2 3 4

Wskaźnik
bieżącej
pozycji

P

1313

Odczyt pojedynczych znaków, wykorzystanie funkcji fgetcOdczyt pojedynczych znaków, wykorzystanie funkcji fgetc

#include <stdio.h>
. . .
FILE * fp = NULL;
. . .
if((fp = fopen("dane.txt", "rt")) != NULL)
{
 int znak;

 znak = fgetc(fp);

 printf("Przeczytano znak %c", znak);

 fclose(fp);
}

P l i k EOF . . .

0 1 2 3 4

Wskaźnik
bieżącej
pozycji

1414

Odczyt pojedynczych znaków, wykorzystanie funkcji fgetcOdczyt pojedynczych znaków, wykorzystanie funkcji fgetc

#include <stdio.h>
. . .
FILE * fp = NULL;
. . .
if((fp = fopen("dane.txt", "rt")) != NULL)
{
 int znak;

 znak = fgetc(fp);

 printf("Przeczytano znak %c", znak);

 fclose(fp);
}

P l i k EOF . . .

0 1 2 3 4

Wskaźnik
bieżącej
pozycji

Pznak

1515

Zapis pojedynczych znakówZapis pojedynczych znaków

int fputc(int c, FILE * stream);

Funkcja wyprowadza znak c do strumienia stream zgodnie ze wskaźnikiem
bieżącej pozycji w pliku.

W przypadku, gdy funkcja fputc zakończyła swoje działanie bez błędu,
rezultatem funkcji jest znak c. W przeciwnym wypadku wartość EOF.

1616

Zapis pojedynczych znaków — wykorzystanie funkcji fputcZapis pojedynczych znaków — wykorzystanie funkcji fputc

#include <stdio.h>
. . .
FILE * fp = NULL;
. . .
if((fp = fopen("dane.txt", "wt")) != NULL)
{
 fputc('P', fp);

 fclose(fp);
}

EOF . . .

0

Wskaźnik
bieżącej
pozycji

1717

P

Zapis pojedynczych znaków — wykorzystanie funkcji fputcZapis pojedynczych znaków — wykorzystanie funkcji fputc

#include <stdio.h>
. . .
FILE * fp = NULL;
. . .
if((fp = fopen("dane.txt", "wt")) != NULL)
{
 fputc('P', fp);

 fclose(fp);
}

EOF . . .

0

Wskaźnik
bieżącej
pozycji

1

1818

Uwaga — plik powiększa się tylko przy dopisywaniu (zapis na końcu pliku)Uwaga — plik powiększa się tylko przy dopisywaniu (zapis na końcu pliku)

#include <stdio.h>
. . .
FILE * fp = NULL;
. . .
if((fp = fopen("dane.txt", "r+t")) != NULL)
{
 fputc('C', fp);

 fclose(fp);
}

c / C + EOF . . .
0 1 2 3 5

Wskaźnik
bieżącej
pozycji

Plik istnieje i zawiera napis „c/C++”Plik istnieje i zawiera napis „c/C++”

+
4

W trybie r plik jest w pozycji początkowejW trybie r plik jest w pozycji początkowej

1919

Uwaga — plik powiększa się tylko przy dopisywaniu (zapis na końcu pliku)Uwaga — plik powiększa się tylko przy dopisywaniu (zapis na końcu pliku)

#include <stdio.h>
. . .
FILE * fp = NULL;
. . .
if((fp = fopen("dane.txt", "r+t")) != NULL)
{
 fputc('C', fp);

 fclose(fp);
}

C / C + EOF . . .
0 1 2 3 5

Wskaźnik
bieżącej
pozycji

Zapis zgodnie z bieżącą pozycją w plikuZapis zgodnie z bieżącą pozycją w pliku

+
4

Nadpisanie znaku i przesunięcie wskaźnikaNadpisanie znaku i przesunięcie wskaźnika

2020

Testowanie osiągnięcia znacznika końca plikuTestowanie osiągnięcia znacznika końca pliku

int feof(FILE * stream);

Rezultatem funkcji jest wartość różna od zera, jeżeli strumień jest w pozycji
końcowej, zero w przeciwnym wypadku.

Strumień jest w pozycji końcowej, jeżeli w wyniku ostatnio przeprowadzonej
operacji odczytano znacznik końca pliku.

2121

Sekwencyjne przetwarzanie pliku z wykorzystaniem feofSekwencyjne przetwarzanie pliku z wykorzystaniem feof

FILE * fp;
long int counter = 0;

if((fp = fopen("d.txt", "rt")) != NULL)
{
 while(! feof(fp))
 {
 putchar(fgetc(fp));
 counter++;
 }
 fclose(fp);
 printf("\nLiczba znakow w pliku: %ld", counter - 1);
}

Wypisz do stdout zawartość pliku i policz, ile w tym pliku jest znaków:

2222

Sekwencyjne przetwarzanie pliku z wykorzystaniem feofSekwencyjne przetwarzanie pliku z wykorzystaniem feof

FILE * fp;
long int counter = 0;

if((fp = fopen("d.txt", "rt")) != NULL)
{
 while(! feof(fp))
 {
 putchar(fgetc(fp));
 counter++;
 }
 fclose(fp);
 printf("\nLiczba znakow w pliku: %ld", counter - 1);
}

Wypisz do stdout zawartość pliku i policz, ile w tym pliku jest znaków:

C / C + EOF . . .
0 1 2 3 5

Wskaźnik
bieżącej
pozycji

+
4

Czy przeczytano EOF?Czy przeczytano EOF?

0counter

2323

Sekwencyjne przetwarzanie pliku z wykorzystaniem feofSekwencyjne przetwarzanie pliku z wykorzystaniem feof

FILE * fp;
long int counter = 0;

if((fp = fopen("d.txt", "rt")) != NULL)
{
 while(! feof(fp))
 {
 putchar(fgetc(fp));
 counter++;
 }
 fclose(fp);
 printf("\nLiczba znakow w pliku: %ld", counter - 1);
}

Wypisz do stdout zawartość pliku i policz, ile w tym pliku jest znaków:

C / C + EOF . . .
0 1 2 3 5

Wskaźnik
bieżącej
pozycji

+
4C

1counter
putchar(fgetc(fp));

2424

Sekwencyjne przetwarzanie pliku z wykorzystaniem feofSekwencyjne przetwarzanie pliku z wykorzystaniem feof

FILE * fp;
long int counter = 0;

if((fp = fopen("d.txt", "rt")) != NULL)
{
 while(! feof(fp))
 {
 putchar(fgetc(fp));
 counter++;
 }
 fclose(fp);
 printf("\nLiczba znakow w pliku: %ld", counter - 1);
}

Wypisz do stdout zawartość pliku i policz, ile w tym pliku jest znaków:

C / C + EOF . . .
0 1 2 3 5

Wskaźnik
bieżącej
pozycji

+
4C

Czy przeczytano EOF?Czy przeczytano EOF?

1counter

2525

Sekwencyjne przetwarzanie pliku z wykorzystaniem feofSekwencyjne przetwarzanie pliku z wykorzystaniem feof

FILE * fp;
long int counter = 0;

if((fp = fopen("d.txt", "rt")) != NULL)
{
 while(! feof(fp))
 {
 putchar(fgetc(fp));
 counter++;
 }
 fclose(fp);
 printf("\nLiczba znakow w pliku: %ld", counter - 1);
}

Wypisz do stdout zawartość pliku i policz, ile w tym pliku jest znaków:

C / C + EOF . . .
0 1 2 3 5

Wskaźnik
bieżącej
pozycji

+
4C/

2counter
putchar(fgetc(fp));

2626

Sekwencyjne przetwarzanie pliku z wykorzystaniem feofSekwencyjne przetwarzanie pliku z wykorzystaniem feof

FILE * fp;
long int counter = 0;

if((fp = fopen("d.txt", "rt")) != NULL)
{
 while(! feof(fp))
 {
 putchar(fgetc(fp));
 counter++;
 }
 fclose(fp);
 printf("\nLiczba znakow w pliku: %ld", counter - 1);
}

Wypisz do stdout zawartość pliku i policz, ile w tym pliku jest znaków:

C / C + EOF . . .
0 1 2 3 5

Wskaźnik
bieżącej
pozycji

+
4C/

Czy przeczytano EOF?Czy przeczytano EOF?

2counter

2727

Sekwencyjne przetwarzanie pliku z wykorzystaniem feofSekwencyjne przetwarzanie pliku z wykorzystaniem feof

FILE * fp;
long int counter = 0;

if((fp = fopen("d.txt", "rt")) != NULL)
{
 while(! feof(fp))
 {
 putchar(fgetc(fp));
 counter++;
 }
 fclose(fp);
 printf("\nLiczba znakow w pliku: %ld", counter - 1);
}

Wypisz do stdout zawartość pliku i policz, ile w tym pliku jest znaków:

C / C + EOF . . .
0 1 2 3 5

Wskaźnik
bieżącej
pozycji

+
4C/C

3counter
putchar(fgetc(fp));

2828

Sekwencyjne przetwarzanie pliku z wykorzystaniem feofSekwencyjne przetwarzanie pliku z wykorzystaniem feof

FILE * fp;
long int counter = 0;

if((fp = fopen("d.txt", "rt")) != NULL)
{
 while(! feof(fp))
 {
 putchar(fgetc(fp));
 counter++;
 }
 fclose(fp);
 printf("\nLiczba znakow w pliku: %ld", counter - 1);
}

Wypisz do stdout zawartość pliku i policz, ile w tym pliku jest znaków:

C / C + EOF . . .
0 1 2 3 5

Wskaźnik
bieżącej
pozycji

+
4C/C

Czy przeczytano EOF?Czy przeczytano EOF?

2counter

2929

Sekwencyjne przetwarzanie pliku z wykorzystaniem feofSekwencyjne przetwarzanie pliku z wykorzystaniem feof

FILE * fp;
long int counter = 0;

if((fp = fopen("d.txt", "rt")) != NULL)
{
 while(! feof(fp))
 {
 putchar(fgetc(fp));
 counter++;
 }
 fclose(fp);
 printf("\nLiczba znakow w pliku: %ld", counter - 1);
}

Wypisz do stdout zawartość pliku i policz, ile w tym pliku jest znaków:

C / C + EOF . . .
0 1 2 3 5

Wskaźnik
bieżącej
pozycji

+
4C/C+

4counter
putchar(fgetc(fp));

3030

Sekwencyjne przetwarzanie pliku z wykorzystaniem feofSekwencyjne przetwarzanie pliku z wykorzystaniem feof

FILE * fp;
long int counter = 0;

if((fp = fopen("d.txt", "rt")) != NULL)
{
 while(! feof(fp))
 {
 putchar(fgetc(fp));
 counter++;
 }
 fclose(fp);
 printf("\nLiczba znakow w pliku: %ld", counter - 1);
}

Wypisz do stdout zawartość pliku i policz, ile w tym pliku jest znaków:

C / C + EOF . . .
0 1 2 3 5

Wskaźnik
bieżącej
pozycji

+
4C/C+

Czy przeczytano EOF?Czy przeczytano EOF?

4counter

3131

Sekwencyjne przetwarzanie pliku z wykorzystaniem feofSekwencyjne przetwarzanie pliku z wykorzystaniem feof

FILE * fp;
long int counter = 0;

if((fp = fopen("d.txt", "rt")) != NULL)
{
 while(! feof(fp))
 {
 putchar(fgetc(fp));
 counter++;
 }
 fclose(fp);
 printf("\nLiczba znakow w pliku: %ld", counter - 1);
}

Wypisz do stdout zawartość pliku i policz, ile w tym pliku jest znaków:

C / C + EOF . . .
0 1 2 3 5

Wskaźnik
bieżącej
pozycji

+
4C/C++

5counter
putchar(fgetc(fp));

3232

Sekwencyjne przetwarzanie pliku z wykorzystaniem feofSekwencyjne przetwarzanie pliku z wykorzystaniem feof

FILE * fp;
long int counter = 0;

if((fp = fopen("d.txt", "rt")) != NULL)
{
 while(! feof(fp))
 {
 putchar(fgetc(fp));
 counter++;
 }
 fclose(fp);
 printf("\nLiczba znakow w pliku: %ld", counter - 1);
}

Wypisz do stdout zawartość pliku i policz, ile w tym pliku jest znaków:

C / C + EOF . . .
0 1 2 3 5

Wskaźnik
bieżącej
pozycji

+
4C/C++

Czy przeczytano EOF?Czy przeczytano EOF?

5counter

3333

Sekwencyjne przetwarzanie pliku z wykorzystaniem feofSekwencyjne przetwarzanie pliku z wykorzystaniem feof

FILE * fp;
long int counter = 0;

if((fp = fopen("d.txt", "rt")) != NULL)
{
 while(! feof(fp))
 {
 putchar(fgetc(fp));
 counter++;
 }
 fclose(fp);
 printf("\nLiczba znakow w pliku: %ld", counter - 1);
}

Wypisz do stdout zawartość pliku i policz, ile w tym pliku jest znaków:

C / C + EOF . . .
0 1 2 3 5

Wskaźnik
bieżącej
pozycji

+
4C/C++?

6counter
putchar(fgetc(fp));

X

3434

Sekwencyjne przetwarzanie pliku z wykorzystaniem feofSekwencyjne przetwarzanie pliku z wykorzystaniem feof

FILE * fp;
long int counter = 0;

if((fp = fopen("d.txt", "rt")) != NULL)
{
 while(! feof(fp))
 {
 putchar(fgetc(fp));
 counter++;
 }
 fclose(fp);
 printf("\nLiczba znakow w pliku: %ld", counter - 1);
}

Wypisz do stdout zawartość pliku i policz, ile w tym pliku jest znaków:

C / C + EOF . . .
0 1 2 3 5

Wskaźnik
bieżącej
pozycji

+
4C/C++

6counter

Czy przeczytano EOF?Czy przeczytano EOF?

3535

Sekwencyjne przetwarzanie pliku z wykorzystaniem feofSekwencyjne przetwarzanie pliku z wykorzystaniem feof

FILE * fp;
long int counter = 0;

if((fp = fopen("d.txt", "rt")) != NULL)
{
 while(! feof(fp))
 {
 putchar(fgetc(fp));
 counter++;
 }
 fclose(fp);
 printf("\nLiczba znakow w pliku: %ld", counter - 1);
}

Wypisz do stdout zawartość pliku i policz, ile w tym pliku jest znaków:

C / C + EOF . . .
0 1 2 3 5

+
4

6counter
C/C++
Liczba znakow w pliku: 5

3636

Sekwencyjne przetwarzanie pliku bez wykorzystania feofSekwencyjne przetwarzanie pliku bez wykorzystania feof

FILE * fp;
long int counter = 0;
int c;

if((fp = fopen("d.txt", "rt")) != NULL)
{
 while((c = fgetc(fp)) != EOF)
 {
 putchar(c);
 counter++;
 }
 fclose(fp);
 printf("\nLiczba znakow w pliku: %ld", counter);
}

Wypisz do stdout zawartość pliku i policz, ile w tym pliku jest znaków, inna
wersja:

3737

Wyznaczanie rozmiaru pliku, Windows i... mały problemWyznaczanie rozmiaru pliku, Windows i... mały problem

if((fp = fopen("d.txt", "rt")) != NULL)
{
 for(counter = 0; fgetc(fp) != EOF; counter++)
 ;
 fclose(fp);
 printf("\nRozmiar pliku: %ld bajtow", counter);
}

Spróbujmy wykorzystać podobną sekwencję dla wyznaczenia rozmiaru pliku
liczonego w bajtach, tym razem wykorzystajmy iteracje for:

?

3838

Dlaczego rozmiary się nie zgadzają?Dlaczego rozmiary się nie zgadzają?

Przyczyną wadliwego działania programu są konwersje znaczników końca linii w
trybie tekstowym. W systemach DOS/Windows znacznik końca linii to para \r i \n
(czyli CR i LF). W trakcie odczytu w trybie tekstowym, każda para \r\n
zamieniana jest na pojedynczy znak \n.

1 EOFStrumień: 2 3 4 5 1 2 3 4 5\ r \ n

'1' '2' '3' '4' '5' '1' '2' '3' '4' '5''\ n'

0 1 2 3 4 7 8 9 10 115 6

'1' '2' '3' '4' '5' '1' '2' '3' '4' '5''\ r' '\ n'

Rezultaty odczytu przy otwarciu w trybie binarnym

Rezultaty odczytu przy otwarciu w trybie tekstowym
0 1 2 3 4 7 8 9 10 115 6

\ r \ n Znacznik końca wiersza

3939

Otwarcie jako plik binarny gdy nie przetwarzamy tekstówOtwarcie jako plik binarny gdy nie przetwarzamy tekstów

Konwersje nie zachodzą przy otwieraniu pliku w trybie binarnym. W drugim
parametrze wywołania fopen należy użyć litery b, oznaczającej otwarcie w trybie
binarnym. Poprawiona wersja kodu wkomponowana w funkcję file_size:

long int file_size(char * fname)
{
 FILE * fp;
 long int counter = 0;

 if((fp = fopen(fname, "rb")) != NULL)
 {
 for(counter = 0; fgetc(fp) != EOF; counter++)
 ;
 fclose(fp);
 }
 return counter;
}
. . .
printf("\nRozmiar pliku: %ld bajtow", file_size("d.txt"));

4040

Kopiowanie zawartości plikówKopiowanie zawartości plików

FILE * src = NULL;
FILE * dst = NULL;

if((src = fopen("dane.txt", "rb")) != NULL)
{
 if((dst = fopen("dane.bak", "wb")) != NULL)
 {
 int c;

 while((c = fgetc(src)) != EOF)
 fputc(c, dst);

 fclose(dst);
 }
 else
 printf("Blad tworzenia pliku kopii zapasowej");

 fclose(src);
}
else
 printf("Blad otwarcia pliku zrodlowego");

Wykonaj kopię pliku dane.txt w pliku dane.bak:

4141

Kopiowanie zawartości plików — funkcja cpc_file_copyKopiowanie zawartości plików — funkcja cpc_file_copy

/*---
 Funkcja cpc_file_copy realizuje kopiowanie zawarto ci rodłowego ś ź
 pliku src do pliku docelowego dst. Wykorzystywane s znakowe ą
 operacje odczytu i zapisu. Funkcja nie zamyka strumieni src i
 dst.

 Prametry : Wska niki na prawidłowo otwarte strumienie binarneź
 src, dst - odpowiednio dla pliku rodłowego i ź
 docelowego

 Rezultat : true je eli kopiowanie zakonczyło si poprawnież ę
 false je eli wystapił bł d podczas kopiowaniaż ą
---*/
bool cpc_file_copy(FILE * dst, FILE * src)
{
 int c;

 for(; (c = fgetc(src)) != EOF ; fputc(c, dst))
 if(ferror(src) || ferror(dst))
 return false;
 return true;
}

4242

Kopiowanie ze zmianą zawartości, przykład 1-szyKopiowanie ze zmianą zawartości, przykład 1-szy

/*---
 Funkcja toupper_file_copy realizuje kopiowanie zawarto ci ś
 rodłowego ź
 pliku src do pliku docelowego dst. W trakcie kopiowanie wszystkie
 litery małe s zamieniane na du e a tzw. ”biale spacje” na znaką ż
 my lnika '-'. Wykorzystywane s znakowe operacje odczytu i zapisu. ś ą
 Funkcja nie zamyka strumieni src i dst.
 Parametry : Wska niki na prawidłowo otwarte strumienie binarneź
 src, dst - odpowiednio dla pliku rodlowego i ź
 docelowego
 Rezultat : true je eli kopiowanie zakonczyło si poprawnież ę
 false je eli wystapił bł d podczas kopiowaniaż ą
---*/
bool toupper_file_copy(FILE * dst, FILE * src)
{
 int c;

 while((c = fgetc(src)) != EOF)
 {
 fputc((isspace(c)) ? '-' : toupper(c), dst);
 if(ferror(src) || ferror(dst))
 return false;
 }
 return true;
}

4343

Kopiowanie ze zmianą zawartości, przykład 2-gi i 3-ciKopiowanie ze zmianą zawartości, przykład 2-gi i 3-ci

while((c = fgetc(src)) != EOF)
{
 if(isalnum(c))
 fputc(c, dst);
}

while((c = fgetc(src)) != EOF)
 fputc(tolower(c), dst);

W trakcie kopiowania można realizować filtrowanie znaków, np. kopiowanie tylko
liter i cyfr:

Zamiana liter dużych na małe:

while((c = fgetc(src)) != EOF)
 fputc(toupper(c), dst);

Zamiana liter małych na duże:

4444

Przetwarzanie plików tekstowych linia po liniiPrzetwarzanie plików tekstowych linia po linii

Pliki tekstowe reprezentowane są również jako strumienie bajtów. Można je
jednak przetwarzać wierszami, od strony programu separatorem wierszy jest
znak \n.

Do przetwarzania pliku tekstowego linia po linii służą funkcje odczytu/zapisu
linii — buforem linii są tablice znakowe.

J ę z y EOFk \n i \n C C + +

J ę z y

EOF

k \n
i \n

 C

C + +

\n

\n

Zawartość pliku:

Przy przetwarzaniu linia po linii można założyć, że plik wygląda tak:

4545

Przetwarzanie plików tekstowych linia po liniiPrzetwarzanie plików tekstowych linia po linii

int fputs(const char * s, FILE * stream);

Funkcja fputs wyprowadza napis s do pliku stream, nie dopisuje znaczników
końca wiersza ani końca napisu. Rezultatem funkcji jest ostatni zapisany znak,
w przypadku gdy zapis zakończył się sukcesem lub EOF, gdy wystąpił błąd.

4646

#include <stdio.h>
#include <stdlib.h>

int main()
{
 FILE * fp = NULL;

 if((fp = fopen("dane.txt", "wt")) != NULL)
 {
 fputs("Jestem C", fp);
 fputs(", jezyk C", fp);

 fclose(fp);
 }
 return EXIT_SUCCESS;
}

Wykorzystanie funkcji fputsWykorzystanie funkcji fputs

#include <stdio.h>
#include <stdlib.h>

int main()
{
 FILE * fp = NULL;

 if((fp = fopen("dane.txt", "wt")) != NULL)
 {
 fputs("Jestem C", fp);
 fputs(",\njezyk C.\nKoniec wiadomosci.", fp);

 fclose(fp);
 }
 return EXIT_SUCCESS;
}

4747

Funkcja fprintfFunkcja fprintf

int fprintf(FILE * stream, const char * format [, argument, ...]);

Funkcja fprintf wyprowadza do pliku stream napis format oraz opcjonalne
argumenty, w postaci określonej przez sekwencje formatujące zapisane
w napisie format.

Rezultatem funkcji jest liczba wyprowadzonych bajtów, w przypadku gdy zapis
zakończył się sukcesem lub EOF, gdy wystąpił błąd..

Wszystkie zasady formatowania znane z wykorzystania funkcji printf obowiązują
dla funkcji fprintf.

Zamiast wywołania funkcji printf:

printf("printf to fprintf piszacy do stdout");

4848

można napisać:

fprintf(stdout, "printf to fprintf piszacy do stdout");

Wykorzystanie funkcji fprintf, wersja 1-szaWykorzystanie funkcji fprintf, wersja 1-sza

#include <stdio.h>
#include <stdlib.h>

int main()
{
 FILE * fp = NULL;

 if((fp = fopen("dane.txt", "wt")) != NULL)
 {
 char marka[80] = "Fiat";
 char model[80] = "126p";
 int rocznik = 1970;
 float przebieg = 128.23;

 fprintf(fp, "Dane samochodu:\n%s\n%s\n%d\n%g", marka, model,
 rocznik, przebieg);

 fclose(fp);
 }
 return EXIT_SUCCESS;
}

4949

Wykorzystanie funkcji fprintf, wersja 2-ga Wykorzystanie funkcji fprintf, wersja 2-ga

#include <stdio.h>
#include <stdlib.h>

int main()
{
 FILE * fp = NULL;

 if((fp = fopen("dane.txt", "wt")) != NULL)
 {
 char marka[80] = "Fiat";
 char model[80] = "126p";
 int rocznik = 1970;
 float przebieg = 128.23;

 fprintf(fp, "Dane samochodu:\n\tMarka: %s\n\tModel: %s\n", marka, model);
 fprintf(fp, "\tRocznik: %d\n\tPrzebieg: %g", rocznik, przebieg);

 fclose(fp);
 }
 return EXIT_SUCCESS;
}

5050

Funkcja Funkcja fgetsfgets

Pierwszy parametr s określa bufor, do którego mają być zapisane wczytywane
dane.

Drugi parametr n określa maksymalną pojemność bufora, uwzględniającą
miejsce na znacznik końca napisu.

Trzeci parametr stream określa strumień (plik), z którego funkcja ma odczytywać
dane, może to być również standardowy strumień wejściowy ― stdin.

Działanie funkcji kończy się gdy funkcja odczyta n – 1 znaków lub wcześniej
zostanie odczytany znak nowego wiersza (Enter).

Znacznik końca napisu dopisywany jest na jego końcu.

 char * fgets(char * s, int n, FILE * stream);

5151

Wykorzystanie funkcji fgets, uwaga na znacznik końca wierszaWykorzystanie funkcji fgets, uwaga na znacznik końca wiersza

#include <stdio.h>
#include <stdlib.h>

#define MAKS_DL 256

int main()
{
 FILE * fp = NULL;

 if((fp = fopen("dane.txt", "rt")) != NULL)
 {
 char linia[MAKS_DL];

 while(fgets(linia, MAKS_DL, fp) != NULL)
 printf(linia);

 fclose(fp);
 }
 return EXIT_SUCCESS;
}

Funkcja fgets pozostawia w
buforze znacznik końca

wiersza.

5252

Wykorzystanie funkcji fgets, uwaga na znacznik końca wierszaWykorzystanie funkcji fgets, uwaga na znacznik końca wiersza

J ę z y EOFk \n i \n C C + +

J ę z y

EOF

k \n
i \n

 C

C + +

Zawartość pliku:

Przy przetwarzaniu linia po linii można założyć, że plik wygląda tak:

Uwaga, przed znacznikiem końca pliku EOF może nie być znacznika końca wier-
sza \n. Funkcja fgets nie przeczyta go zatem.

5353

Wykorzystanie fgets w funkcji list_file Wykorzystanie fgets w funkcji list_file

/*---
 Wyprowadza do stdout zawarto ć pliku o nazwie fname.ś
 Parametry: char * fname – wska nik na tablic zawieraj c nazwź ę ą ą ę
 pliku.
 Rezultat: Brak.
---*/
#define MAX_LINE 256
void list_file(char * fname)
{
 FILE * fp;
 char buffer[MAX_LINE];

 if((fp = fopen(fname, "rt")) != NULL)
 {
 while(fgets(buffer, MAX_LINE, fp) != NULL)
 printf("%s", buffer);
 fclose(fp);
 }
}

. . .
list_file("przyklad4.c");
. . .

5454

Funkcja list_file zawija za długie wierszeFunkcja list_file zawija za długie wiersze

Można zmodyfikować funkcję list_file tak, by nie łamała za długich wierszy
a umieszczała na ich końcu symbol informujący, że wiersz jest dłuższy od szerokości
ekranu.

5555

Funkcja list_file_nowrap przycina za długie wierszeFunkcja list_file_nowrap przycina za długie wiersze

#define MAX_LINE 256
#define MAX_CHARS_IN_LINE 80

void list_file_nowrap(char * fname)
{
 FILE * fp;
 char buffer[MAX_LINE];

 if((fp = fopen(fname, "rt")) != NULL)
 {
 while(fgets(buffer, MAX_LINE, fp) != NULL)
 {
 if(strlen(buffer) > MAX_CHARS_IN_LINE)
 {
 buffer[MAX_CHARS_IN_LINE - 1] = '>';
 buffer[MAX_CHARS_IN_LINE] = '\0';
 }

 printf("%s", buffer);
 }
 fclose(fp);
 }
}

5656

Funkcja nlist_file_nowrap dodatkowo numeruje wierszeFunkcja nlist_file_nowrap dodatkowo numeruje wiersze

#define MAX_LINE 256
#define MAX_CHARS_IN_LINE 80

void nlist_file_nowrap(char * fname)
{
 FILE * fp;
 int counter = 0;
 char buffer[MAX_LINE];

 if((fp = fopen(fname, "rt")) != NULL)
 {
 while(fgets(buffer, MAX_LINE, fp) != NULL)
 {
 if(strlen(buffer) > MAX_CHARS_IN_LINE - 5)
 {
 buffer[MAX_CHARS_IN_LINE - 6] = '>';
 buffer[MAX_CHARS_IN_LINE - 5] = '\0';
 }
 printf("%03d: %s", ++counter, buffer);
 }
 fclose(fp);
 }
}

5757

Funkcja pattern_list_file wyświetla linie z wzorcemFunkcja pattern_list_file wyświetla linie z wzorcem

void pattern_list_file(char * fname, char * pattern)
{
 FILE * fp;
 int counter = 0;
 char buffer[MAX_LINE];

 if((fp = fopen(fname, "rt")) != NULL)
 {
 while(fgets(buffer, MAX_LINE - 1, fp) != NULL)
 {
 ++counter;
 if(strstr(buffer, pattern) != NULL)
 {
 if(strlen(buffer) > MAX_CHARS_IN_LINE - 5)
 {
 buffer[MAX_CHARS_IN_LINE - 6] = '>';
 buffer[MAX_CHARS_IN_LINE - 5] = '\0';
 }
 printf("%03ld: %s", counter, buffer);
 }
 }
 fclose(fp);
 }
}

 pattern_list_file("przyklad6.c" , "if");

5858

Strumienie standardowe jako otwarte plikiStrumienie standardowe jako otwarte pliki

fprintf(stdout, "Witaj!");

standardowy strumień wyjściowy: stdout,

standardowy strumień wejściowy: stdin,

standardowy strumień wyjściowy dla błędów: stderr.

W pliku stdio.h zdefiniowana są trzy wskaźniki przypisane trzem strumieniom,
automatycznie otwieranym dla programu:

printf("Witaj!");

fputc('A', stdout);putchar('A');

c = fgetc(stdin);c = getchar();

Wskaźniki stdin, stdout i stderr są typu FILE *, można z nich korzystać jak z
otwartych plików:

5959

Przykład 1: Dane z tablicy do plikuPrzykład 1: Dane z tablicy do pliku

Dana jest N-elementowa tablica liczb rzeczywistych kursy, zawierająca cenę
zakupu waluty EURO wyrażoną w złotówkach. Jak zapisać zawartość tablicy do
pliku tekstowego?

6060

#include <cstdio>
#include <cstdlib>
using namespace std;

const int N = 5;
int main()
{
 // Tablica z przykładowymi danymi
 float kursyEURO[N] = { 4, 4.01, 3.95, 3.98, 4.1 };

 FILE * fp = NULL;

 if((fp = fopen("kursy.txt", "wt")) != NULL)
 {
 for(int i = 0; i < N; ++i)
 fprintf(fp, "%g\n", kursyEURO[i]);

 fclose(fp);
 }
 return EXIT_SUCCESS;
}

Przykład 2: Dane z pliku do tablicy Przykład 2: Dane z pliku do tablicy

Jak odczytać dane z pliku tekstowego do tablicy kursów?

6161

. . .
const int N = 5;
int main()
{
 // Tablica na dane
 float kursyEURO[N];

 FILE * fp = NULL;
 if((fp = fopen("kursy.txt", "rt")) != NULL)
 {
 int i = 0;

 while(fscanf(fp, "%g", &kursyEURO[i++]) == 1)
 if(i == N)
 break;

 for(i = 0; i < N; ++i)
 printf("\n%g", kursyEURO[i]);

 fclose(fp);
 }

 return EXIT_SUCCESS;
}

Zabezpieczenie przed
przekroczeniem
zakresu tablicy

Zabezpieczenie przed
przekroczeniem
zakresu tablicy

Jak to działa?

Przykład 2: Dane z pliku do tablicy — funkcja fscanf Przykład 2: Dane z pliku do tablicy — funkcja fscanf

6262

bardzo użyteczna,

posiada szereg ciekawych możliwości,

wymaga uwagi i przemyślanego stosowania,

stosowana nieuważnie jest kapryśna i niebezpieczna.

Funkcja fscanf to przedstawiciel rodziny funkcji (scanf, sscanf, ...) realizujących
pobieranie danych („skanowanie”) z pewnego źródła i zapisanie ich do zmiennych
programu zgodnie z zadanym formatem. Źródłem danych dla funkcji fscanf jest
uprzednio otwarty plik.

Funkcja fscanf jest:

Bardzo interesujący opis wykorzystania funkcji fscanf zawiera książka:

Adam Sapek, Wgłąb języka C, Helion, Gliwice, 1993

Przykład 2: Dane z pliku do tablicy — funkcja fscanf Przykład 2: Dane z pliku do tablicy — funkcja fscanf

6363

FILE * file — wskaźnik pliku otwartego do odczytu,

const char * format — ciąg znaków sterujący odczytem i formatowaniem
danych (zwanym dalej łańcuchem sterującym odczytem),

kolejne parametry muszą być wskaźnikami na zmienne, do których zostaną
zapisane dane odczytane z pliku zgodnie z informacjami formatującymi
zapisanymi w format.

Funkcja fscanf posiada dwa obowiązkowe parametery:

fscanf(FILE * file, const char * format);

Rezultatem funkcji fscanf jest liczba przeczytanych, sformatowanych i zapamię-
tanych danych (dane niezapamiętane nie są zliczane!).

W przypadku napotkania końca pliku przed zakończeniem odczytu rezultatem funkcji
jest EOF.

Przykład 2: Dane z pliku do tablicy — funkcja fscanf Przykład 2: Dane z pliku do tablicy — funkcja fscanf

6464

float num;

fscanf(fp, "%g", &num);

float kursyEURO[N];

fscanf(fp, "%g", &kursyEURO[i]);

Odczytaj z pliku fp liczbę rzeczywistą, potraktują ją jako daną typu float i zapisz do
zmiennej wskazywanej przez &num.

double num;

fscanf(fp, "%lg", &num);

Odczytaj z pliku fp liczbę rzeczywistą, potraktują ją jako daną typu double i zapisz
do zmiennej wskazywanej przez &num — uwaga na znak l poprzedzający f.

Odczytaj z pliku fp liczbę rzeczywistą, potraktują ją jako daną typu double i zapisz
do elementu tablicy wskazywanego przez &kursyEURO[i].

Przykład 2: Dane z pliku do tablicy — funkcja fscanf Przykład 2: Dane z pliku do tablicy — funkcja fscanf

6565

Powtarzaj dopóki udaje się z pliku odczytać, sformatować i zapisać jedną liczbę
rzeczywistą:

while(fscanf(fp, "%g", &kursyEURO[i++]) == 1)
{
 . . .
}

Inny zapis, podobne działanie

while(fscanf(fp, "%g", &kursyEURO[i++]) != EOF)
{
 . . .
}

Przykład 3: Odczyt kilku elementów w pojedynczym wywołaniu fscanfPrzykład 3: Odczyt kilku elementów w pojedynczym wywołaniu fscanf

6666

#include <cstdio>
#include <cstdlib>
using namespace std;

const int N = 20;
int main()
{
 char marka[N];
 char model[N];
 int rokProd;
 float przebieg;

 FILE * fp = NULL;
 if((fp = fopen("auta.txt", "rt")) != NULL)
 {
 fscanf(fp, "%s %s %d %g", marka, model, &rokProd, &przebieg);

 printf("\nMarka: %s\nModel: %s\nRocznik: %d\nPrzebieg: %g",
 marka, model, rokProd, przebieg);

 fclose(fp);
 }

 return EXIT_SUCCESS;
}

Przykład 3: Odczyt kilku elementów w pojedynczym wywołaniu fscanfPrzykład 3: Odczyt kilku elementów w pojedynczym wywołaniu fscanf

6767

fscanf(fp, "%s %s %d %g", marka, model, &rokProd, &przebieg);

Ponieważ nazwy tablic są interpretowane jako wskaźniki na ich pierwsze elementy,
w przypadku tablic nie stosujemy operatora &:

fscanf(fp, "%s %s %d %g", &marka[0], &model[0], &rokProd, &przebieg);

Zawsze jednak można wykorzystać zapis:

Kolejne wczytywane elementy rozdzielane są tzw. „białymi znakami” (spacja,
tabulacja, przejście do nowego wiersza).

Jeżeli napotkany znak nie pasuje do specyfikacji określonej w łańcuchu
sterującym odczytem, działanie funkcji fscanf jest przerywane.

Specyfikacja %s zakłada, że pole wejściowe jest ograniczone białymi znakami,
co nie pozwala na wczytanie łańcucha znaków zawierającego odstępy.

Przykład 4: Jak Przykład 3 tylko wiele razyPrzykład 4: Jak Przykład 3 tylko wiele razy

6868

#include <cstdio>
#include <cstdlib>
using namespace std;

const int N = 20;
int main()
{
 char marka[N];
 char model[N];
 int rokProd;
 float przebieg;

 FILE * fp = NULL;
 if((fp = fopen("auta.txt", "rt")) != NULL)
 {
 while(fscanf(fp, "%s %s %d %g", marka,model,&rokProd,&przebieg) != EOF)
 printf("\nMarka: %s\nModel: %s\nRocznik: %d\nPrzebieg: %g\n",
 marka, model, rokProd, przebieg);

 fclose(fp);
 }

 return EXIT_SUCCESS;
}

Przykład 5: Zapis danych z rekordu do pliku tekstowegoPrzykład 5: Zapis danych z rekordu do pliku tekstowego

6969

#include <cstdio>
#include <cstdlib>
using namespace std;

const int MAKS_M = 20;
const int MAKS_R = 10;

struct pojazd
{
 char marka[MAKS_M];
 char model[MAKS_M];
 int rok_prod;
 float cena;
 float przebieg;
 char nr_rej[MAKS_R];
};

Przykład 5: Zapis danych z rekordu do pliku tekstowegoPrzykład 5: Zapis danych z rekordu do pliku tekstowego

7070

int main()
{
 pojazd p = { "Syrena", "Bosto", 1966, 1, 12000, "KTA1234" };

 FILE * fp = NULL;
 if((fp = fopen("auta2.txt", "wt")) != NULL)
 {
 fprintf(fp, "%s %s %d %g %g %s\n",
 p.marka, p.model, p.rok_prod, p.cena, p.przebieg, p.nr_rej);
 fclose(fp);
 }

 return EXIT_SUCCESS;
}

Przykład 6: Odczyt danych z pliku tekstowego do rekorduPrzykład 6: Odczyt danych z pliku tekstowego do rekordu

7171

int main()
{
 pojazd p;

 FILE * fp = NULL;
 if((fp = fopen("auta1.txt", "rt")) != NULL)
 {
 fscanf(fp, "%s %s %d %g %g %s", p.marka, p.model, &p.rok_prod,
 &p.cena, &p.przebieg, p.nr_rej);

 printf("\nMarka: %s\nModel: %s\nRok: %d\nCena: %g"
 "\nPrzebieg: %g\nNr rej.: %s",
 p.marka, p.model, p.rok_prod, p.cena, p.przebieg, p.nr_rej);

 fclose(fp);
 }

 return EXIT_SUCCESS;
}

Przy okazji: dwa sąsiadujące ze sobą napisy, niczym nie
oddzielone, są przez kompilator łączone w jeden napis, np.:

"C" "++" łączone jest w "C++"

Przy okazji: dwa sąsiadujące ze sobą napisy, niczym nie
oddzielone, są przez kompilator łączone w jeden napis, np.:

"C" "++" łączone jest w "C++"

Przykład 7: Jak przykład 6 tylko z pominięciem wybranych danychPrzykład 7: Jak przykład 6 tylko z pominięciem wybranych danych

7272

. . .
int main()
{
 pojazd p;

 FILE * fp = NULL;
 if((fp = fopen("auta1.txt", "rt")) != NULL)
 {
 // Czytaj z pominieciem roku produkcji i numeru rejestracyjnego

 fscanf(fp, "%s %s %*d %g %g %*s",
 p.marka, p.model, &p.cena, &p.przebieg);

 printf("\nMarka: %s\nModel: %s\nCena: %g\nPrzebieg: %g\n",
 p.marka, p.model, p.cena, p.przebieg);

 fclose(fp);
 }

 return EXIT_SUCCESS;
}

Umieszczenie znaku * na początku
specyfikacji formatu powoduje
pominięcie danych.

Dokładniej – dane są odczytywane
lecz ignorowane.

Umieszczenie znaku * na początku
specyfikacji formatu powoduje
pominięcie danych.

Dokładniej – dane są odczytywane
lecz ignorowane.

Przykład 8: Odczyt danych o zadanej szerokości polaPrzykład 8: Odczyt danych o zadanej szerokości pola

7373

VIN (Vehicle Identification Number) jest złożonym zestawem znaków, który
zostaje nadany pojazdowi przez producenta w celu jego identyfikacji (istnieje
norma ISO 3779 - 1983, która określa treść i budowę numeru identyfikacyjnego
pojazdu).

VIN składa się z:

WMI — 3 znaki, światowy symbol producenta: rejon geograficzny, kraj,
producent,

VDS — 6 znaków, część opisująca pojazd: konstrukcję samochodu, rodzaj
nadwozia, rodzaj i odmianę silnika , układ przeniesienia napęd, kolejność
i znaczenie określane są przez producenta.

VIS — 8 znaków, część wyróżniająca pojazd : identyfikuje dany egzemplarz
samochodu, powinna zawierać numer fabryczny pojazdu. W części tej pierwsze
cztery znaki są literowo-cyfrowe, a pozostałe cztery muszą być cyfrowe.

1 G 1 Y Y 2 1 P 2 E 5 9 9 9 9 9 91 G 1 Y Y 2 1 P 2 E 5 9 9 9 9 9 9
WMI VDS VIS

VIN

Przykład 8: Odczyt danych o zadanej szerokości polaPrzykład 8: Odczyt danych o zadanej szerokości pola

7474

. . .
const int WMI_DL = 3;
const int VDS_DL = 6;
const int VIS_DL = 8;

struct VIN
{
 char wmi[WMI_DL + 1];
 char vds[VDS_DL + 1];
 char vis[VIS_DL + 1];
};

int main()
{
 VIN id;

 FILE * fp = NULL;
 if((fp = fopen("vin.txt", "rt")) != NULL)
 {
 fscanf(fp, "%3s%6s%8s", id.wmi, id.vds, id.vis);

 printf("\nVIN: %s %s %s\nWMI: %s\nVDI: %s\nVIS: %s\n",
 id.wmi, id.vds, id.vis, id.wmi, id.vds, id.vis);
 fclose(fp);
 }
 return EXIT_SUCCESS;
}

Określenie szerokości wczytywanego pola, liczone w znakach.Określenie szerokości wczytywanego pola, liczone w znakach.

Przykład 9: Jak przykład 8 tylko z wykorzystaniem sscanfPrzykład 9: Jak przykład 8 tylko z wykorzystaniem sscanf

7575

. . .
const int STR_DL = 128;

struct VIN
{
 char wmi[WMI_DL + 1];
 char vds[VDS_DL + 1];
 char vis[VIS_DL + 1];
};

int main()
{
 VIN id;
 char linia[STR_DL];

 FILE * fp = NULL;
 if((fp = fopen("vin.txt", "rt")) != NULL)
 {
 fgets(linia, STR_DL, fp);
 sscanf(linia, "%3s%6s%8s", id.wmi, id.vds, id.vis);

 printf("\nVIN: %s %s %s\nWMI: %s\nVDI: %s\nVIS: %s\n",
 id.wmi, id.vds, id.vis, id.wmi, id.vds, id.vis);
 fclose(fp);
 }
 return EXIT_SUCCESS;
}

Wczytaj linię z pliku, zapisz w tablicy znaków, a następnie
wczytaj elementy numeru VIN z tablicy znaków.

Wczytaj linię z pliku, zapisz w tablicy znaków, a następnie
wczytaj elementy numeru VIN z tablicy znaków.

Przykład 9: Rodzina funkcji printf i scanfPrzykład 9: Rodzina funkcji printf i scanf

7676

Funkcje printf i scanf występują w kilku odmianach.

Działają zwykle tak samo, różnią się miejscem:

do którego zapisują wyniki swego działania — rodzina printf,

z którego odczytują dane — rodzina scanf.

int printf(const char * format, ...);
int scanf (const char * format, ...);

int fprintf(FILE * stream, const char * format, ...);
int fscanf (FILE * stream, const char * format, ...);

int sprintf(const char * str, const char * format, ...);
int sscanf (const char * str, const char * format, ...);

Przykład 9: Funkcje sprintf i sscanf Przykład 9: Funkcje sprintf i sscanf

7777

VIN id = { "1G1", "YY21P2", "E5999999" };
char linia[STR_DL];

sprintf(linia, "%3s:%6s:%8s", id.wmi, id.vds, id.vis);
puts(linia);

Funkcja sprintf pobiera zawartość kolejnych pól rekordu id, formatuje zgodnie
z ustalonym formatem, zapisuje do tablicy znaków linia, funkcja puts wyprowadza
zawartość tej tablicy do stdout.

VIN id;
char linia[STR_DL];

printf("\nPodaj VIN: ");
gets(linia);
sscanf(linia, "%3s%6s%8s", id.wmi, id.vds, id.vis);
printf("%3s:%6s:%8s", id.wmi, id.vds, id.vis);

Funkcja gets odczytuje ciąg znaków z stdin, zapisuje do tablicy linia, sscanf traktuje
tę tablicę jako źródło danych, odczytuje z niej informacje zgodnie z zawartością
łańcucha formatującego, zapisuje je do pól rekordu id, funkcja printf wyprowadza
zawartość kolejnych pól tego rekordu do stdout zgodnie z ustalonym formatem.

Przykład 10: Odczyt danych rozdzielonych separatoremPrzykład 10: Odczyt danych rozdzielonych separatorem

7878

Gdy wczytywane napisy mogą zawierać białe znaki — np. spacje — wczytywanie
specyfikatorem %s staje się niemożliwe, ponieważ zatrzymuje on wczytywanie po
napotkaniu białego znaku.

Do wczytywania takich napisów służy specyfikacja %[]. Wewnątrz nawiasów
zapisuje się ciąg akceptowanych znaków, każdy inny znak traktowany jest jako
ogranicznik pola, jego napotkanie kończy odczyt elementu.

Odczyt pliku fp do tablicy znaków s napis, który zawierać może tylko litery ABC,
znaki podkreślenia '_' i spacje (np:. A_B_C_AB_AC_BC ABC):

fscanf(fp, "%[ABC_]", s);

Odczyt pliku fp do tablicy znaków s napis, który zawierać może tylko małe litery,
cyfry, i znaki podkreślenia '_', '-' i spacje (np.: 007 james_bond j23 hans_kloss):

fscanf(fp, "%[a-z0-9_ -]", s);

ABCDEF...Z zastępuje A-Z, abcdef...z zastępuje a-z, 0123456789 zastępuje 0-9

Przykład 10: Odczyt danych rozdzielonych separatoremPrzykład 10: Odczyt danych rozdzielonych separatorem

7979

W specyfikacji %[znaki] ogranicznikiem wczytywanego pola jest każdy znak nie
wymieniony w nawiasach.

W specyfikacji %[^znaki] ogranicznikiem wczytywanego pola jest każdy znak
wymieniony w nawiasach.

Czytaj tylko duże litery — ogranicznikiem pola jest każdy znak nie będący dużą
literą:

fscanf(fp, "%[A-Z]", s);

Czytaj wszystko aż do dużej litery — ogranicznikiem pola jest duża litera:

fscanf(fp, "%[^A-Z]", s);

Zazwyczaj w nawiasach umieszcza się ogranicznika pola (separatory), czytaj
wszystko aż do znaku '|', pomiń go:

fscanf(fp, "%[^|]%*c", s);

Przykład 10: Odczyt danych rozdzielonych separatoremPrzykład 10: Odczyt danych rozdzielonych separatorem

8080

. . .

int main()
{
 pojazd p;

 FILE * fp = NULL;
 if((fp = fopen("auta3.txt", "rt")) != NULL)
 {
 fscanf(fp, "%[^|]%*c%[^|]%*c%d%*c%g%*c%g%*c%s",
 p.marka, p.model, &p.rok_prod, &p.cena, &p.przebieg, p.nr_rej);

 printf("\nMarka: %s\nModel: %s\nRok: %d\nCena: %g"
 "\nPrzebieg: %g\nNr rej.: %s",
 p.marka, p.model, p.rok_prod, p.cena, p.przebieg, p.nr_rej);

 fclose(fp);
 }
 return EXIT_SUCCESS;
}

Kolejne informacje o samochodzie rozdzielane są znakami '|', znak ten jest
separatorem. Dzięki temu marka i model samochodu mogą zawierać spacje. Uwaga —
separator należy przeczytać i pominąć, stąd %*c, ale tylko dla specyfikacji %[].

Funkcja fscanf — podsumowanieFunkcja fscanf — podsumowanie

8181

Uwaga, specyfikacja %[znaki] nie pomija białych znaków, zatem gdy pole ma
zawartość: | 123|, dane nie zostaną odczytane, gdyż spacje z początku pola nie
pasują do wzorca:

fscanf(fp, "%[0-9]", s); // s == "?"

fscanf(fp, "%s", s); // s == "123"

Specyfikacja %s pomija białe znaki, zatem pole | 123|, zostanie prawidłowo
odczytane:

http://www.cplusplus.com/reference/clibrary/cstdio/fscanf/

http://pubs.opengroup.org/onlinepubs/009695399/functions/fscanf.html

http://www.kernel.org/doc/man-pages/online/pages/man3/scanf.3.html

Funkcja fscanf potrafi naprawdę dużo (np. odczytywać liczby szesnastkowe,
ósemkowe, uwzględniać ograniczenia szerokości pola, itp.), potrafi też również
naprawdę zaskakiwać — wymaga uwagi i myślenia. Więcej informacji:

http://www.cplusplus.com/reference/clibrary/cstdio/fscanf/
http://pubs.opengroup.org/onlinepubs/009695399/functions/fscanf.html
http://www.kernel.org/doc/man-pages/online/pages/man3/scanf.3.html

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21
	Slajd 22
	Slajd 23
	Slajd 24
	Slajd 25
	Slajd 26
	Slajd 27
	Slajd 28
	Slajd 29
	Slajd 30
	Slajd 31
	Slajd 32
	Slajd 33
	Slajd 34
	Slajd 35
	Slajd 36
	Slajd 37
	Slajd 38
	Slajd 39
	Slajd 40
	Slajd 41
	Slajd 42
	Slajd 43
	Slajd 44
	Slajd 45
	Slajd 46
	Slajd 47
	Slajd 48
	Slajd 49
	Slajd 50
	Slajd 51
	Slajd 52
	Slajd 53
	Slajd 54
	Slajd 55
	Slajd 56
	Slajd 57
	Slajd 58
	Slajd 59
	Slajd 60
	Slajd 61
	Slajd 62
	Slajd 63
	Slajd 64
	Slajd 65
	Slajd 66
	Slajd 67
	Slajd 68
	Slajd 69
	Slajd 70
	Slajd 71
	Slajd 72
	Slajd 73
	Slajd 74
	Slajd 75
	Slajd 76
	Slajd 77
	Slajd 78
	Slajd 79
	Slajd 80
	Slajd 81

