

Podstawy programowaniaPodstawy programowania
w jw języku C++ęzyku C++

Rekordy w C/C++ — struktury

Część dziesiąta

Niniejsze opracowanie zawiera skrót treści wykładu, lektura tych materiałów nie zastąpi uważnego w nim uczestnictwa.
Opracowanie to jest chronione prawem autorskim. Wykorzystywanie jakiegokolwiek fragmentu w celach innych niż nauka własna jest nielegalne.

Dystrybuowanie tego opracowania lub jakiejkolwiek jego części oraz wykorzystywanie zarobkowe bez zgody autora jest zabronione.

Roman Simiński

roman.siminski@us.edu.pl
www.programowanie.siminskionline.pl

Autor

Kontakt

Programowanie jako tworzenie komputerowego modelu rzeczywistościProgramowanie jako tworzenie komputerowego modelu rzeczywistości

Obiekty rzeczywiste

Abstrakcyjny
model analityczny

Analityk i/lub
projektant systemu

informatycznego

Obiekty, elementy, pojęcia ze świata zewnętrznego muszą zostać odwzorowane danymi
w programie. Dane występujące w programie stanowią uproszczony, komputerowy
model rzeczywistości.

Obiekty, elementy, pojęcia ze świata zewnętrznego muszą zostać odwzorowane danymi
w programie. Dane występujące w programie stanowią uproszczony, komputerowy
model rzeczywistości.

22

Obliczanie średniego spalania raz jeszcze ;-)Obliczanie średniego spalania raz jeszcze ;-)

Analityk i/lub
projektant systemu

informatycznego

Dane

rzeczywistego obiektu

Przejechany
dystans: 500km

Zużyte paliwo: 37l

Zmienna
 Dystans
Zmienna
 Dystans

Zmienna
 Paliwo

Zmienna
 Paliwo

Dane opisujące komputerowy
model problemu

Algorytm

Wylicz średnie spalanie:
(Paliwo*100)/Dystans

 Wyświetl wynik

Wylicz średnie spalanie:
(Paliwo*100)/Dystans

 Wyświetl wynik

33

Obliczanie średniego spalania raz jeszcze ;-)Obliczanie średniego spalania raz jeszcze ;-)

Analityk i/lub projektant
systemu informatycznego

Zmienna
 Dystans
Zmienna
 Dystans

Zmienna
 Paliwo

Zmienna
 Paliwo

Dane modelu są
dwiema, osobnymi

zmiennymi liczbowymi

44

Nowe zadanie — system ewidencji pojazdów dla autokomisuNowe zadanie — system ewidencji pojazdów dla autokomisu

Obiekty rzeczywiste

Analityk i/lub
projektant systemu

informatycznego

Jakich danych
potrzebujemy?

55

Jakie informacje będziemy przetwarzać i przechowywać?Jakie informacje będziemy przetwarzać i przechowywać?

Obiekty rzeczywiste

Analityk i/lub
projektant systemu

informatycznego

Marka
Model
Rok produkcji
Cena
Przebieg
Nr rejestracyjny

D
an

e

66

Dane opisują jeden pojazdDane opisują jeden pojazd

Analityk i/lub projektant
systemu informatycznego

Dane opisujące jeden
pojazd to porcja

różnych informacji

Marka
Model
Rok produkcji
Cena
Przebieg
Nr rejestracyjny

D
an

e

77

Pojazdów jest wiele...Pojazdów jest wiele...

Marka
Model
Rok produkcji
Cena
Przebieg
Nr rejestracyjny

D
an

e

Marka
Model
Rok produkcji
Cena
Przebieg
Nr rejestracyjny

D
an

e

Marka
Model
Rok produkcji
Cena
Przebieg
Nr rejestracyjny

D
an

e

Marka
Model
Rok produkcji
Cena
Przebieg
Nr rejestracyjny

D
an

e

Marka
Model
Rok produkcji
Cena
Przebieg
Nr rejestracyjny

D
an

e

Marka
Model
Rok produkcji
Cena
Przebieg
Nr rejestracyjny

D
an

e

Potrzeba wiele porcji
danych.

Każda z porcji jest
złożona i zawiera
różne dane opisujące
pojazd.

Potrzeba wiele porcji
danych.

Każda z porcji jest
złożona i zawiera
różne dane opisujące
pojazd.

88

Struktury — zmienne do przechowywania różnych danychStruktury — zmienne do przechowywania różnych danych

Marka
Model
Rok produkcji
Cena
Przebieg
Nr rejestracyjny

D
an

e

 struct pojazd
 {
 char marka[20];
 char model[20];
 int rok_prod;
 float cena;
 float przebieg;
 char nr_rej[10];
 };

 . . .

 pojazd a;

Definicja typu strukturalnego

Deklaracja zmiennej
strukturalnej o nazwie a

Pola struktury o nazwie pojazd

99

Struktury — parametryzacja rozmiarów tablicStruktury — parametryzacja rozmiarów tablic

 struct pojazd
 {
 char marka[MAKS_M];
 char model[MAKS_M];
 int rok_prod;
 float cena;
 float przebieg;
 char nr_rej[MAKS_R];
 };

 . . .

 pojazd a;

const int MAKS_M = 20;
const int MAKS_R = 10;

marka

model

rok_prod
cena

przebieg

nr_rej

Struktura a jako rekord

1010

Struktury — reprezentacja w pamięciStruktury — reprezentacja w pamięci

.

a

marka model rok_prod cena przebieg nr_rejPamięć
operacyjna

 struct pojazd
 {
 char marka[MAKS_M];
 char model[MAKS_M];
 int rok_prod;
 float cena;
 float przebieg;
 char nr_rej[MAKS_R];
 };

 . . .

 pojazd a;

1111

Struktury — odwoływanie się do pól Struktury — odwoływanie się do pól

 struct pojazd
 {
 char marka[MAKS_M];
 char model[MAKS_M];
 int rok_prod;
 float cena;
 float przebieg;
 char nr_rej[MAKS_R];
 };

 pojazd a;

 . . .

 a.rok_prod = 2006;
 a.przebieg = 32850.5;
 a.cena = 45000;

Wstawianie wartości do pól zmiennej strukturalnej a

. . . 2006 45000 . . .

a

marka model rok_prod cena przebieg nr_rej

32850.5

Pamięć
operacyjna

1212

= ;

Struktury — odwoływanie się do pól, format zapisu Struktury — odwoływanie się do pól, format zapisu

a .

Nazwa zamiennej
strukturalnej lub
wyrażenie lokalizujące
taką zmienną w pamięci
operacyjnej.

Nazwa zamiennej
strukturalnej lub
wyrażenie lokalizujące
taką zmienną w pamięci
operacyjnej.

Dowolne wyrażenie
typu zgodnego z typem
pola struktury.

Dowolne wyrażenie
typu zgodnego z typem
pola struktury.

Operator
selekcji pola
struktury

Operator
selekcji pola
struktury

20rok_prod

Nazwa pola strukturyNazwa pola struktury

1313

Struktury — odwoływanie się do pól tablicowychStruktury — odwoływanie się do pól tablicowych

 struct pojazd
 {
 char marka[MAKS_M];
 char model[MAKS_M];
 int rok_prod;
 float cena;
 float przebieg;
 char nr_rej[MAKS_R];
 };

 pojazd a;

 . . .

 strcpy(a.marka, ”Honda”);
 strcpy(a.marka, ”Accord”);
 strcpy(a.nr_rej, ”S1 XXXX”);

Wstawianie wartości do pól zmiennej
strukturalnej a będących tablicami
znaków

. . . Honda 2006 45000 S1 XXXXAccord . . .

a

marka model rok_prod cena przebieg nr_rej

32850.5

Pamięć
operacyjna

1414

Wyprowadzanie zawartości pól struktury do strumienia wyjściowegoWyprowadzanie zawartości pól struktury do strumienia wyjściowego

 struct pojazd
 {
 char marka[MAKS_M];
 char model[MAKS_M];
 int rok_prod;
 float cena;
 float przebieg;
 char nr_rej[MAKS_R];
 };

 pojazd a;

 . . .

 cout << ”\nMarka: ” << a.marka;
 cout << ”\nModel: ” << a.model;
 cout << ”\nRok produkcji: ” << a.rok_prod;
 cout << ”\nCena: ” << a.cena;
 cout << ”\nPrzebieg: ” << a.przebieg;
 cout << ”\nNr rejestracyjny: ” << a.nr_rej;

1515

Wprowadzanie danych do struktury ze strumienia wejściowegoWprowadzanie danych do struktury ze strumienia wejściowego

 pojazd a;

 cout << "\nPodaj dane pojazdu";

 cout << "\nMarka: ";
 cin >> a.marka;

 cout << "Model: ";
 cin >> a.model;

 cout << "Rok produkcji: ";
 cin >> a.rok_prod;

 cout << "Cena: ";
 cin >> a.cena;

 cout << "Przebieg: ";
 cin >> a.przebieg;

 cout << "Numer rejestracyjny: ";
 cin >> a.nr_rej;

Uwaga! Ta wersja wprowadzania danych do rekordu jest podatna na błędy
przepełnienia bufora
Uwaga! Ta wersja wprowadzania danych do rekordu jest podatna na błędy
przepełnienia bufora

1616

Nazwa struktury — różnice w C89 i C++Nazwa struktury — różnice w C89 i C++

W języku C++ nazwa oznacznikowa struktury występująca po słowie struct jest
pełnoprawną nazwą typu strukturalnego.
W języku C++ nazwa oznacznikowa struktury występująca po słowie struct jest
pełnoprawną nazwą typu strukturalnego.

 struct pojazd
 {
 char marka[MAKS_M];
 char model[MAKS_M];
 int rok_prod;
 float cena;
 float przebieg;
 char nr_rej[MAKS_R];
 };

 pojazd a;

1717

Nazwa struktury — różnice w C89 i C++Nazwa struktury — różnice w C89 i C++

W języku C nazwa występująca po słowie kluczowym struct nie jest samodzielną nazwą
typu strukturalnego. W deklaracja zmiennych należy użyć słowa kluczowego struct.
W języku C nazwa występująca po słowie kluczowym struct nie jest samodzielną nazwą
typu strukturalnego. W deklaracja zmiennych należy użyć słowa kluczowego struct.

 struct pojazd
 {
 char marka[MAKS_M];
 char model[MAKS_M];
 int rok_prod;
 float cena;
 float przebieg;
 char nr_rej[MAKS_R];
 };

 struct pojazd a;

1818

Struktury — parametryzacja rozmiarów tablic w CStruktury — parametryzacja rozmiarów tablic w C

 struct pojazd
 {
 char marka[MAKS_M];
 char model[MAKS_M];
 int rok_prod;
 float cena;
 float przebieg;
 char nr_rej[MAKS_R];
 };

 . . .

 struct pojazd a;

#define MAKS_M 20
#define MAKS_R 10

marka

model

rok_prod
cena

przebieg

nr_rej

Struktura a jako rekord

1919

Nazwa struktury — różnice w C89 i C++Nazwa struktury — różnice w C89 i C++

Aby nie pisać słowa kluczowego struct, można użyć deklaracji tworzącej synonimiczną
nazwę typu: typedef.
Aby nie pisać słowa kluczowego struct, można użyć deklaracji tworzącej synonimiczną
nazwę typu: typedef.

 struct _pojazd
 {
 char marka[MAKS_M];
 char model[MAKS_M];
 int rok_prod;
 float cena;
 float przebieg;
 char nr_rej[MAKS_R];
 };

 typedef struct _pojazd pojazd;

 pojazd a;

 typedef struct
 {
 char marka[MAKS_M];
 char model[MAKS_M];
 int rok_prod;
 float cena;
 float przebieg;
 char nr_rej[MAKS_R];
 } pojazd;

 pojazd a;

2020

Manipulowanie strukturami przy użyciu wskaźnikówManipulowanie strukturami przy użyciu wskaźników

 struct pojazd
 {
 char marka[MAKS_M];
 char model[MAKS_M];
 int rok_prod;
 float cena;
 float przebieg;
 char nr_rej[MAKS_R];
 };

 pojazd a; // Deklaracja zmiennej strukturalnej pojazd
 pojazd * a_wsk; // Deklaracja zmiennej wska nikowej do pojazd ź
 . . .

. . . a a_wsk . . .

Pamięć
operacyjna

?

2121

Manipulowanie strukturami przy użyciu wskaźników, cd ...Manipulowanie strukturami przy użyciu wskaźników, cd ...

 struct pojazd
 {
 char marka[MAKS_M];
 char model[MAKS_M];
 int rok_prod;
 float cena;
 float przebieg;
 char nr_rej[MAKS_R];
 };

 pojazd a; // Deklaracja zmiennej strukturalnej pojazd
 pojazd * a_wsk; // Deklaracja zmiennej wska nikowej do pojazd ź
 . . .
 a_wsk = &a;

. . . a a_wsk . . .

Pamięć
operacyjna

Zmienna a_wsk lokalizuje a pamięci zmienną a

2222

Manipulowanie strukturami przy użyciu wskaźników, cd ...Manipulowanie strukturami przy użyciu wskaźników, cd ...

 struct auto
 {
 char marka[MAKS_M];
 char model[MAKS_M];
 int rok_prod;
 float cena;
 float przebieg;
 char nr_rej[MAKS_R];
 };

 pojazd a; // Deklaracja zmiennej strukturalnej pojazd
 pojazd * a_wsk; // Deklaracja zmiennej wska nikowej do pojazd ź
 . . .
 a_wsk = &a;
 (*a_wsk).cena = 46000;

. . . a a_wsk . . .

Pamięć
operacyjna

Wyrażenie *a_wsk reprezentuje strukturę a

46000

2323

Odwoływanie się do pól struktury via wskaźnikOdwoływanie się do pól struktury via wskaźnik

(* a_wsk) . cena = 46000;(* a_wsk) . cena = 46000;

Zmienna wskaźnikowaZmienna wskaźnikowa

Pole struktury, wskazywanej przez a_wsk.Pole struktury, wskazywanej przez a_wsk.Wskazywana strukturaWskazywana struktura

Uwaga! Ze względu na priorytet i łączność operatorów, nawiasy w powyższym
wyrażeniu są niezbędne.
Uwaga! Ze względu na priorytet i łączność operatorów, nawiasy w powyższym
wyrażeniu są niezbędne.

 (*a_wsk).cena *a_wsk.cenaTo nie to samo!To nie to samo!

2424

Odwoływanie się do pól struktury via wskaźnik, operator ->Odwoływanie się do pól struktury via wskaźnik, operator ->

 a_wsk -> cena = 46000; a_wsk -> cena = 46000;

Zmienna wskaźnikowaZmienna wskaźnikowa Pole struktury, wskazywanej przez a_wsk.Pole struktury, wskazywanej przez a_wsk.

Operator dostępu do składowejOperator dostępu do składowej

 (*a_wsk).cena a_wsk->cenaTo to samoTo to samo

Operator dostępu do składowej -> stosujemy dla struktur, uni i obiektów.Operator dostępu do składowej -> stosujemy dla struktur, uni i obiektów.

2525

Funkcja wyprowadzająca zawartość struktury do stdoutFunkcja wyprowadzająca zawartość struktury do stdout

void pokaz_info(pojazd info)
{
 cout << ”\nMarka: ” << info.marka;
 cout << ”\nModel: ” << info.model;
 cout << ”\nRok produkcji: ” << info.rok_prod;
 cout << ”\nCena: ” << info.cena;
 cout << ”\nPrzebieg: ” << info.przebieg;
 cout << ”\nNr rejestracyjny: ” << info.nr_rej;
}

. . .

pojazd a;
a.cena = 25000;
. . .

pokaz_info(a);

2626

Przekazywanie struktur przez wartośćPrzekazywanie struktur przez wartość

void pokaz_info(pojazd info)
{
 cout << ”\nMarka: ” << info.marka;
 cout << ”\nModel: ” << info.model;
 cout << ”\nRok produkcji: ” << info.rok_prod;
 cout << ”\nCena: ” << info.cena;
 cout << ”\nPrzebieg: ” << info.przebieg;
 cout << ”\nNr rejestracyjny: ” << info.nr_rej;;
}

. . .

pojazd a;
a.cena = 25000;
. . .

pokaz_info(a);

. . . a . . .

Pamięć
operacyjna

. . . info

Stos

Parametr aktualny
wywołania

Parametr formalny
funkcji to strukturaKopiowanie

2727

Przekazywanie wskaźnika do strukturyPrzekazywanie wskaźnika do struktury

void pokaz_info(pojazd * info)
{
 cout << ”\nMarka: ” << info->marka;
 cout << ”\nModel: ” << info->model;
 cout << ”\nRok produkcji: ” << info->rok_prod;
 cout << ”\nCena: ” << info->cena;
 cout << ”\nPrzebieg: ” << info->przebieg;
 cout << ”\nNr rejestracyjny: ” << info->nr_rej;
}

. . .

pojazd a;
a.cena = 25000;
. . .

pokaz_info(&a);

. . . a . . .

Pamięć
operacyjna

. . . info

Stos

Parametr aktualny
wywołania

Parametr formalny
funkcji to wskaźnikWskazanie na a

2828

Przekazywanie przez wartość a przekazywanie wskaźnika do strukturyPrzekazywanie przez wartość a przekazywanie wskaźnika do struktury

Zmienne strukturalne mają często duży rozmiar. Przekazywanie ich przez wartość:

zabiera dodatkową pamięć — parametr formalny (alokowany na stosie) jest
pełnowymiarową kopią parametru formalnego,

trwa — robienie kopii parametru aktualnego wywołania wymaga przesyłu
pamięć-pamięć, potencjalnie dużej liczby bajtów,

blokuje modyfikacje — modyfikacje wykonane na parametrze formalnym funkcji
nie przenoszą się na parametr wywołania funkcji.

2929

Przekazywanie przez wartość a przekazywanie wskaźnika do strukturyPrzekazywanie przez wartość a przekazywanie wskaźnika do struktury

Przekazywanie wskaźników do struktury:

oszczędza pamięć — parametr formalny (alokowany na stosie) zawiera jedynie
adres parametru formalnego,

jest szybkie — przekazanie wskaźnika to przesył małej liczby bajtów,

pozwala na modyfikacje — modyfikacje wykonane na parametrze formalnym
funkcji przenoszą się na parametr wywołania funkcji. Jeżeli modyfikacje obiektu
wskazywanego mają być zabronione, używamy słowa kluczowego const w
deklaracji parametru.

void pokaz_info(const pojazd * info)
{
 cout << ”\nMarka: ” << info->marka;
 cout << ”\nModel: ” << info->model;
 cout << ”\nRok produkcji: ” << info->rok_prod;
 cout << ”\nCena: ” << info->cena;
 cout << ”\nPrzebieg: ” << info->przebieg;
 cout << ”\nNr rejestracyjny: ” << info->nr_rej;
}

3030

Przekazywanie referencji do strukturPrzekazywanie referencji do struktur

void pokaz_info(pojazd & info)
{
 cout << ”\nMarka: ” << info.marka;
 cout << ”\nModel: ” << info.model;
 cout << ”\nRok produkcji: ” << info.rok_prod;
 cout << ”\nCena: ” << info.cena;
 cout << ”\nPrzebieg: ” << info.przebieg;
 cout << ”\nNr rejestracyjny: ” << info.nr_rej;
}

W języku C++ można przekazywać parametry referencyjne. Nie trzeba wtedy używać
wskaźników, a działanie jest analogiczne. Referencja ustalona (const) nie pozwala na
niezamierzoną modyfikację parametru aktualnego wywołania.

W języku C++ można przekazywać parametry referencyjne. Nie trzeba wtedy używać
wskaźników, a działanie jest analogiczne. Referencja ustalona (const) nie pozwala na
niezamierzoną modyfikację parametru aktualnego wywołania.

void pokaz_info(const pojazd & info)
{
 cout << ”\nMarka: ” << info.marka;
 cout << ”\nModel: ” << info.model;
 cout << ”\nRok produkcji: ” << info.rok_prod;
 cout << ”\nCena: ” << info.cena;
 cout << ”\nPrzebieg: ” << info.przebieg;
 cout << ”\nNr rejestracyjny: ” << info.nr_rej;
}

3131

Funkcja wczytująca zawartość struktury ze strumienia wejściowegoFunkcja wczytująca zawartość struktury ze strumienia wejściowego

void czytaj_info(pojazd * info)
{
 cout << "\nMarka: ";
 cin >> info->marka;

 cout << "Model: ";
 cin >> info->model;

 cout << "Rok produkcji: ";
 cin >> info->rok_prod;

 cout << "Cena: ";
 cin >> info->cena;

 cout << "Przebieg: ";
 cin >> info->przebieg;

 cout << "Numer rejestracyjny: ";
 cin >> info->nr_rej;
}

Wersja wprowadzania danych do rekordu jest podatna na błędy przepełnienia buforaWersja wprowadzania danych do rekordu jest podatna na błędy przepełnienia bufora

3232

Suplement I — operacje wejścia/wyjścia w konwencji języka C Suplement I — operacje wejścia/wyjścia w konwencji języka C

void pokaz_info(const pojazd * info)
{
 printf(”\nMarka: %s”, info->marka);
 printf(”\nModel: %s”, info->model);
 printf(”\nRok produkcji: %d”, info->rok_prod);
 printf(”\nCena: %g”, info->cena);
 printf(”\nPrzebieg: %g”, info->przebieg);
 printf(”\nNr rejestracyjny: %s”, info->nr_rej);
}

3333

Suplement I — operacje wejścia/wyjścia w konwencji języka C Suplement I — operacje wejścia/wyjścia w konwencji języka C

void czytaj_info(pojazd * info)
{
 char bufor[128];

 printf("\nMarka: "); gets(bufor);
 if(strlen(bufor) >= MAKS_M) bufor[MAKS_M - 1] = '\0';
 strcpy(info->marka, bufor);

 printf("Model: "); gets(bufor);
 if(strlen(bufor) >= MAKS_M) bufor[MAKS_M - 1] = '\0';
 strcpy(info->model, bufor);

 printf("Rok produkcji: "); gets(bufor);
 info->rok_prod = atoi(bufor);

 printf("Cena: "); gets(bufor);
 info->cena = atof(bufor);

 printf("Przebieg: "); gets(bufor);
 info->przebieg = atof(bufor);

 printf("Numer rejestracyjny: "); gets(bufor);
 if(strlen(bufor) >= MAKS_R) bufor[MAKS_R - 1] = '\0';
 strcpy(info->nr_rej, bufor);
}

3434

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21
	Slajd 22
	Slajd 23
	Slajd 24
	Slajd 25
	Slajd 26
	Slajd 27
	Slajd 28
	Slajd 29
	Slajd 30
	Slajd 31
	Slajd 32
	Slajd 33
	Slajd 34

