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Programowanie jako tworzenie komputerowego modelu rzeczywistościProgramowanie jako tworzenie komputerowego modelu rzeczywistości

Obiekty rzeczywiste

Abstrakcyjny 
model analityczny

Analityk i/lub 
projektant systemu 

informatycznego

Obiekty, elementy, pojęcia ze świata zewnętrznego muszą zostać odwzorowane danymi 
w programie. Dane występujące w programie stanowią uproszczony, komputerowy 
model rzeczywistości.

Obiekty, elementy, pojęcia ze świata zewnętrznego muszą zostać odwzorowane danymi 
w programie. Dane występujące w programie stanowią uproszczony, komputerowy 
model rzeczywistości.
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Obliczanie średniego spalania raz jeszcze ;-)Obliczanie średniego spalania raz jeszcze ;-)

Analityk i/lub 
projektant systemu 

informatycznego

Dane

rzeczywistego obiektu

Przejechany 
dystans: 500km

Zużyte paliwo: 37l

Zmienna
 Dystans
Zmienna
 Dystans

Zmienna
 Paliwo

Zmienna
 Paliwo

Dane opisujące komputerowy 
model problemu

Algorytm

Wylicz średnie spalanie:
(Paliwo*100)/Dystans

 Wyświetl wynik

Wylicz średnie spalanie:
(Paliwo*100)/Dystans

 Wyświetl wynik
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Obliczanie średniego spalania raz jeszcze ;-)Obliczanie średniego spalania raz jeszcze ;-)

Analityk i/lub projektant 
systemu informatycznego

Zmienna
 Dystans
Zmienna
 Dystans

Zmienna
 Paliwo

Zmienna
 Paliwo

Dane modelu są 
dwiema, osobnymi 

zmiennymi liczbowymi

44



  

Nowe zadanie — system ewidencji pojazdów dla autokomisuNowe zadanie — system ewidencji pojazdów dla autokomisu

Obiekty rzeczywiste

Analityk i/lub 
projektant systemu 

informatycznego

Jakich danych 
potrzebujemy?
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Jakie informacje będziemy przetwarzać i przechowywać?Jakie informacje będziemy przetwarzać i przechowywać?

Obiekty rzeczywiste

Analityk i/lub 
projektant systemu 

informatycznego

Marka
Model
Rok produkcji
Cena
Przebieg
Nr rejestracyjny

D
an

e

66



  

Dane opisują jeden pojazdDane opisują jeden pojazd

Analityk i/lub projektant 
systemu informatycznego

Dane opisujące jeden 
pojazd to porcja 

różnych informacji 

Marka
Model
Rok produkcji
Cena
Przebieg
Nr rejestracyjny

D
an

e
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Pojazdów jest wiele...Pojazdów jest wiele...

Marka
Model
Rok produkcji
Cena
Przebieg
Nr rejestracyjny

D
an

e

Marka
Model
Rok produkcji
Cena
Przebieg
Nr rejestracyjny

D
an

e

Marka
Model
Rok produkcji
Cena
Przebieg
Nr rejestracyjny

D
an

e

Marka
Model
Rok produkcji
Cena
Przebieg
Nr rejestracyjny

D
an

e

Marka
Model
Rok produkcji
Cena
Przebieg
Nr rejestracyjny

D
an

e

Marka
Model
Rok produkcji
Cena
Przebieg
Nr rejestracyjny

D
an

e

Potrzeba wiele porcji 
danych. 

Każda z porcji jest 
złożona i zawiera 
różne dane opisujące 
pojazd.

Potrzeba wiele porcji 
danych. 

Każda z porcji jest 
złożona i zawiera 
różne dane opisujące 
pojazd.
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Struktury — zmienne do przechowywania różnych danychStruktury — zmienne do przechowywania różnych danych

Marka
Model
Rok produkcji
Cena
Przebieg
Nr rejestracyjny

D
an

e

 struct pojazd
 {
   char  marka[ 20 ];
   char  model[ 20 ];
   int   rok_prod;
   float cena;
   float przebieg;
   char  nr_rej[ 10 ];
 };

 . . . 

 pojazd a;

Definicja typu strukturalnego

Deklaracja zmiennej 
strukturalnej o nazwie a

Pola struktury o nazwie pojazd
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Struktury — parametryzacja rozmiarów tablicStruktury — parametryzacja rozmiarów tablic

 struct pojazd
 {
   char  marka[ MAKS_M ];
   char  model[ MAKS_M ];
   int   rok_prod;
   float cena;
   float przebieg;
   char  nr_rej[ MAKS_R ];
 };

 . . . 

 pojazd a;

const int MAKS_M = 20;
const int MAKS_R = 10;

marka

model

rok_prod
cena

przebieg

nr_rej

Struktura a jako rekord
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Struktury — reprezentacja w pamięciStruktury — reprezentacja w pamięci

. . . . . .

a

marka model rok_prod cena przebieg nr_rejPamięć
operacyjna

 struct pojazd
 {
   char  marka[ MAKS_M ];
   char  model[ MAKS_M ];
   int   rok_prod;
   float cena;
   float przebieg;
   char  nr_rej[ MAKS_R ];
 };

 . . . 

 pojazd a;
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Struktury — odwoływanie się do pól Struktury — odwoływanie się do pól 

 struct pojazd
 {
   char  marka[ MAKS_M ];
   char  model[ MAKS_M ];
   int   rok_prod;
   float cena;
   float przebieg;
   char  nr_rej[ MAKS_R ];
 };

 pojazd a;

 . . .

 a.rok_prod = 2006;
 a.przebieg = 32850.5;
 a.cena = 45000;

Wstawianie wartości do pól zmiennej strukturalnej a

. . . 2006 45000 . . .

a

marka model rok_prod cena przebieg nr_rej

32850.5

Pamięć
operacyjna
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=     ;

Struktury — odwoływanie się do pól, format zapisu Struktury — odwoływanie się do pól, format zapisu 

a .

Nazwa zamiennej 
strukturalnej lub 
wyrażenie lokalizujące 
taką zmienną w pamięci 
operacyjnej.

Nazwa zamiennej 
strukturalnej lub 
wyrażenie lokalizujące 
taką zmienną w pamięci 
operacyjnej.

Dowolne wyrażenie 
typu zgodnego z typem 
pola struktury.

Dowolne wyrażenie 
typu zgodnego z typem 
pola struktury.

Operator 
selekcji pola 
struktury

Operator 
selekcji pola 
struktury

20rok_prod

Nazwa pola strukturyNazwa pola struktury
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Struktury — odwoływanie się do pól tablicowychStruktury — odwoływanie się do pól tablicowych

 struct pojazd
 {
   char  marka[ MAKS_M ];
   char  model[ MAKS_M ];
   int   rok_prod;
   float cena;
   float przebieg;
   char  nr_rej[ MAKS_R ];
 };

 pojazd a;

 . . .

 strcpy( a.marka, ”Honda” );
 strcpy( a.marka, ”Accord” );
 strcpy( a.nr_rej, ”S1 XXXX” );

Wstawianie wartości do pól zmiennej 
strukturalnej a będących tablicami 
znaków

. . . Honda 2006 45000 S1 XXXXAccord . . .

a

marka model rok_prod cena przebieg nr_rej

32850.5

Pamięć
operacyjna
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Wyprowadzanie zawartości pól struktury do strumienia wyjściowegoWyprowadzanie zawartości pól struktury do strumienia wyjściowego

 struct pojazd
 {
   char  marka[ MAKS_M ];
   char  model[ MAKS_M ];
   int   rok_prod;
   float cena;
   float przebieg;
   char  nr_rej[ MAKS_R ];
 };

 pojazd a;

 . . .

 cout << ”\nMarka: ” << a.marka;
 cout << ”\nModel: ” << a.model;
 cout << ”\nRok produkcji: ” << a.rok_prod;
 cout << ”\nCena: ” << a.cena;
 cout << ”\nPrzebieg: ” << a.przebieg;
 cout << ”\nNr rejestracyjny: ” << a.nr_rej;

1515



  

Wprowadzanie danych do struktury ze strumienia wejściowegoWprowadzanie danych do struktury ze strumienia wejściowego

 pojazd a; 
 
 cout << "\nPodaj dane pojazdu";

 cout << "\nMarka: ";
 cin >> a.marka;

 cout << "Model: ";
 cin >> a.model;

 cout << "Rok produkcji: ";
 cin >> a.rok_prod;

 cout << "Cena: ";
 cin >> a.cena;

 cout << "Przebieg: ";
 cin >> a.przebieg;

 cout << "Numer rejestracyjny: ";
 cin >> a.nr_rej;

Uwaga! Ta wersja wprowadzania danych do rekordu jest podatna na błędy 
przepełnienia bufora
Uwaga! Ta wersja wprowadzania danych do rekordu jest podatna na błędy 
przepełnienia bufora
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Nazwa struktury — różnice w C89 i C++Nazwa struktury — różnice w C89 i C++

W języku C++ nazwa oznacznikowa struktury występująca po słowie struct jest 
pełnoprawną nazwą typu strukturalnego. 
W języku C++ nazwa oznacznikowa struktury występująca po słowie struct jest 
pełnoprawną nazwą typu strukturalnego. 

 struct pojazd
 {
   char  marka[ MAKS_M ];
   char  model[ MAKS_M ];
   int   rok_prod;
   float cena;
   float przebieg;
   char  nr_rej[ MAKS_R ];
 };

 pojazd a;
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Nazwa struktury — różnice w C89 i C++Nazwa struktury — różnice w C89 i C++

W języku C nazwa występująca po słowie kluczowym struct nie jest samodzielną nazwą 
typu strukturalnego. W deklaracja zmiennych należy użyć słowa kluczowego  struct.
W języku C nazwa występująca po słowie kluczowym struct nie jest samodzielną nazwą 
typu strukturalnego. W deklaracja zmiennych należy użyć słowa kluczowego  struct.

 struct pojazd
 {
   char  marka[ MAKS_M ];
   char  model[ MAKS_M ];
   int   rok_prod;
   float cena;
   float przebieg;
   char  nr_rej[ MAKS_R ];
 };

 struct pojazd a;
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Struktury — parametryzacja rozmiarów tablic w CStruktury — parametryzacja rozmiarów tablic w C

 struct pojazd
 {
   char  marka[ MAKS_M ];
   char  model[ MAKS_M ];
   int   rok_prod;
   float cena;
   float przebieg;
   char  nr_rej[ MAKS_R ];
 };

 . . . 

 struct pojazd a;

#define MAKS_M 20
#define MAKS_R 10

marka

model

rok_prod
cena

przebieg

nr_rej

Struktura a jako rekord
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Nazwa struktury — różnice w C89 i C++Nazwa struktury — różnice w C89 i C++

Aby nie pisać słowa kluczowego struct, można użyć deklaracji tworzącej synonimiczną 
nazwę typu: typedef.
Aby nie pisać słowa kluczowego struct, można użyć deklaracji tworzącej synonimiczną 
nazwę typu: typedef.

 struct _pojazd
 {
   char  marka[ MAKS_M ];
   char  model[ MAKS_M ];
   int   rok_prod;
   float cena;
   float przebieg;
   char  nr_rej[ MAKS_R ];
 };

 typedef struct _pojazd pojazd; 

 pojazd a;

 typedef struct  
 {
   char  marka[ MAKS_M ];
   char  model[ MAKS_M ];
   int   rok_prod;
   float cena;
   float przebieg;
   char  nr_rej[ MAKS_R ];
 } pojazd;

 pojazd a;
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Manipulowanie strukturami przy użyciu wskaźnikówManipulowanie strukturami przy użyciu wskaźników

 struct pojazd
 {
   char  marka[ MAKS_M ];
   char  model[ MAKS_M ];
   int   rok_prod;
   float cena;
   float przebieg;
   char  nr_rej[ MAKS_R ];
 };

 pojazd a;       // Deklaracja zmiennej strukturalnej pojazd   
 pojazd * a_wsk; // Deklaracja zmiennej wska nikowej do pojazd ź
 . . .

. . . a          a_wsk . . .

Pamięć
operacyjna

?
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Manipulowanie strukturami przy użyciu wskaźników, cd ...Manipulowanie strukturami przy użyciu wskaźników, cd ...

 struct pojazd
 {
   char  marka[ MAKS_M ];
   char  model[ MAKS_M ];
   int   rok_prod;
   float cena;
   float przebieg;
   char  nr_rej[ MAKS_R ];
 };

 pojazd a;       // Deklaracja zmiennej strukturalnej pojazd   
 pojazd * a_wsk; // Deklaracja zmiennej wska nikowej do pojazd ź
 . . .
 a_wsk = &a;

. . . a          a_wsk . . .

Pamięć
operacyjna

Zmienna a_wsk lokalizuje a pamięci zmienną a
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Manipulowanie strukturami przy użyciu wskaźników, cd ...Manipulowanie strukturami przy użyciu wskaźników, cd ...

 struct auto
 {
   char  marka[ MAKS_M ];
   char  model[ MAKS_M ];
   int   rok_prod;
   float cena;
   float przebieg;
   char  nr_rej[ MAKS_R ];
 };
 
 pojazd a;       // Deklaracja zmiennej strukturalnej pojazd   
 pojazd * a_wsk; // Deklaracja zmiennej wska nikowej do pojazd ź
 . . .
 a_wsk = &a;
 (*a_wsk).cena = 46000;

. . . a          a_wsk . . .

Pamięć
operacyjna

Wyrażenie *a_wsk reprezentuje strukturę a

46000
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Odwoływanie się do pól struktury via wskaźnikOdwoływanie się do pól struktury via wskaźnik

( * a_wsk ) . cena = 46000;( * a_wsk ) . cena = 46000;

Zmienna wskaźnikowaZmienna wskaźnikowa

Pole struktury, wskazywanej przez a_wsk.Pole struktury, wskazywanej przez a_wsk.Wskazywana strukturaWskazywana struktura

Uwaga! Ze względu na priorytet i łączność operatorów, nawiasy w powyższym 
wyrażeniu są niezbędne.
Uwaga! Ze względu na priorytet i łączność operatorów, nawiasy w powyższym 
wyrażeniu są niezbędne.

 (*a_wsk).cena  *a_wsk.cenaTo nie to samo!To nie to samo!
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Odwoływanie się do pól struktury via wskaźnik, operator ->Odwoływanie się do pól struktury via wskaźnik, operator ->

   a_wsk  -> cena = 46000;   a_wsk  -> cena = 46000;

Zmienna wskaźnikowaZmienna wskaźnikowa Pole struktury, wskazywanej przez a_wsk.Pole struktury, wskazywanej przez a_wsk.

Operator dostępu do składowejOperator dostępu do składowej

 (*a_wsk).cena  a_wsk->cenaTo to samoTo to samo

Operator dostępu do składowej -> stosujemy dla struktur, uni i obiektów.Operator dostępu do składowej -> stosujemy dla struktur, uni i obiektów.
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Funkcja wyprowadzająca zawartość struktury do stdoutFunkcja wyprowadzająca zawartość struktury do stdout

void pokaz_info( pojazd info )
{
  cout << ”\nMarka: ” << info.marka;
  cout << ”\nModel: ” << info.model;
  cout << ”\nRok produkcji: ” << info.rok_prod;
  cout << ”\nCena: ” << info.cena;
  cout << ”\nPrzebieg: ” << info.przebieg;
  cout << ”\nNr rejestracyjny: ” << info.nr_rej;
}

. . . 

pojazd a;  
a.cena = 25000;
. . . 

pokaz_info( a );
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Przekazywanie struktur przez wartośćPrzekazywanie struktur przez wartość

void pokaz_info( pojazd info )
{
  cout << ”\nMarka: ” << info.marka;
  cout << ”\nModel: ” << info.model;
  cout << ”\nRok produkcji: ” << info.rok_prod;
  cout << ”\nCena: ” << info.cena;
  cout << ”\nPrzebieg: ” << info.przebieg;
  cout << ”\nNr rejestracyjny: ” << info.nr_rej;;
}

. . . 

pojazd a;  
a.cena = 25000;
. . . 

pokaz_info( a );

. . . a . . .

Pamięć
operacyjna

. . . info

Stos

Parametr aktualny
wywołania

Parametr formalny
funkcji to strukturaKopiowanie
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Przekazywanie wskaźnika do strukturyPrzekazywanie wskaźnika do struktury

void pokaz_info( pojazd * info )
{
  cout << ”\nMarka: ” << info->marka;
  cout << ”\nModel: ” << info->model;
  cout << ”\nRok produkcji: ” << info->rok_prod;
  cout << ”\nCena: ” << info->cena;
  cout << ”\nPrzebieg: ” << info->przebieg;
  cout << ”\nNr rejestracyjny: ” << info->nr_rej;
}

. . . 

pojazd a;  
a.cena = 25000;
. . . 

pokaz_info( &a );

. . . a . . .

Pamięć
operacyjna

. . . info

Stos

Parametr aktualny
wywołania

Parametr formalny
funkcji to wskaźnikWskazanie na a
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Przekazywanie przez wartość a przekazywanie wskaźnika do strukturyPrzekazywanie przez wartość a przekazywanie wskaźnika do struktury

Zmienne strukturalne mają często duży rozmiar. Przekazywanie ich przez wartość:

zabiera dodatkową pamięć — parametr formalny (alokowany na stosie) jest 
pełnowymiarową kopią parametru formalnego,

trwa — robienie kopii parametru aktualnego wywołania wymaga przesyłu 
pamięć-pamięć, potencjalnie dużej liczby bajtów,

blokuje modyfikacje — modyfikacje wykonane na parametrze formalnym funkcji 
nie przenoszą się na parametr wywołania funkcji. 
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Przekazywanie przez wartość a przekazywanie wskaźnika do strukturyPrzekazywanie przez wartość a przekazywanie wskaźnika do struktury

Przekazywanie wskaźników do struktury:

oszczędza pamięć — parametr formalny (alokowany na stosie) zawiera jedynie 
adres parametru formalnego,

jest szybkie — przekazanie wskaźnika to przesył małej liczby bajtów,

pozwala na modyfikacje — modyfikacje wykonane na parametrze formalnym 
funkcji przenoszą się na parametr wywołania funkcji. Jeżeli modyfikacje obiektu 
wskazywanego mają być zabronione, używamy słowa kluczowego const w 
deklaracji parametru.

void pokaz_info( const pojazd * info )
{
  cout << ”\nMarka: ” << info->marka;
  cout << ”\nModel: ” << info->model;
  cout << ”\nRok produkcji: ” << info->rok_prod;
  cout << ”\nCena: ” << info->cena;
  cout << ”\nPrzebieg: ” << info->przebieg;
  cout << ”\nNr rejestracyjny: ” << info->nr_rej;
}
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Przekazywanie referencji do strukturPrzekazywanie referencji do struktur

void pokaz_info( pojazd & info )
{
  cout << ”\nMarka: ” << info.marka;
  cout << ”\nModel: ” << info.model;
  cout << ”\nRok produkcji: ” << info.rok_prod;
  cout << ”\nCena: ” << info.cena;
  cout << ”\nPrzebieg: ” << info.przebieg;
  cout << ”\nNr rejestracyjny: ” << info.nr_rej;
}

W języku C++ można przekazywać parametry referencyjne. Nie trzeba wtedy używać 
wskaźników, a działanie jest analogiczne. Referencja ustalona (const) nie pozwala na 
niezamierzoną modyfikację parametru aktualnego wywołania.

W języku C++ można przekazywać parametry referencyjne. Nie trzeba wtedy używać 
wskaźników, a działanie jest analogiczne. Referencja ustalona (const) nie pozwala na 
niezamierzoną modyfikację parametru aktualnego wywołania.

void pokaz_info( const pojazd & info )
{
  cout << ”\nMarka: ” << info.marka;
  cout << ”\nModel: ” << info.model;
  cout << ”\nRok produkcji: ” << info.rok_prod;
  cout << ”\nCena: ” << info.cena;
  cout << ”\nPrzebieg: ” << info.przebieg;
  cout << ”\nNr rejestracyjny: ” << info.nr_rej;
}
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Funkcja wczytująca zawartość struktury ze strumienia wejściowegoFunkcja wczytująca zawartość struktury ze strumienia wejściowego

void czytaj_info( pojazd * info )
{
 cout << "\nMarka: ";
 cin >> info->marka;

 cout << "Model: ";
 cin >> info->model;

 cout << "Rok produkcji: ";
 cin >> info->rok_prod;

 cout << "Cena: ";
 cin >> info->cena;

 cout << "Przebieg: ";
 cin >> info->przebieg;

 cout << "Numer rejestracyjny: ";
 cin >> info->nr_rej;
}

Wersja wprowadzania danych do rekordu jest podatna na błędy przepełnienia buforaWersja wprowadzania danych do rekordu jest podatna na błędy przepełnienia bufora
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Suplement I — operacje wejścia/wyjścia w konwencji języka C Suplement I — operacje wejścia/wyjścia w konwencji języka C 

void pokaz_info( const pojazd * info )
{
  printf( ”\nMarka: %s”, info->marka );
  printf( ”\nModel: %s”, info->model );
  printf( ”\nRok produkcji: %d”, info->rok_prod );
  printf( ”\nCena: %g”, info->cena );
  printf( ”\nPrzebieg: %g”, info->przebieg );
  printf( ”\nNr rejestracyjny: %s”, info->nr_rej );
}
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void czytaj_info( pojazd * info )
{
  char bufor[ 128 ];

  printf( "\nMarka: " ); gets( bufor );
  if( strlen( bufor ) >= MAKS_M ) bufor[ MAKS_M - 1 ] = '\0'; 
  strcpy( info->marka, bufor );

  printf( "Model: " );  gets( bufor );
  if( strlen( bufor ) >= MAKS_M ) bufor[ MAKS_M - 1 ] = '\0'; 
  strcpy( info->model, bufor );

  printf( "Rok produkcji: " ); gets( bufor );
  info->rok_prod = atoi( bufor );

  printf( "Cena: " ); gets( bufor );
  info->cena = atof( bufor );

  printf( "Przebieg: " ); gets( bufor );
  info->przebieg = atof( bufor );

  printf( "Numer rejestracyjny: " ); gets( bufor );
  if( strlen( bufor ) >= MAKS_R ) bufor[ MAKS_R - 1 ] = '\0'; 
  strcpy( info->nr_rej, bufor );
}
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