—

|

Podstawy
DFQJ allMowanie

-

Q)
(——

Czesc siodma

Zmienne wskaznikowe — wprowadzenie

Autor
Roman Siminski

Kontakt

roman.siminski@us.edu.pl
www.programowanie.siminskionline.pl

Niniejsze opracowanie zawiera skrot tre$ci wykladu, lektura tych materialow nie zastapi uwaznego w nim uczestnictwa.
Opracowanie to jest chronione prawem autorskim. Wykorzystywanie jakiegokolwiek fragmentu w celach innych niz nauka wlasna jest nielegalne.
Dystrybuowanie tego opracowania lub jakiejkolwiek jego czesci oraz wykorzystywanie zarobkowe bez zgody autora jest zabronione.

Co to jest zmienna — przypomnienie

Zmienna jest obiektem w programie, rezydujacym w pamieci operacyjnej, przezna-
czonym do przechowywania wartosci pewnego typu.

» Kazda zmienna ma swoja nazwe, oraz typ wartosci.

» Zmienne s3a przechowywane w pamieci operacyjnej, liczba zajetych bajtow
zalezy od typu zmiennej.

» Nazwa zmiennej identyfikuje zmienng w programie zwalniajac programiste od
zastanawiania sie, pod jakim adresem w pamieci zmienna jest zlokalizowana.

Adres w pamigci —i L r Nazwa zmiennej
int 1;

02c4a45fh 10 i

=
Il

=

o
>

Wartos¢ zmiennej

I

Dziwne pojecia — [-wartosc i r-wartosc

Obiekt jest pewnym nazwanym obszarem pamieci. Pod pojeciem l-wartosci
rozumiemy wyrazenie lokalizujgce ten obiekt w pamieci

» Zmienna moze wystepowac po lewej stronie operatora przypisania, mowi sie,
ze jest wtedy [-wartosciq.

» Wszystko, co moze wystepowaé po prawej stronie operatora przypisania jest
r-wartosciq.

: : j to l-wartosé
int 1;

int j; / 5 to r-wartosé

5; . y
I i to l-wartosé

i; \ j to r-wartosé

Nie kazda r-wartosé

Ul -
o

to l-wartosé

(&N

Zmienne wskaznikowe — motywacja do nauki

» W jezyku C intensywnie wykorzystuje sie I-warto$ci oparte na zmiennych
wskaznikowych oraz na wyrazeniach te zmienne zawierajacych.

» Dokladne opanowanie zasad postugiwania sie wskaznikami jest niezbedne do
efektywnego 1 sprawnego programowania w Ci C++.

» Tej umiejetnosSci nie mozna pominaé, przeskoczy¢ lub zostawi¢ na p6zniej.

» Nie oszukujmy sie — ten, kto nie opanuje zasad postugiwania sie wskaznikami
nigdy nie bedzie prawdziwym, profesjonalnym programistq, wykorzystujagcym
jezyk C lub C++.

Koncepcja wskaznikoéw oraz metody ich wykorzystania sq proste. Wymagaja one
jednak uwagi, zrozumienia i myslenia.

Po co sg zmienne wskaznikowe?

» Zmienna wskaznikowa przeznaczona jest do lokalizowania (inaczej
wskazywania) obiektow w pamieci operacyjne;.

» Jedyna rola zmiennej wskaznikowej jest umozliwienie odwolywania sie do
obiektow wskazywanych.

e

Pamiec operacyjna\

Obiekt wskazywany
Zmienna wskaznikowa j

A /

» Zmienna wskaznikowa moze lokalizowa¢ w pamieci operacyjnej:

® innezmienne,
® nienazwane bloki pamieci,

@ bloki zawierajace kod programu, np. funkcje.

(@)

Czym jest zmienna wskaznikowa?

» Zmienna wskaznikowa rezyduje w pamieci operacyjnej.

» Sama zmienna wskaznikowa moze by¢ rowniez ,wskazywana” przez inng
zmienna wskaznikowa.

/ Pamiec¢ operacyj nh

j Obiekt wskazywany
Jr Zmienna wskaznikowa
Zmienna wskaznikowa

< 4

(@)

Trzy stany zmiennej wskaznikowej

» Zmienna wskaznikowa wskazuje na konkretny obiekt w pamieci:

Pamiec operacyjna

J Obiekt wskazywany M

OK

Zmienna wskaznikowa

» Zmienna wskaznikowa nie wskazuje na zaden obiekt:

Pamiec¢ operacyjna

M

Zmienna wskaznikowa —‘ OK

» Zmienna wskaznikowa wskazuje na nie wiadomo co:

Pamiec operacyjna

Zmienna wskaznikowa H? Kiepsko

Co zawiera zmienna wskaznikowa?

» Zwykle przyjmuje sie, ze zmienna wskaznikowa zawiera w sobie adres obiektu
wskazywanego.

» Jednak zmienna wskaznikowa nie musi w sobie zawiera¢ adresu bezposredniego
(fizycznego).

» Zawarto$¢ zmiennej wskaznikowej moze zawiera¢ inng informacje, pozwalajaca na
precyzyjne i jednoznaczne zidentyfikowanie polozenia obiektu w pamieci.

Pamiec¢ operacyjna

Zmienna wskaznikowa / Obiekt wskazywany
345fa012h Adres: 345fa012h

(N

Przyktad implementacji zmiennej wskaznikowej — Intel 8086

» Zmienna wskaznikowa zawiera przesuniecie (ang. offset) obiektu wzgledem

poczatku segmentu gdy wskazniki sg ,krétkie” (ang. near) — odwolania
wewnatrz segmentu.

Przesuniecie

Adres segmentu ﬁ i

A 02c4a45fh +0

+1 Obiekt »Krotka” zmienna
wskaznikowa

+2
3 0 oo |

Segment

Przyktad implementacji zmiennej wskaznikowej — Intel 8086

» Zmienna wskaznikowa zawiera adres segmentu 1 przesuniecie obiektu gdy
wskazniki sg ,,dlugie” (ang. far) — odwolania miedzysegmentowe.

Przesuniecie

Adres segmentu ﬁ

A 02c4a45fh +0

+1 Obiekt »,Dtuga” zmienna
wskaznikowa

+2
3 0 O2c4ad5t:0003 |

Segment

10

Deklaracja zmiennej wskaznikowej

Deklarowana zmienna bedzie wskaznikiem, kompilator wie, ile dla niej zarezerwowa¢ pamieci.

To oznacza, ze deklarowana
zmienna wskaznikowa bedzie

Nazwa deklarowanej zmiennej

: : wskaznikowej zbudowana wg.
przeznaczona do lokalizowania ‘,‘/ zwyklych regul, czesto zawiera p

w pamieci obiektow typu int. lub ptr od pointer.
int 1 = 10; int 1 = 10;
int * pi; int * pi1 = 0;

Nazwa zmiennej —i

i 10

\
o >

Wartos¢ zmiennej

Nazwa zmiennej —i

i 10

\
pfﬁﬂ

Wartos¢ zmiennej

11

Rola wskaznika pustego NULL

Tak zdefiniowana zmienna wskaznikowa:

int * pi; o
ma warto$¢ poczatkowq zalezng od kontekstu deklaracji. Jezeli ta zmienna jest

klasy auto, to jej warto$é jest przypadkowa — zmienna ,,wskazuje” zatem na blize]
nieznany obiekt w pamieci.

W pliku nagléwkowym stddef.h zdefiniowana stalg NULL, reprezentujacq wskaznik
pusty, niezalezny od platformy i implementacji. Tak zdefiniowana zmienna:

int * pi = NULL; pi-ﬂ

jest wskaznikiem pustym, a wiec nie wskazuje zadnego obiektu w pamieci.

W jezyku C++ preferuje sie wykorzystanie warto$ci 0 zamiast stalej NULL.

int * pi = 0; -

Wartos¢ NULL kontra O

Stala NULL jest definiowana jako warto$¢ 0 lub OL. Mozna zatem zamiast warto$cig
NULL, postugiwac sie wartoscig O.

W jezyku C praktykuje stosowanie wartosci NULL a nie wartosci O.
W jezyku C++ praktykuje stosowanie wartos$ci 0 zamiast NULL.

Niezaleznie od przyjetej wartoSci wskaznika pustego, jawnie inicjowanie zmiennych
wskaznikowych oraz poshuigiwanie sie wartosScig pusta dla wskaznikow
niezakotwiczonych jest dobra praktyka programistyczng w jezyku C i C++.

To, czy zmienna wskaznikowa jest wskaznikiem pustym mozna sprawdzi¢:

if(pi !'= NULL) if(pi == NULL)
{ {
// Tu jakie$ operacje na obiekcie // Nie odwotujemy sie do obiektu
// wskazywanym przez pi // wskazywanego przez pi — nie ma go!

Przypisywanie wartosci zmiennym wskaznikowym

int 1 = 10; int i = 10;
int * pi = 0; i 10 int * pi = 0; i 10 =
oi = &i:

- -

Od momentu tego Wyrazenie
przypisania, pi wskazuje = ’.F X wskaznikowe
zmienng 1, umozliwiajac lokalizujace zmienng
realizacje dowolnych i w pamieci.
operacji na tej zmienne;j.

Jednoargumentowy operator & buduje wyrazenie wskaznikowe lokalizujgce zmienng w pamieci
operacyjnej. Argument musi by¢ I-wartosScig, nie odnoszaca sie do obiektu register ani pola bitowego.

14

Odwotywanie sie do obiektu wskazywanego

int 1 = 10; *pi ==
int * pi = 0; i 20 =
pi = &i;

*pi = 20;

-

Ten zapis oznacza obiekt Jednoargumentowy operator Dowolne wyrazenie
wskazywany przez pi. Zapis *pi adresowania posredniego *, typu zgodnego z typem
moze wystapic wszedzie tam, gdzie daje w wyniku obiekt wskazywany obiektu wskazywanego.
moze wystapic i. przez argument pi.

Odwotywanie sie do obiektu wskazywanego, uwagi

Po przypisaniu:

pi = &1;

te fragmenty kodu sa rownowazne:

cin >> *pi; cin >> i;
if(*pi == 0) 1f(1 == 0)
cout << "Bledna wartosc"; cout << "Bledna wartosc";
else else
{ {
y = *pi * x; y =1 * x;
cout << "Wynik: " << y; cout << "Wynik: " << y;
} }

Jezeli wskaznik pi wskazuje na zmienng i, to *pi moze wystapi¢ wszedzie tam, gdzie
moze wystapic i. Zmienna pi jest linkiem (odno$nikiem) do zmiennej 1, a wyrazenie *pi
jest aliasem (alternatywng nazwq) zmiennej 1.

19

Jednoargumentowe operatory & i * — podsumowanie

» Operatory & i * wystepuja jako jedno i dwuargumentowe. W wersji
dwuargumentowej oznaczaja odpowiednio bitowq koniunkcje i iloczyn
arytmetyczny.

» W wersji jednoargumentowej oznaczaja operacje wskaznikowe.

» Wyrazenie &co$_tam oznacza ,gdzie jest co$_tam” — operator & to zatem
lokalizator lub pobieracz adresu.

» Wyrazenie *wskaznik oznacza ,obiekt lokalizowany przez wskaznik” —
operator * to zatem ekstraktor (wydobywacz) obiektu wskazywanego.

» Wydobywanie obiektu wskazywanego nazywa sie dereferencjq wskaznika.

17

Typowe zastosowania zmiennych wskaznikowych

» Realizacja przekazywania parametréw przez zmienng.
» Wrykorzystanie pamieci zarzadzanej dynamicznie.
» Manipulowanie tablicami (osobny wyklad).

» Budowa rekurencyjnych struktur danych (osobny wyklad).

12

Przypomnienie: przekazywanie parametrow przez wartosc

void inc(int i)

{

1 =1+ 1;
}
int a = 5;
inc(a);
cout << a;

Przed wywotaniem Wywotanie Wykonanie Po wykonaniu
inc(a) inc(a) inc(a) inc(a)
a 5 a 5 a 5 a 5
i 5 iw6

19

Przypomnienie: przekazywanie parametrow przez referencje (tylko C++)

void inc(int & 1))
{
1=1+1;

} . .
Parametr formalny i jest referencja do
parametru aktualnego wywolania funkcji.

int a = 5;

inc(a);

cout << "a =" << a;

Przed wywotaniem Wywotanie Wykonanie Po wykonaniu
inc(a) inc(a) inc(a) inc(a)
a 5 a 5 i a » 6 i a 6

=i+ 1

Wskazniki a przekazywanie parametrow prawie jak przez referencje

void inc(l int * 1))
{
I = %] + 1;

} . o
Parametr formalny i jest wskaznikiem.
Parametr aktualny wywolania rowniez.
int a = 5;
inc(&);
cout << a;
Przed wywotaniem Wywotanie Wykonanie Po wykonaniu
inc(a) inc(a) . inc(a) . inc(a)
*'| == Qa *1 ==a
a 5 a 5 o a '@ % a 6

'

Wskazniki a przekazywanie parametrow

W jezyku C wykorzystuje sie parametry bedace wskaznikami do realizacji
przekazywania parametréw dzialajacego podobnie do przekazywania przez referencje.

Przyklad przekazywania parametréw za poSrednictwem wskaznika:

void zamien(int *[pierwszy:], int *

{

int s; // Schowek

S = *pierwszy;
*pierwszy = *drugi;
*drugli = s;

int a =5, b = 10;

Cou.t << Il\na=ll << a << 1] 1] << Ilb=ll << b;
zamien(&a, &b);
COU't << ||\na=|| << g << nooun << ||b=|| << b.

’

Wskazniki a przekazywanie parametrow — modyfikacja wewnatrz funkcji

W jezyku C/C++ czesto wykorzystuje sie parametry wskaznikowe po to, zeby
przekazywanie parametrow odbywalo sie szybciej 1 nie zabieralo dodatkowej pamieci,
jednoczes$nie nie oczekuje sie, ze wnetrze funkcji bedzie modyfikowaé parametr
przekazywany za posrednictwem wskaznika.

» Drzieje sie tak szezeg6lnie wtedy, gdy przekazywany parametr jest duzy.

» Przekazanie duzego parametru za poSrednictwem wskaznika jest rzeczywiScie
szybsze 1 nie powoduje koniecznos$ci utworzenia kopii (oszczedzamy pamieé)
w parametrze formalnym i skopiowania zawarto$ci parametru aktualnego do
parametru formalnego (oszczedzamy czas).

» W C++ w tym samym celu wykorzystuje sie parametry referencyjne.

» Zal6zmy na chwile, ze dana typu double jest duza i oplaca sie ja przekazywac do
wnetrz funkcji via wskaznik, nie cheac jednocze$nie modyfikowac jej
zawarto$ci we wnetrzu tej funkcji... .

Jezyki programowania obiektowego i graficzneyd |

Wskazniki a przekazywanie parametrow — modyfikacja wewnatrz funkcji

» Zal6zmy rowniez, ze korzystamy z napisanych przez kogo$ innego funkeji,
ktore nie posiadajqg dokumentacji, znamy tylko ich prototypy.

int main()

{
double cena = 100; Czy tam w $rodku

nie zmodyfikuja mi

[doliczVat23IWypisz(&cena);} czasem ceny?
ksiegujKwoteNetto(&cena);

}

» Prototypy:

void doliczVat23IWypisz(double * cenaNetto);
void ksiegujKwoteNetto(double * cenaNetto);

Czy obawy sa uzasadnione?

Jezyki programowania obiektowego i graficznais

Wskazniki a przekazywanie parametrow — modyfikacja wewnatrz funkcji

Tak!

» Prototyp wprost nie méwi niczego o realizacji funkeji!

void doliczVat23IWypisz(double * cenaNetto);

» Realizacja moze by¢ taka (zle):

void doliczVat23IWypisz(double * cenaNetto)
{

*cenaNetto *= 1.23;
[a

cout << *cenalNetto;

}

» Realizacja moze tez by¢ taka (dobrze):

void doliczVat23IWypisz(double * cenaNetto)

{
cout << *cenalNetto * 1.23;

}

Jezyki programowania obiektowego i graficzndsd |

Wskazniki a przekazywanie parametrow — modyfikator const

» Aby ustrzec sie przed niezamierzong modyfikacja parametru przekazywanego
przez wskaznik, mozna uzy¢ stowa kluczowego const.

» Umieszczenie const przed typem obiektu wskazywanego jest obietnicq tego, ze
bedzie on obiektem niemodyfikowalnym (read-only).

» Funkcja nieskutecznie usituje zmodyfikowaé obiekt wskazywany przez cenaNetto:

void doliczVat23IWypisz(const double * cenaNetto)

{[*cenaNetto *= 1.23;}4

* .
} cout << *cenaNetto; error: assignment of read-only location

» Funkcja nie modyfikuje obiektu wskazywanego przez cenaNetto:

void doliczVat23IWypisz(const double * cenaNetto)
{

cout << *cenalNetto * 1.23;

}

Jezyki programowania obizktowego i graficznesb

Wskazniki a przekazywanie parametrow — modyfikator const

» Wrystgpienie stowa kluczowego const jest obietnica, ze wnetrze funkeji nie bedzie
modyfikowaé obiektu wskazywanego.

» Tainformacja umieszczona w prototypie pozwala oczekiwaé, ze parametr nie
zostanie zmodyfikowany w sposéb niezamierzony.

Jest const,
to juz chyba spie
spokojnie...

void doliczVat23IWypisz(const double * cenaNetto);

void doliczVat23IWypisz(const double * cenaNetto) D
{

cout << *cenalNetto * 1.23;

}

Czy rzeczywiscie mozna spac spokojnie?

Jezyii programowania obiektowego | graficzndds |

Wskazniki a przekazywanie parametrow — modyfikator const

Nie!

» Wystapienie stlowa kluczowego const jest obietnicq, ze wnetrze funkeji nie bedzie
modyfikowaé¢ obiektu wskazywanego w sposob niezamierzony.

» Ale mozna w sposoéb zamierzony tej obietnicy nie dotrzymadé!

void doliczVat23IWypisz(const double * cenaNetto)

{
*([(double *)JcenaNetto) *= 1.23;
cout << *cenaNetto;
} Rzutowanie wskaznika typu
const double *
. . 7 ’ na
» Taka sytuacja to zamierzona zlo$liwo$é, cale double *
szczeScie nie spotyka sie jej zbyt czesto. ,zdejmujace” atrybut read-only.

» Ale skoro to nie jest niemozliwe... .

Jezyki programowania obiektowego i graficznesd |

Parametry referencyjne w C++ tez moga byc const

» Wrystgpienie stowa kluczowego const jest obietnica, ze wnetrze funkeji nie bedzie
modyfikowaé obiektu referencyjnego.

» Tainformacja umieszczona w prototypie pozwala oczekiwaé, ze parametr nie
zostanie zmodyfikowany w sposéb niezamierzony.

Jest const,
to juz chyba spie
spokojnie...

void doliczVat23IWypisz(const double & cenaNetto);

void doliczVat23IWypisz(const double & cenaNetto) D
{
cout << cenalNetto * 1.23;
}
?
w

Czy rzeczywiscie mozna spac spokojnie?

Jezyki programowania obiektowego i graficzny® |

Parametry referencyjne w C++ tez moga byc const

Nie!

» Wystapienie stlowa kluczowego const jest obietnicq, ze wnetrze funkeji nie bedzie
modyfikowa¢ obiektu referencyjnego w sposob niezamierzony.

» Ale mozna w sposoéb zamierzony tej obietnicy nie dotrzymadé!

void doliczVat23IWypisz(const double & cenaNetto)

{[(double &)cenaNettoJ*= 1.23;
*
cout << cenaNetto;
} Rzutowanie referencji typu
const double &
na
double &

» Zatem referencje w C++ tez pozwalaja niezle OTTES
~zdejmujace” atrybut read-only.

zamieszac!

Jezyii programowania obiektowego | graficznddo |

Wariacje na temat wskaznikow i stowa kluczowego const

» Mozna modyfikowaé warto§é wskaznika p, mozna modyfikowaé obiekt
wskazywany *p:

int i = 10;
int * p; // Zwykty wskaznik na zwykty obiekt

p = &i; // Modyfikowalny wskaznik
*p = 20; // Modyfikowalny obiekt
cout << *p; // Wolno odczytywaC wartos¢ wskaznika i obiektu

» Mozna modyfikowaé warto$¢ wskaznika p, nie mozna modyfikowaé obiektu
wskazywanego *p, ktory staje sie obiektem tylko do odczytu:

int i = 10;
const int * p; // Zwykty wskaznika na niemodyfikowalny obiekt

b - &i; // Modyfikowalny wskaznik

*p=20; // Niemodyfikowalny obiekt
cout << *p; // Wolno odczytywaé¢ wartos¢ wskaznika i obiektu

Jezyii programowania obizktowego i graficznddn

Wariacje na temat wskaznikow i stowa kluczowego const

» Nie mozna modyfikowaé warto$§é wskaznika p, mozna modyfikowa¢ obiekt
wskazywany *p, wskaznik p jest zakotwiczony ,na zawsze”:

int 1 = 10;

int * const p = &i; // Ustalony wskaznika na modyfikowalny obiekt

Co // Inicjalizacja takiego wskaznika jest obowigzkowa
p—4&+; // Niemodyfikowalny wskaznik

*p = 20; // Modyfikowalny obiekt

cout << *p; // Wolno odczytywaC wartos¢ wskaznika i obiektu

» Nie mozna modyfikowaé warto$§é wskaznika p, nie mozna modyfikowaé obiektu
wskazywanego *p, wskaznik p jest zakotwiczony ,,na zawsze” o obiekt read-only:

int 1 = 10;

const int * const p = &i; // Ustalony wskaznika na niemodyfikowalny obiekt
Coe // Inicjalizacja takiego wskaznika jest obowigzkowa
p——=4&%; // Niemodyfikowalny wskaznik

do = D // Modyfikowalny obiekt

cout << *p; // Wolno odczytywaC warto$s¢ wskaznika i obiektu

Jezyii programowania obiektowego | graficzndds |

Wskazniki typu void *

» Typ void * oznacza wskazanie niezwigzane z zadnym typem.

» Wskaznik takiego typu moze wskazywaé dang dowolnego typu.

float f = 2.5;
int 1 =05;
char c ="'A";

void * ptr;

ptr = &f;

otr = &i; :\ Wskaznik ptr moze pokazywa¢ na obiekty réznych typow.

° 3 Uwaga! Po przypisaniu do wskaznika typu void * tracimy informacje

otr = &C; o typie obiektu wskazywanego. Dlatego operacja *ptr nie ma sensu —

o ' kompilator nie wie, czym jest obiekt wskazywany, ile zajmuje bajtow
w pamieci operacyjnej. Wiadomo tylko, gdzie taki obiekt jest.

(&N
(&N

Wskazniki typu void *, cd. ...

» Nie mozna wprost odwolywaé sie do obiektu wskazywanego przez wskaznika
void * — inaczej mowigc, nie mozna dokonac dereferencji takiego wskaznika.

» Aby odwolaé sie do obiektu wskazywanego, nalezy poinformowa¢ kompilator
jaki jest jego typ, dokonujac konwersji (tzw. rzutowania) typu wskaznika.

void * ptr;

ptr = &f;
cout << endl << *([(float *) ptr);

Rzutowanie wskaznika ptr — wskazanie na obiekt typu float.

void * ptr;

ptr = &f;
cout << endl << * [(float *) ptr;

Wskazniki typu void *, cd. ...

» Wskaznik void * mozna rzutowaé na rézne typy:

float f = 2.5;
int 1=05;
char c = 'A';
void * ptr;
ptr = &f;

cout << endl << *((float *)ptr);

ptr = &1;
cout << endl << *((int *)ptr);

ptr = &c;
cout << endl << *((char *)ptr);

Dynamiczny przydziat pamieci — pojecie sterty, sterta a stos

Sterta (ang. heap) to wydzielony obszar pamieci wolnej:

» przeznaczony do przechowywania danych dynamicznych, A
» kontrolowany recznie przez programiste,
©
» ograniczony pod wzgledem rozmiaru, |5
» przydzielany pasujacymi fragmentami.
|
e
Stos (ang. stack) to wydzielony obszar pamieci roboczej: 8V
» przeznaczony do przechowywania danych automatycznych,
8

» niejest bezposrednio kontrolowany przez programiste,

» ograniczony pod wzgledem rozmiaru,

» przydzielany wg. zasady LIFO (ang. last in, first out).

-7
29

Dynamiczny przydziat pamieci

Dynamiczny przydzial pamieci polega na zarezerwowaniu fragmentu pamieci
w obszarze pamieci wolnej (sterty), dla obiektu pamieciowego zwanego dynamicznym.

Typowy scenariusz wykorzystania dynamicznego przydzialu pamieci:
» Okres$lenie wielkoSci potrzebnego obszaru pamieci.

» Przydzial pamieci i zapamietanie wskazania tego obszaru w zmiennej
wskaznikowej.

» Sprawdzenie czy przydzial pamieci sie powiodl, jezeli tak to:
@ Wykorzystanie przydzielonego bloku pamieci.

@ Zwolnienie przydzielonego bloku pamieci, gdy nie jest juz potrzebny.

37

Dynamiczny przydziat pamieci w jezyku C++ — etap |

Definicja zmiennej wskaznikowej p, zainicjowane]
wskaznikiem pustym.

int main()

{
int * p = 0;

P = new int;

if(p !'=0)

{
*p = 10;

cout << ++(*p);

delete p;
}

©
Stos - <Dane> < Sterta -

e
[eN)

Dynamiczny przydziat pamieci w jezyku C++ — etap |l

Operator new przydziela na stercie blok pamieci dla danej
typu int. Rezultatem funkcji jest wskaznik do przydzielonego

obszaru lub 0 jezeli polecenie nie moze by¢ zrealizowane
(czasem jest inaczej, o tym za chwile).

int main()

{

int * p = 0;

p = new int;

if(p !'=0)

{
*n = 10;
Cout << ++(*p);
delete p:

}

©
!Stos - <Dane> < Sterta -

39

Dynamiczny przydziat pamieci w jezyku C++ — etap lll

Zawsze nalezy sprawdzi¢ poprawno$¢ przydzialu pamieci.
Odwolanie do obiektu lokalizowanego przez wskaznik pusty
jest bledem.

int main()

{

int * p = 0;

P = new int;

if(p'=0)
{

*n = 10;

cout << ++(*p);

A

T

|5

&

y

A

)

=

()]

y

A

8

Coe &
delete p -

}

Dynamiczny przydziat pamieci w jezyku C++ — etap IV

Wykorzystanie przydzielonego bloku pamieci. Poniewaz
zmienna wskaZnikowa p jest skojarzona z typem int,

przydzielony obszar traktowany jest jak dana typu int. - A
—» 10 |'P4

int main() S
{ g
int * p = 0; v

P = hnew int;

if(p !'=0)
{

*p = 10;

cout << ++(*p);

y
A
)
=
(an]
y
A
8
Coe &
delete p; -

}

Dynamiczny przydziat pamieci w jezyku C — etap IV, cd. ...

Z obiektem wskazywanym przez zmienng p mozna robic
wszystko to, co dozwolone dla danej typu int. Wyrazenie

++(*p) zwigksza obiekt wskazywany przez zmienng p. A
—» 11 P,
int main() g
(5
int * p = 0;

P = hnew int;

if(p !'=0)
{

*n = 10;

cout << ++(*p);

y
A
)
5
()]
y
A
8
Co &
delete p -

}

Dynamiczny przydziat pamieci w jezyku C++ — etap V

Wywolanie operatora delete powoduje zwolnienie bloku
pamieci wskazywanego przez p, blok ten zwracany jest do
puli blokbw wolnych. Uwaga — po wywolaniu delete
wskaznik p dalej pokazuje na zwolniony blok pamieci!

int main()

{

int * p = 0;

P = hnew int;

if(p !'=0)
{

*p = 10;

cout << ++(*p);

A

T

|5

A

y

A

)

5

()]

y

A

8

Coe &
delete p -

}

Dynamiczny przydziat pamieci w jezyku C++ — uwagi

Mimo, ze po wywolaniu free wskaznik p dalej pokazuje na
zwolniony obszar, proba odwolania sie do niego jest bledem.

Ten obszar by¢ moze zostal wlasnie przydzielony ponownie.

— ?27??

int main()

{
int * p = 0;

P = hnew int;

if(p !'=0)
{

*p = 10;

cout << ++(*p);

delete p;

*p =0 ’ \
} Blad. Odwolanie do zwolnionego

_ .
*p = 100; lub nieprzydzielonego bloku

©
!Stos - <Dane> < Sterta

Dynamiczny przydziat pamieci w jezyku C++ — uwagi, cd. ...

Dobra praktyka jest zerowanie zmiennych wskaznikowych na
etapie ich deklaracji, po zwolnieniu pamieci oraz testowanie
czy wskaznik nie jest pusty przed odwolaniem do obiektu

wskazywanego.

int main()

{

int * p = 0;

p = new int;

if(p !'=0)
{

*p = 10;

cout << ++(*p);

A
5
]
&
\{
A
()
S
()
\{
A
8
.. &
delete p; p
p=0;
} ...

Dynamiczny przydziat pamieci w jezyku C++ — dla int nie ma sensu...

Dynamiczny przydzial pamieci dla pojedynczych danych typu
int, char czy double najczeSciej nie ma sensu. Ale ma sens dla
obiektoéw zajmujacych duzo pamieci operacyjnej oraz dla A
ztozonych struktur danych. -

Dana
int main() > typu

{ .
TBitmap * p = 0; TBitmap

Sterta

p = new TBitmap;

if(p '=0)

{
Operacje na bitmapie
wskazywanej przez p;

delete p;
p=0;

!!|
Stos ><Dane><

Dynamiczny przydziat pamieci w jezyku C++, zasztosci

Od standardu C++ z 2003 operator new dziala inaczej. Aby zachowa¢ omoéwiony
styl przydzialu pamieci, nalezy uzy¢ jego specjalnej wersji: nothrow.

?nt main() SﬁwedﬁQkVVC4ﬁ-| int main()

q Mmmmme++|
int * p = 0; int * p = 0;
[p = new int; }4 >{p = new (nothrow) int;}
if(p !'=0) if(p !'=0)
{ {

cout << ++(*p); cout << ++(*p);

delete p; delete p;
p = 0; p = 0;
} }
} }
Aktualnie, gdy operator new nie potrafi przydzieli¢ pamieci to generuje wyjqtek,
zamiast oddawania rezultatu w postaci wskaznika pustego.

47

Dynamiczny przydziat pamieci w jezyku C++, wyjatki

Jezeli aktualnie uzyjemy operatora w wersji new, wygenerowany zostanie wyjatek
klasy bad_alloc.

int main()
{ Aktualnie w C ++ I

try
{

int * p = new int;

*p = 10;

cout << ++(*p);

deie%e P;
p=0;
}
catch(...)
{
// Zrob cos gdy brak pamieci
}

}

Mechanizm obstugi wyjqtkow oraz zasady stosowania try-catch zostang omowione
osobno.

Zarzadzanie pamiecig dynamiczng to rzecz podwojnie nieprosta

Zarzadzanie pamiecig rozgrywane na poziomie kodu programu wymaga uwagi od
programisty. To pierwsza rzecz.

Druga jest po stronie systemu operacyjnego. Uczestniczy on w przydziale pamieci dla
procesow, oferujac pamieé wirtualng. W rzeczywistosci bloki pamieci naszego
programu moga czasem znajdowac sie na dysku... . Proces zarzadzania pamiecig
wirtualng bywa czasem bardzo zlozony.

Interesujace artykuly na temat zarzadzania pamiecia:
 http://www.cprogramming.com/tutorial/virtual memory and heaps.html
« http://www.1ibm.com/developerworks/linux/library/l-memory/
 http://www.cantrip.org/wavel2.html
 http://linuxdevcenter.com/pub/a/linux/2003/05/08/cpp mm-1.html

49

Wyrazenia wskaznikowe

Wskazniki lokalizujq obiekty w pamieci operacyjnej. Mozna budowac wyrazenia
zawierajace wskazniki, wyrazenia te lokalizujg rébwniez pewne obiekty w pamieci
operacyjnej.

W jezykach C/C++ obowiazuje specjalna arytmetyka na wskaznikach.

// ASCII: Ox41 - A 0x42 - B
short int n = 0x4241;

char * p;
p = (char *)&n; n{OX‘”'AH
cout << endl << *p; Ox42 | B

+4p;

cout << endl << *p; P t

Wyrazenia wskaznikowe

Wskaznik p lokalizuje mlodszy bajt zmiennej m. Reszta tej liczby nie jest dla
wskaznika p ,widoczna” poniewaz shuzy on do lokalizowania znakow (bajtow).

Wyprowadzenie obiektu wskazywanego przez p do cout spowoduje potraktowanie
mtodszego bajtu zmiennej m jako znaku i wyprowadzenie go do strumienia
wyjSciowego.

// ASCII: Ox41 - A 0x42 - B
short int n = 0x4241;
char * p;

P
cout << endl << *p; 0x42 | B

+4p;

cout << endl << *p; P

Wyrazenia wskaznikowe

Do zmiennej wskaznikowej wolno dodaé (odjqé) liczbe calkowita. Takie wyrazenie
lokalizuje w pamieci operacyjnej obiekt przesuniety w stosunku do wskaznika
bazowego. Wyrazenie p = p + 1 przesuwa wskaznik do nastepnego obiektu w pamieci,
wyrazenie p = p — 1 do poprzedniego obiektu, zgodnie z typem wskaznika.

Wyrazenia te mozna oczywiScie zapisac: ++p oraz --p.

// ASCII: Ox41 - A 0x42 - B
short int n = 0x4241;

char * p;
p = (char *)&n; n{OX41|Am
cout << endl << *p; Ox42 | B =-——

++p;

cout << endl << *p; p t

(@)
I

Wyrazenia wskaznikowe

Liczby dodawane lub odejmowana od wskaznika sg skalowane przez rozmiar typu
wskaznika. Oznacza to, ze dla char * p operacja ++p spowoduje przesuniecie
wskaznika do nastepnego znaku w pamieci operacyjnej, a dla int * p operacja ++p
spowoduje przesuniecie wskaznika do nastepnej liczby calkowitej, itp.

// ASCII: Ox41 - A 0x42 - B "
short int n = 0x4241; .

char * p;

p = (char *)&n; n{0x41|A

++p;

ot == endb =T > S

1
(€Y

Arytmetyka na wskaznikach — zasady

Dozwolone operacje wskaznikowe to:

» przypisywanie wskaznikoéw do obiektow tego samego typu,

» przypisywanie wskaznikéw do obiektoéw innego typu po konwersji,
» dodawanie lub odejmowanie wskaznika i liczby catkowitej,

» odejmowanie lub poréwnanie dwoch wskaznikow,

» przypisanie wskaznikowi wartosci zero (lub wskazania puste NULL) lub
porownanie ze wskazaniem pustym.

Wyrazenia wskaznikowe — kolejny przyktad

// ASCII: Ox41 - A Ox42 - B Ox43 - C 0x44 - D
int m = 0x44434241; // Zaktadamy, ze int jest 32 bitowy
char * p;

p = (char *)&m;
cout << endl << *p ;
++p;
cout << endl << *p ;
TP,
cout << endl << *p ;
++p;
cout << endl << *p ;

lub:

// ASCII: Ox41 - A Ox42 - B Ox43 - C Ox44 - D
int m = 0x44434241; // Zaktadamy, ze int jest 32 bitowy
char * p;

int i;

for(i =0, p=(char *)&m; i < sizeof(int); i++)
cout << endl << *(p++);

(@)]
1

Dla dociekliwych — funkcja ze zmienng liczbg parametrow

int addInts(int count, ...)
{

int total = 0;

va list arglList;

va start(argList, count);
for(; count; count--)
total += va arg(argList, int);
va end(argList);
return total;

}

cout << endl << "Suma: " << addInts(2, 1, 2);
cout << endl << "Suma: " << addInts(3, 4, -1, 6);
cout << endl << "Suma: " << addInts(0);

cout << endl << "Suma: " << addInts(5, 1, 2, 3, 4, 5);

Dla dociekliwych — funkcja ze zmienng liczbg parametrow

Aby obstuzy¢ zmienng liste parametréw nie trzeba koniecznie uzywa¢ makr z pliku
stdarg.h, wystarczy wiedzie¢ jak sg przekazywane parametry i rozumie¢ wskazniki... .

Ponizej przyklad do indywidualnego przemyslenia.

int addIntsOwn(int count, ...)
{

int total = 0;

char * arglList;

argList = ((char *)&count) + sizeof(count);
for(; count; count--)

total += *((int *)((argList += sizeof(int)) - sizeof(int)));
return total;

}

cout << endl << "Suma: " << addInts(2, 1, 2);
cout << endl << "Suma: " << addInts(3, 4, -1, 6);
cout << endl << "Suma: " << addInts(0);

cout << endl << "Suma: " << addInts(5, 1, 2, 3, 4, 5);

Wskazniki do funkcji — koncepcja

» W trakcie uruchamiania programu, jego
kod maszynowy odczytywany z pliku A
wykonywalnego, jest ladowany do S

pisz

pamieci operacyjnej.
» Kazda funkcja w programie posiada : 01001011

okreslony adres, poczawszy od tego 10001010

adresu rozpoczyna sie cialo funkcji \EOid pisz () 01010101
00110011

w postaci kodu maszynowego. cout << "Witaj!”; iy
}

Sterta

>«

Kod

>«

» Nazwa funkeji w jezykach C/C++ jest
wlasnie adresem funkcji w pamieci

Dane

>«

operacyjnej.

Stos

» Skoro funkcje posiadaja swoje adresy, to
za mozliwe jest operowanie na adresach
funkcji z wykorzystaniem zmiennych
wskaznikowych.

Wskazniki do funkcji — jak deklarowac

» Wskazniki do funkeji sa deklarowane w specyficzny sposob.

» W deklaracji wskaznika do funkcji nalezy precyzyjnie okres$li¢ informacje
o funkcji, jaka bedzie moglt dany wskaznik lokalizowacé.

» Te informacje obejmuja:
@ typ rezultatu funkcji,
s liczbe i typy kolejnych parametrow,

» Nazwy parametrow sg nieistotne.

Wskazniki do funkcji — jak deklarowac

» Zakladamy, ze wskazywana funkcja ma nastepujaca definicje:
void pisz()

{

cout << "Witaj!";
}
» Zmienng wskaznikowa, ktéra moze lokalizowa¢ taka funkcje, deklarujemy :
void (*funPtr)();
co oznacza, ze funPtr jest wskaznikiem na bezparametrowe funkcje, ktére nie maja
rezultatu (rezultat typu void).
» Nawiasy sa niezbedne, bez nich nastepujaca deklaracja:

void *funPtr();

oznaczala by, ze funPtr to nazwa bezparametrowej funkcji, ktérej rezultatem jest
wskaznik typu void *.

60

Wskazniki do funkcji — , kotwiczenie” wskaznika

» Wskaznik do funkeji moze byé zerowany na etapie

deklarowania: A

void (*funPtr)() = 0; pisz

Sterta

L

» Wskaznik do funkeji moze byé inicjowany na etapie 1001011

deklarowania: 10001010

01010101
00110011

Kod

void (*funPtr)() = &pisz; // Wersja nr 1

void (*funPtr)() = pisz; // Wersja nr 2

AN
AN
AN
AN
N\ /
\\|

! Stos Dane
> > -

» Po deklaracji, do wskaznika mozna przypisywaé
wskazanie na funkcje piszac:

funPtr = &pisz; // Wersja nr 2 funPt

funPtr

pisz; // Wersja nr 2

5

Wskazniki do funkcji — wywotanie funkcji via wskaznik

» Po ,zakotwiczeniu” wskaznika o funkcje:
A
funPtr = pisz; I
pisz |3
mozna wywolac¢ jej kod piszac: e 7 X
(*funPtr)(); // Wersja nr 1 :&: 01001011
10001010
©
lub: o1010101 | 2
00110011
funPtr(); // Wersja nr 2 X
e
» W sensie semantycznym wskaznik na funkcje a I
i nazwa funkcji sg tozsame, zatem wersja 1 A
powyzej jest niepotrzebnie skomplikowana, 3
wiekszo§¢é programistow wykorzysta wersje nr 2. w-—m
\J

Wskazniki do funkcji — wskazniki bywaja niezbyt wierne...

» Wskaznik zadeklarowany w ten sposéb:
void (*funPtr)() = 0;

tak na prawde, moze pokazywac¢ na dowolng bezparametrowg funkcje, ktéra nie ma
rezultatu (rezultat typu void).

void pisz() void write() void schreiben()
{ { {

cout << "\nWitaj!"; cout << "\nHello!"; cout << "\nHallo!";
} } }

funPtr = pisz;
funPtr();

funPtr = write;
funPtr(); i

funPtr = schreiben;
funPtr();

Wskazniki do funkcji — tablicujemy kod?

» Tablica wskaznikéw na bezparametrowe funkcje nieudostepniajace rezultatu:

const int N = 3;
void (* funTab[N])();

» ,Zakotwiczenie” kolejnych elementéw tablicy o funkcje:

void pisz()
{
funTab[0] = pisz; .>}C°Wt<<'WnWHaj“:
funTab[1] = write; funTab | ®© e e
funTab[2] = schreiben; ¥Ohiwﬁie0
>

cout << "\nHello!";

}

void schreiben()
{
> cout << "\nHallo!";

}

» Wywolanie funkecji, lokalizowanych przez kolejne elementy tablicy:

for(int 1 = 0; 1 < N; ++1)
funTab[1 1();

Wskazniki do funkcji — inicjalizacja tablicy wskaznikow funkcyjnych

void pisz ()
{
cout << "\nWitaj!";

}

void write()

{

cout << "\nHello!";

}

void schreiben()

{

cout << "\nHallo!";

}

int main()

{
const int N = 3;

void (* funTab[N])() = { pisz, write, schreiben };

for(int i = 0; 1 < N; ++i)
funTab[1]1();

Wskazniki do funkcji — a po co to wszystko?

» Jest wiele bardzo ciekawych zastosowan wskaznikéw do funkeji. Ich przyklady
beda sukcesywnie omawiane.

» Jednym z nich okreélanie funkeji, ktéra ma by¢ wywolana we wnetrzu innej
funkcji.

» Przyklad — sortowanie tablic z wykorzystaniem bibliotecznej funkeji gsort
(wymaga wlaczenia stdlib.h lub cstdlib).

» Funkcja gsort pozwala na sortuje metoda quick sort dowolna tablice.

» Funkcja gsort to kwintesencja wykorzystania wskaznikéw, rowniez do funkeji.

7 7
09

Wskazniki do funkcji — gsort

» Prototyp funkeji gsort (moze roznié sie w zaleznos$ci od kompilatora):

Wskaznik na obszar pamieci, zawierajacy

_ dane do posortowania.
void qsort(

void *base]ﬁ
int nelem]ﬂ
int width <
int (*fcmp)(const void *, const void *)]

|

Liczba

TN N N/

elementow do
posortowania.

Wskaznik na funkcje, ktéra we wnetrzu
gsort zostanie wykorzystana do
poroéwnania dwbch elementéw sortowane;j Wyrazony w bajtach rozmiar
tablicy. elementu tablicy.

Wskazniki do funkcji — gsort w akcji

#include <cstdlib>
#include <iostream>
using namespace std;

? <
int main()
{

const int N = 5;
int tab[N] = 5, 3, 4, 1, 2 };

gsort(tab, N, sizeof(tab[©]), compInt);

for(int 1 = 0; 1 < N; ++i)
cout << endl << tab[1];

Wskazniki do funkcji — gsort, rola funkcji porownujacej

» Funkcja gsort musi porébwnywaé ze soba pary elementéw. Jednak funkcja ta
przeciez nie wie, jakie sg elementy sortowanej tablicy.

» Programista musi zdefiniowaé odpowiednia funkcje poréwnujaca i przekazaé
wskaznik do tej funkcji do wnetrza funkcji gsort.

» Funkcja poréwnujgca powinna mieé nastepujaca postaé:

int jakasNazwa(const void * a, const void * b)

{
o

» Parametry a i b to wskazniki na elementy do poréwnania. Rezultatem funkcji
powinna by¢:

e warto$¢ ujemna gdy a < b,
e warto$¢ zero gdy a == b,

@ warto$¢ dodatnia gdy a > b.
69

Wskazniki do funkcji — gsort w akcji, funkcja porownujaca

#include <cstdlib>
#include <iostream>
using namespace std;

int compInt(const void * a, const void * b)

{
return (*(int *)a) - (*(int *)b));
}
int main()
{
const int N = 5;
int tab[N] = {5, 3, 4, 1, 2 };

qsort(tab, N, sizeof(tab[0]),[compInt}),

for(int 1 = 0; i < N; ++1)
cout << endl << tab[i];

Suplement I: dynamiczny przydziat pamieci w jezyku C

Przydzial pamieci realizujg funkcje:
» void * malloc(size t size)
» void * calloc(size t nitems, size t size)

» void * realloc(void * ptr, size t size)

Obszary pamieci przydzielone tymi funkcjami nalezalo zwolni¢ funkcja:

» void free(void * ptr)

Funkcje zarzadzajace przydzialem/zwalnianiem bloko6w pamieci operuja na
wskaznikach void *. Przydzielane bloki s3 amorficzne — sa to ,kawalki” pamieci
o rozmiarze liczconym w bajtach.

Wykorzystanie powyzszych funkcji wymaga wlaczenia pliku naglowkowego
dyrektywa #include <stdlib.h> lub #include <cstdlib> w C++.

71

Suplement I: dynamiczny przydziat pamieci w jezyku C — etap |

Definicja zmiennej wskaznikowej p, zainicjowane]
wskaznikiem pustym.

int main()

{
int * p = NULL;
p = malloc(sizeof(int));
if(p != NULL)
{
*p = 10;
cout << ++(*p) ;
%réei p),
}

Suplement I: dynamiczny przydziat pamieci w jezyku C — etap |l

Funkcja malloc przydzielan na stercie blok pamieci o
rozmiarze sizeof(int). Rezultatem funkcji jest wskaznik do
przydzielonego obszaru lub NULL jezeli polecenie nie moze

by¢ zrealizowane.

int main()

{
int * p = NULL;
p = malloc(sizeof(int));
if(p '= NULL)
{
*p = 10;
cout << ++(*p) ;
%réei p)
}

©
!Stos - <Dane> < Sterta -

73

Suplement I: dynamiczny przydziat pamieci w jezyku C — etap Il

Zawsze nalezy sprawdzi¢ poprawno$¢ przydzialu pamieci.
Odwotlanie do wskaznika pustego jest bledem.

int main()

{
int * p = NULL;

p = malloc(sizeof(int));

if(p != NULL)

{
*p = 10;

cout << ++(*p);

%réei P);
}

©
!Stos - <Dane> < Sterta -

74

Suplement I: dynamiczny przydziat pamieci w jezyku C — etap IV

Wykorzystanie przydzielonego bloku pamieci. Poniewaz
zmienna wskaZnikowa p jest skojarzona z typem int,
przydzielony obszar traktowany jest jak dana typu int. - A

int main() g
{ g
wv

int * p = NULL;

p = malloc(sizeof(int));

if(p !'= NULL)
{

*p = 10;

cout << ++(*p);

\/
A
()]
=
()
\/
A
I
ot 8
EEE [0F o
} p

Suplement I: dynamiczny przydziat pamieci w jezyku C — etap IV, cd. ...

Z obiektem wskazywanym przez zmienng p mozna robic
wszystko to, co dozwolone dla danej typu int. Wyrazenie
++(*p) zwieksza obiekt wskazywany przez zmienna p.

int main()

{
int * p = NULL;
p = malloc(sizeof(int));
if(p != NULL)
{
*p = 10;
cout << ++(*p);
free(p);
}

—» 11 P

76

Suplement I: dynamiczny przydziat pamieci w jezyku C — etap V

Wywolanie funkcji free powoduje zwolnienie bloku pamieci
wskazywanego przez p, blok ten zwracany jest do puli blokow
wolnych. Uwaga — po wywolaniu free wskaznik p dalej
pokazuje na zwolniony blok pamieci!

int main()

{
int * p = NULL;
p = malloc(sizeof(int));
if(p != NULL)
{
*n = 10;
cout << ++(*p);
free(p);
}

©
!Stos - <Dane> < Sterta -

77

Suplement I: dynamiczny przydziat pamieci w jezyku C — uwagi

W C do zerowania wskaznika wykorzystuje sie zwyczajowo
stala symboliczng NULL.

int main()

{
int * p = NULL;

p = malloc(sizeof(int));
if(p !'= NULL)
{
*n = 10;
cout << ++(*p);
%réei P);
p = NULL;
}

Suplement ll: opis funkcji z biblioteki jezyka C

» void * malloc(size t size);

Rezultatem funkcji malloc jest wskaznik do obszaru pamieci przeznaczonego dla
obiektu o rozmiarze size. Rezultatem jest NULL, jezeli polecenie nie moze by¢
zrealizowane. Obszar nie jest inicjowany.

» void * calloc(size t nitems, size t size);

Rezultatem funkgcji calloc jest wskaznik do obszaru pamieci przeznaczonego dla
nitems obiektéw o rozmiarze size. Rezultatem jest NULL, jezeli polecenie nie
moze by¢ zrealizowane. Obszar jest inicjowany zerami.

79

Suplement Il: opis funkcji z biblioteki jezyka C

» void * realloc(void * ptr, size t size);

Funkcja dokonuje proby zmiany rozmiaru bloku wskazywanego przez ptr, ktory
byl poprzednio przydzielony wywolaniem funkcji calloc lub malloc. Zawartos¢
wskazywanego obszaru pozostaje niezmieniona.

Jezeli nowy rozmiar jest wiekszy od poprzednio przydzielonego, dodatkowe
bajty majq nieokreslong wartos$¢. Jezeli nowy rozmiar jest mniejszy, bajty z
réznicowego obszaru sg zwalniane.

Jezeli ptr == NULL to funkcja dziala jak malloc. Rezultatem funkcji jest
wskaznik na obszar pamieci o nowym rozmiarze (moze by¢ ulokowany w

pamieci w innej lokalizacji niz poprzednio). Rezultatem jest NULL w przypadku
bledu lub préby przydzialu bloku o zerowym rozmiarze.

» void free(void * ptr);

Zwalnia obszar pamieci wskazywany przez ptr. Parametr musi by¢ wskaznikiem
do obszaru pamieci przydzielonego uprzednio przez malloc, calloc lub realloc.

30

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21
	Slajd 22
	Slajd 23
	Slajd 24
	Slajd 25
	Slajd 26
	Slajd 27
	Slajd 28
	Slajd 29
	Slajd 30
	Slajd 31
	Slajd 32
	Slajd 33
	Slajd 34
	Slajd 35
	Slajd 36
	Slajd 37
	Slajd 38
	Slajd 39
	Slajd 40
	Slajd 41
	Slajd 42
	Slajd 43
	Slajd 44
	Slajd 45
	Slajd 46
	Slajd 47
	Slajd 48
	Slajd 49
	Slajd 50
	Slajd 51
	Slajd 52
	Slajd 53
	Slajd 54
	Slajd 55
	Slajd 56
	Slajd 57
	Slajd 58
	Slajd 59
	Slajd 60
	Slajd 61
	Slajd 62
	Slajd 63
	Slajd 64
	Slajd 65
	Slajd 66
	Slajd 67
	Slajd 68
	Slajd 69
	Slajd 70
	Slajd 71
	Slajd 72
	Slajd 73
	Slajd 74
	Slajd 75
	Slajd 76
	Slajd 77
	Slajd 78
	Slajd 79
	Slajd 80

