

Podstawy Podstawy
programowaniaprogramowania

Zmienne wskaźnikowe — wprowadzenie

Część siódma

Niniejsze opracowanie zawiera skrót treści wykładu, lektura tych materiałów nie zastąpi uważnego w nim uczestnictwa.
Opracowanie to jest chronione prawem autorskim. Wykorzystywanie jakiegokolwiek fragmentu w celach innych niż nauka własna jest nielegalne.

Dystrybuowanie tego opracowania lub jakiejkolwiek jego części oraz wykorzystywanie zarobkowe bez zgody autora jest zabronione.

Roman Simiński

roman.siminski@us.edu.pl
www.programowanie.siminskionline.pl

Autor

Kontakt

Co to jest zmienna — przypomnienieCo to jest zmienna — przypomnienie

Każda zmienna ma swoją nazwę, oraz typ wartości.

Zmienne są przechowywane w pamięci operacyjnej, liczba zajętych bajtów
zależy od typu zmiennej.

Nazwa zmiennej identyfikuje zmienną w programie zwalniając programistę od
zastanawiania się, pod jakim adresem w pamięci zmienna jest zlokalizowana.

Zmienna jest obiektem w programie, rezydującym w pamięci operacyjnej, przezna-
czonym do przechowywania wartości pewnego typu.
Zmienna jest obiektem w programie, rezydującym w pamięci operacyjnej, przezna-
czonym do przechowywania wartości pewnego typu.

...

...

i02c4a45fh
int i;

i = 10;
10

Adres w pamięci Nazwa zmiennej

Wartość zmiennej

22

Dziwne pojęcia ― Dziwne pojęcia ― ll-wartość i -wartość i rr-wartość-wartość

Zmienna może występować po lewej stronie operatora przypisania, mówi się,
że jest wtedy l-wartością.

Wszystko, co może występować po prawej stronie operatora przypisania jest
r-wartością.

Obiekt jest pewnym nazwanym obszarem pamięci. Pod pojęciem l-wartości
rozumiemy wyrażenie lokalizujące ten obiekt w pamięci
Obiekt jest pewnym nazwanym obszarem pamięci. Pod pojęciem l-wartości
rozumiemy wyrażenie lokalizujące ten obiekt w pamięci

int i;
int j;
. . .
j = 5;
i = j;
5 = i;

j to l-wartość

5 to r-wartość

j to l-wartość

5 to r-wartość

i to l-wartość

j to r-wartość

i to l-wartość

j to r-wartość

Nie każda r-wartość
to l-wartość
Nie każda r-wartość
to l-wartość

33

Zmienne wskaźnikowe — motywacja do naukiZmienne wskaźnikowe — motywacja do nauki

W języku C intensywnie wykorzystuje się l-wartości oparte na zmiennych
wskaźnikowych oraz na wyrażeniach te zmienne zawierających.

Dokładne opanowanie zasad posługiwania się wskaźnikami jest niezbędne do
efektywnego i sprawnego programowania w C i C++.

Tej umiejętności nie można pominąć, przeskoczyć lub zostawić na później.

Nie oszukujmy się — ten, kto nie opanuje zasad posługiwania się wskaźnikami
nigdy nie będzie prawdziwym, profesjonalnym programistą, wykorzystującym
język C lub C++.

Koncepcja wskaźników oraz metody ich wykorzystania są proste. Wymagają one
jednak uwagi, zrozumienia i myślenia.
Koncepcja wskaźników oraz metody ich wykorzystania są proste. Wymagają one
jednak uwagi, zrozumienia i myślenia.

44

Po co są zmienne wskaźnikowe?Po co są zmienne wskaźnikowe?

Zmienna wskaźnikowa przeznaczona jest do lokalizowania (inaczej
wskazywania) obiektów w pamięci operacyjnej.

Jedyną rolą zmiennej wskaźnikowej jest umożliwienie odwoływania się do
obiektów wskazywanych.

Zmienna wskaźnikowa

Pamięć operacyjna

Obiekt wskazywany

55

Zmienna wskaźnikowa przeznaczona jest do lokalizowania (inaczej
wskazywania) obiektów w pamięci operacyjnej.

Jedyną rolą zmiennej wskaźnikowej jest umożliwienie odwoływania się do
obiektów wskazywanych.

Zmienna wskaźnikowa może lokalizować w pamięci operacyjnej:

inne zmienne,

nienazwane bloki pamięci,

bloki zawierające kod programu, np. funkcje.

Czym jest zmienna wskaźnikowa?Czym jest zmienna wskaźnikowa?

Zmienna wskaźnikowa

Pamięć operacyjna

Obiekt wskazywany

Zmienna wskaźnikowa rezyduje w pamięci operacyjnej.

Sama zmienna wskaźnikowa może być również „wskazywana” przez inną
zmienną wskaźnikową.

Zmienna wskaźnikowa

66

Trzy stany zmiennej wskaźnikowejTrzy stany zmiennej wskaźnikowej

Zmienna wskaźnikowa wskazuje na konkretny obiekt w pamięci:

Zmienna wskaźnikowa

Pamięć operacyjna

Obiekt wskazywany OK

Zmienna wskaźnikowa nie wskazuje na żaden obiekt:

Zmienna wskaźnikowa

Pamięć operacyjna

OK

Zmienna wskaźnikowa wskazuje na nie wiadomo co:

Zmienna wska nikowaź

Pamięć operacyjna

? Kiepsko

77

Co zawiera zmienna wskaźnikowa?Co zawiera zmienna wskaźnikowa?

Zwykle przyjmuje się, że zmienna wskaźnikowa zawiera w sobie adres obiektu
wskazywanego.

Jednak zmienna wskaźnikowa nie musi w sobie zawierać adresu bezpośredniego
(fizycznego).

Zawartość zmiennej wskaźnikowej może zawierać inną informację, pozwalającą na
precyzyjne i jednoznaczne zidentyfikowanie położenia obiektu w pamięci.

345fa012h

Pamięć operacyjna

Obiekt wskazywany

Adres: 345fa012h

Zmienna wskaźnikowa

88

Przykład implementacji zmiennej wskaźnikowej — Intel Przykład implementacji zmiennej wskaźnikowej — Intel 80868086

Zmienna wskaźnikowa zawiera przesunięcie (ang. offset) obiektu względem
początku segmentu gdy wskaźniki są „krótkie” (ang. near) — odwołania
wewnątrz segmentu.

. . .

02c4a45fh

Adres segmentu

Obiekt

. . .

. . .

+0

Przesunięcie

+1
+2
+3
+4Se

gm
en

t

0003

„Krótka” zmienna
wskaźnikowa

99

Przykład implementacji zmiennej wskaźnikowej — Intel Przykład implementacji zmiennej wskaźnikowej — Intel 80868086

Zmienna wskaźnikowa zawiera adres segmentu i przesunięcie obiektu gdy
wskaźniki są „długie” (ang. far) — odwołania międzysegmentowe.

. . .

02c4a45fh

Adres segmentu

Obiekt

. . .

. . .

+0

Przesunięcie

+1
+2
+3
+4Se

gm
en

t

02c4a45f:0003

„Długa” zmienna
wskaźnikowa

1010

Deklaracja zmiennej wskaźnikowej Deklaracja zmiennej wskaźnikowej

. . .

i

int i = 10;
int * pi;

10

Nazwa zmiennej

Wartość zmiennej

. . .

pi ?

. . .

i

int i = 10;
int * pi = 0;

10

Nazwa zmiennej

Wartość zmiennej

. . .

pi?

int * pi ;

To oznacza, że deklarowana
zmienna wskaźnikowa będzie
przeznaczona do lokalizowania
w pamięci obiektów typu int.

To oznacza, że deklarowana
zmienna wskaźnikowa będzie
przeznaczona do lokalizowania
w pamięci obiektów typu int.

Nazwa deklarowanej zmiennej
wskaźnikowej zbudowana wg.
zwykłych reguł, często zawiera p
lub ptr od pointer.

Nazwa deklarowanej zmiennej
wskaźnikowej zbudowana wg.
zwykłych reguł, często zawiera p
lub ptr od pointer.

Deklarowana zmienna będzie wskaźnikiem, kompilator wie, ile dla niej zarezerwować pamięci. Deklarowana zmienna będzie wskaźnikiem, kompilator wie, ile dla niej zarezerwować pamięci.

1111

Rola wskaźnika pustego NULLRola wskaźnika pustego NULL

Tak zdefiniowana zmienna wskaźnikowa:

int * pi;

ma wartość początkową zależną od kontekstu deklaracji. Jeżeli ta zmienna jest
klasy auto, to jej wartość jest przypadkowa — zmienna „wskazuje” zatem na bliżej
nieznany obiekt w pamięci.

W pliku nagłówkowym stddef.h zdefiniowana stałą NULL, reprezentującą wskaźnik
pusty, niezależny od platformy i implementacji. Tak zdefiniowana zmienna:

int * pi = NULL;

jest wskaźnikiem pustym, a więc nie wskazuje żadnego obiektu w pamięci.

W języku C++ preferuje się wykorzystanie wartości 0 zamiast stałej NULL.

pi ??

pi

1212

int * pi = 0; pi

Wartość NULL kontra 0Wartość NULL kontra 0

Stała NULL jest definiowana jako wartość 0 lub 0L. Można zatem zamiast wartością
NULL, posługiwać się wartością 0.

W języku C praktykuje stosowanie wartości NULL a nie wartości 0.

W języku C++ praktykuje stosowanie wartości 0 zamiast NULL.

Niezależnie od przyjętej wartości wskaźnika pustego, jawnie inicjowanie zmiennych
wskaźnikowych oraz posługiwanie się wartością pustą dla wskaźników
niezakotwiczonych jest dobrą praktyką programistyczną w języku C i C++.

W języku C praktykuje stosowanie wartości NULL a nie wartości 0.

W języku C++ praktykuje stosowanie wartości 0 zamiast NULL.

Niezależnie od przyjętej wartości wskaźnika pustego, jawnie inicjowanie zmiennych
wskaźnikowych oraz posługiwanie się wartością pustą dla wskaźników
niezakotwiczonych jest dobrą praktyką programistyczną w języku C i C++.

To, czy zmienna wskaźnikowa jest wskaźnikiem pustym można sprawdzić:

if(pi != NULL)
{
 // Tu jakie operacje na obiekcieś
 // wskazywanym przez pi
 . . .
}

if(pi == NULL)
{
 // Nie odwołujemy si do obiektu ę
 // wskazywanego przez pi — nie ma go!
 . . .
}

1313

Przypisywanie wartości zmiennym wskaźnikowymPrzypisywanie wartości zmiennym wskaźnikowym

. . .

i
int i = 10;
int * pi = 0; 10

. . .

pi

. . .

i
int i = 10;
int * pi = 0;
. . .
pi = &i;

10

. . .

pi

pi i& ;Od momentu tego

przypisania, pi wskazuje
zmienną i, umożliwiając
realizację dowolnych
operacji na tej zmiennej.

Od momentu tego
przypisania, pi wskazuje
zmienną i, umożliwiając
realizację dowolnych
operacji na tej zmiennej.

Wyrażenie
wskaźnikowe
lokalizujące zmienną
i w pamięci.

Wyrażenie
wskaźnikowe
lokalizujące zmienną
i w pamięci.

Jednoargumentowy operator & buduje wyrażenie wskaźnikowe lokalizujące zmienną w pamięci
operacyjnej. Argument musi być l-wartością, nie odnoszącą się do obiektu register ani pola bitowego.

Jednoargumentowy operator & buduje wyrażenie wskaźnikowe lokalizujące zmienną w pamięci
operacyjnej. Argument musi być l-wartością, nie odnoszącą się do obiektu register ani pola bitowego.

=

1414

Odwoływanie się do obiektu wskazywanegoOdwoływanie się do obiektu wskazywanego

. . .

i
int i = 10;
int * pi = 0;
. . .
pi = &i;
*pi = 20;

20

. . .

pi

*pi == i

 pi* ;

Ten zapis oznacza obiekt
wskazywany przez pi. Zapis *pi
może wystąpić wszędzie tam, gdzie
może wystąpić i.

Ten zapis oznacza obiekt
wskazywany przez pi. Zapis *pi
może wystąpić wszędzie tam, gdzie
może wystąpić i.

Dowolne wyrażenie
typu zgodnego z typem
obiektu wskazywanego.

Dowolne wyrażenie
typu zgodnego z typem
obiektu wskazywanego.

Jednoargumentowy operator
adresowania pośredniego *,
daje w wyniku obiekt wskazywany
przez argument pi.

Jednoargumentowy operator
adresowania pośredniego *,
daje w wyniku obiekt wskazywany
przez argument pi.

= 20

1515

Odwoływanie się do obiektu wskazywanego, uwagiOdwoływanie się do obiektu wskazywanego, uwagi

Po przypisaniu:

pi = &i;

te fragmenty kodu są równoważne:

cin >> *pi;

if(*pi == 0)
 cout << "Bledna wartosc";
else
{
 y = *pi * x;
 cout << "Wynik: " << y;
}

cin >> i;

if(i == 0)
 cout << "Bledna wartosc";
else
{
 y = i * x;
 cout << "Wynik: " << y;
}

Jeżeli wskaźnik pi wskazuje na zmienną i, to *pi może wystąpić wszędzie tam, gdzie
może wystąpić i. Zmienna pi jest linkiem (odnośnikiem) do zmiennej i, a wyrażenie *pi
jest aliasem (alternatywną nazwą) zmiennej i.

Jeżeli wskaźnik pi wskazuje na zmienną i, to *pi może wystąpić wszędzie tam, gdzie
może wystąpić i. Zmienna pi jest linkiem (odnośnikiem) do zmiennej i, a wyrażenie *pi
jest aliasem (alternatywną nazwą) zmiennej i.

1616

1717

Operatory & i * występują jako jedno i dwuargumentowe. W wersji
dwuargumentowej oznaczają odpowiednio bitową koniunkcję i iloczyn
arytmetyczny.

W wersji jednoargumentowej oznaczają operacje wskaźnikowe.

Wyrażenie &coś_tam oznacza „gdzie jest coś_tam” — operator & to zatem
lokalizator lub pobieracz adresu.

Wyrażenie *wskaźnik oznacza „obiekt lokalizowany przez wskaźnik” —
operator * to zatem ekstraktor (wydobywacz) obiektu wskazywanego.

Wydobywanie obiektu wskazywanego nazywa się dereferencją wskaźnika.

Jednoargumentowe operatory & i * — podsumowanieJednoargumentowe operatory & i * — podsumowanie

Typowe zastosowania zmiennych wskaźnikowychTypowe zastosowania zmiennych wskaźnikowych

Realizacja przekazywania parametrów przez zmienną.

Wykorzystanie pamięci zarządzanej dynamicznie.

Manipulowanie tablicami (osobny wykład).

Budowa rekurencyjnych struktur danych (osobny wykład).

1818

Przypomnienie: przekazywanie parametrów przez wartośćPrzypomnienie: przekazywanie parametrów przez wartość

void inc(int i)
{
 i = i + 1;
}

. . .

int a = 5;

inc(a);

cout << a;

5a

Przed wywołaniem
inc(a)

5a

Wywołanie
inc(a)

5i

5a

Wykonanie
inc(a)

6 5Xi

5a 5a

Po wykonaniu
inc(a)

5a

i=i+1

1919

Przypomnienie: przekazywanie parametrów przez referencję (tylko C++)Przypomnienie: przekazywanie parametrów przez referencję (tylko C++)

void inc(int & i)
{
 i = i + 1;
}

. . .

int a = 5;

inc(a);

cout << ”a = ” << a;

5a

Przed wywołaniem
inc(a)

5a 5a

Wywołanie
inc(a)

a

Wykonanie
inc(a)

i i

i = i + 1

6 5X 5a 6a

Po wykonaniu
inc(a)

2020

Parametr formalny i jest referencją do
parametru aktualnego wywołania funkcji.

Parametr formalny i jest referencją do
parametru aktualnego wywołania funkcji.

6 5X

Wskaźniki a przekazywanie parametrów prawie jak przez referencjęWskaźniki a przekazywanie parametrów prawie jak przez referencję

void inc(int * i)
{
 *i = *i + 1;
}

. . .

int a = 5;

inc(&a);

cout << a;

Parametr formalny i jest wskaźnikiem.
Parametr aktualny wywołania również.

Parametr formalny i jest wskaźnikiem.
Parametr aktualny wywołania również.

5a

Przed wywołaniem
inc(a)

5a 5a

Wywołanie
inc(a)

a

Wykonanie
inc(a)

*i=*i+1

5a 6a

Po wykonaniu
inc(a)

i i

*i == a *i == a

2121

Wskaźniki a przekazywanie parametrówWskaźniki a przekazywanie parametrów

2222

W języku C wykorzystuje się parametry będące wskaźnikami do realizacji
przekazywania parametrów działającego podobnie do przekazywania przez referencję.
W języku C wykorzystuje się parametry będące wskaźnikami do realizacji
przekazywania parametrów działającego podobnie do przekazywania przez referencję.

void zamien(int * , int *)
{
 int s; // Schowek

 s = *pierwszy;
 *pierwszy = *drugi;
 *drugi = s;
}

int a = 5, b = 10;
. . .
cout << "\na=" << a << " " << "b=" << b;
zamien(&a, &b);
cout << "\na=" << a << " " << "b=" << b;

a=5 b=10
a=10 b=5

bb 10

aa 5
pierwszy drugi

ss 5

Przykład przekazywania parametrów za pośrednictwem wskaźnika:

Wskaźniki a przekazywanie parametrów — modyfikacja wewnątrz funkcjiWskaźniki a przekazywanie parametrów — modyfikacja wewnątrz funkcji

2323Języki programowania obiektowego i graficznego |Języki programowania obiektowego i graficznego |

W języku C/C++ często wykorzystuje się parametry wskaźnikowe po to, żeby
przekazywanie parametrów odbywało się szybciej i nie zabierało dodatkowej pamięci,
jednocześnie nie oczekuje się, że wnętrze funkcji będzie modyfikować parametr
przekazywany za pośrednictwem wskaźnika.

W języku C/C++ często wykorzystuje się parametry wskaźnikowe po to, żeby
przekazywanie parametrów odbywało się szybciej i nie zabierało dodatkowej pamięci,
jednocześnie nie oczekuje się, że wnętrze funkcji będzie modyfikować parametr
przekazywany za pośrednictwem wskaźnika.

Dzieje się tak szczególnie wtedy, gdy przekazywany parametr jest duży.

Przekazanie dużego parametru za pośrednictwem wskaźnika jest rzeczywiście
szybsze i nie powoduje konieczności utworzenia kopii (oszczędzamy pamięć)
w parametrze formalnym i skopiowania zawartości parametru aktualnego do
parametru formalnego (oszczędzamy czas).

W C++ w tym samym celu wykorzystuje się parametry referencyjne.

Załóżmy na chwilę, że dana typu double jest duża i opłaca się ją przekazywać do
wnętrz funkcji via wskaźnik, nie chcąc jednocześnie modyfikować jej
zawartości we wnętrzu tej funkcji... .

Wskaźniki a przekazywanie parametrów — modyfikacja wewnątrz funkcjiWskaźniki a przekazywanie parametrów — modyfikacja wewnątrz funkcji

2424Języki programowania obiektowego i graficznego |Języki programowania obiektowego i graficznego |

int main()
{
 double cena = 100;

 doliczVat23IWypisz(&cena);
 ksiegujKwoteNetto(&cena);
 . . .
}

Czy tam w środku
nie zmodyfikują mi

czasem ceny?

void doliczVat23IWypisz(double * cenaNetto);
void ksiegujKwoteNetto(double * cenaNetto);
. . .

Załóżmy również, że korzystamy z napisanych przez kogoś innego funkcji,
które nie posiadają dokumentacji, znamy tylko ich prototypy.

Prototypy:

Czy obawy są uzasadnione?Czy obawy są uzasadnione?

Wskaźniki a przekazywanie parametrów — modyfikacja wewnątrz funkcjiWskaźniki a przekazywanie parametrów — modyfikacja wewnątrz funkcji

2525Języki programowania obiektowego i graficznego |Języki programowania obiektowego i graficznego |

void doliczVat23IWypisz(double * cenaNetto)
{
 *cenaNetto *= 1.23;

 cout << *cenaNetto;
}

void doliczVat23IWypisz(double * cenaNetto)
{
 cout << *cenaNetto * 1.23;
}

Tak!Tak!

void doliczVat23IWypisz(double * cenaNetto);

Prototyp wprost nie mówi niczego o realizacji funkcji!

Realizacja może być taka (źle):

Realizacja może też być taka (dobrze):

Wskaźniki a przekazywanie parametrów — modyfikator Wskaźniki a przekazywanie parametrów — modyfikator constconst

2626Języki programowania obiektowego i graficznego |Języki programowania obiektowego i graficznego |

void doliczVat23IWypisz(const double * cenaNetto)
{
 *cenaNetto *= 1.23;

 cout << *cenaNetto;
}

void doliczVat23IWypisz(const double * cenaNetto)
{
 cout << *cenaNetto * 1.23;
}

Aby ustrzec się przed niezamierzoną modyfikacją parametru przekazywanego
przez wskaźnik, można użyć słowa kluczowego const.

Umieszczenie const przed typem obiektu wskazywanego jest obietnicą tego, że
będzie on obiektem niemodyfikowalnym (read-only).

Funkcja nieskutecznie usiłuje zmodyfikować obiekt wskazywany przez cenaNetto:

Funkcja nie modyfikuje obiektu wskazywanego przez cenaNetto:

error: assignment of read-only location

Wskaźniki a przekazywanie parametrów — modyfikator Wskaźniki a przekazywanie parametrów — modyfikator constconst

2727Języki programowania obiektowego i graficznego |Języki programowania obiektowego i graficznego |

void doliczVat23IWypisz(const double * cenaNetto);

Wystąpienie słowa kluczowego const jest obietnicą, że wnętrze funkcji nie będzie
modyfikować obiektu wskazywanego.

Ta informacja umieszczona w prototypie pozwala oczekiwać, że parametr nie
zostanie zmodyfikowany w sposób niezamierzony.

Jest const,
to już chyba śpię

spokojnie...

Czy rzeczywiście można spać spokojnie?Czy rzeczywiście można spać spokojnie?

void doliczVat23IWypisz(const double * cenaNetto)
{
 cout << *cenaNetto * 1.23;
}

Wskaźniki a przekazywanie parametrów — modyfikator Wskaźniki a przekazywanie parametrów — modyfikator constconst

2828Języki programowania obiektowego i graficznego |Języki programowania obiektowego i graficznego |

Wystąpienie słowa kluczowego const jest obietnicą, że wnętrze funkcji nie będzie
modyfikować obiektu wskazywanego w sposób niezamierzony.

Ale można w sposób zamierzony tej obietnicy nie dotrzymać!

Nie!Nie!

void doliczVat23IWypisz(const double * cenaNetto)
{
 *((double *) cenaNetto) *= 1.23;

 cout << *cenaNetto;
} Rzutowanie wskaźnika typu

const double *
 na

double *
„zdejmujące” atrybut read-only.

Rzutowanie wskaźnika typu
const double *

 na
double *

„zdejmujące” atrybut read-only.

Taka sytuacja to zamierzona złośliwość, całe
szczęście nie spotyka się jej zbyt często.

Ale skoro to nie jest niemożliwe... .

Parametry referencyjne w C++ też mogą być Parametry referencyjne w C++ też mogą być constconst

2929Języki programowania obiektowego i graficznego |Języki programowania obiektowego i graficznego |

void doliczVat23IWypisz(const double & cenaNetto);

Wystąpienie słowa kluczowego const jest obietnicą, że wnętrze funkcji nie będzie
modyfikować obiektu referencyjnego.

Ta informacja umieszczona w prototypie pozwala oczekiwać, że parametr nie
zostanie zmodyfikowany w sposób niezamierzony.

Jest const,
to już chyba śpię

spokojnie...

Czy rzeczywiście można spać spokojnie?Czy rzeczywiście można spać spokojnie?

void doliczVat23IWypisz(const double & cenaNetto)
{
 cout << cenaNetto * 1.23;
}

Parametry referencyjne w C++ też mogą być Parametry referencyjne w C++ też mogą być constconst

3030Języki programowania obiektowego i graficznego |Języki programowania obiektowego i graficznego |

Wystąpienie słowa kluczowego const jest obietnicą, że wnętrze funkcji nie będzie
modyfikować obiektu referencyjnego w sposób niezamierzony.

Ale można w sposób zamierzony tej obietnicy nie dotrzymać!

Nie!Nie!

void doliczVat23IWypisz(const double & cenaNetto)
{
 (double &)cenaNetto *= 1.23;

 cout << cenaNetto;
} Rzutowanie referencji typu

const double &
 na

double &
„zdejmujące” atrybut read-only.

Rzutowanie referencji typu
const double &

 na
double &

„zdejmujące” atrybut read-only.
Zatem referencje w C++ też pozwalają nieźle
zamieszać!

Wariacje na temat wskaźników i słowa kluczowego Wariacje na temat wskaźników i słowa kluczowego constconst

3131Języki programowania obiektowego i graficznego |Języki programowania obiektowego i graficznego |

int i = 10;
int * p; // Zwykły wska nik na zwykły obiektź
. . .
p = &i; // Modyfikowalny wska nikź
*p = 20; // Modyfikowalny obiekt
cout << *p; // Wolno odczytywać warto ć wska nika i obiektuś ź

Można modyfikować wartość wskaźnika p, można modyfikować obiekt
wskazywany *p:

int i = 10;
const int * p; // Zwykły wska nika na niemodyfikowalny obiektź
. . .
p = &i; // Modyfikowalny wska nikź
*p = 20; // Niemodyfikowalny obiekt
cout << *p; // Wolno odczytywać warto ć wska nika i obiektuś ź

Można modyfikować wartość wskaźnika p, nie można modyfikować obiektu
wskazywanego *p, który staje się obiektem tylko do odczytu:

Wariacje na temat wskaźników i słowa kluczowego Wariacje na temat wskaźników i słowa kluczowego constconst

3232Języki programowania obiektowego i graficznego |Języki programowania obiektowego i graficznego |

int i = 10;
int * const p = &i; // Ustalony wska nika na modyfikowalny obiektź
. . . // Inicjalizacja takiego wska nika jest obowi zkowaź ą
p = &i; // Niemodyfikowalny wska nikź
*p = 20; // Modyfikowalny obiekt
cout << *p; // Wolno odczytywać warto ć wska nika i obiektuś ź

Nie można modyfikować wartość wskaźnika p, można modyfikować obiekt
wskazywany *p, wskaźnik p jest zakotwiczony „na zawsze”:

int i = 10;
const int * const p = &i; // Ustalony wska nika na niemodyfikowalny obiektź
. . . // Inicjalizacja takiego wska nika jest obowi zkowaź ą
p = &i; // Niemodyfikowalny wska nikź
*p = 20; // Modyfikowalny obiekt
cout << *p; // Wolno odczytywać warto ć wska nika i obiektuś ź

Nie można modyfikować wartość wskaźnika p, nie można modyfikować obiektu
wskazywanego *p, wskaźnik p jest zakotwiczony „na zawsze” o obiekt read-only:

Wskaźniki typu void *Wskaźniki typu void *

float f = 2.5;
int i = 5;
char c = 'A';

void * ptr;

ptr = &f;
. . .

ptr = &i;
. . .

ptr = &c;
. . .

Typ void * oznacza wskazanie niezwiązane z żadnym typem.

Wskaźnik takiego typu może wskazywać daną dowolnego typu.

Wskaźnik ptr może pokazywać na obiekty różnych typów.

Uwaga! Po przypisaniu do wskaźnika typu void * tracimy informację
o typie obiektu wskazywanego. Dlatego operacja *ptr nie ma sensu —
kompilator nie wie, czym jest obiekt wskazywany, ile zajmuje bajtów
w pamięci operacyjnej. Wiadomo tylko, gdzie taki obiekt jest.

Wskaźnik ptr może pokazywać na obiekty różnych typów.

Uwaga! Po przypisaniu do wskaźnika typu void * tracimy informację
o typie obiektu wskazywanego. Dlatego operacja *ptr nie ma sensu —
kompilator nie wie, czym jest obiekt wskazywany, ile zajmuje bajtów
w pamięci operacyjnej. Wiadomo tylko, gdzie taki obiekt jest.

3333

Wskaźniki typu void *, cd. ...Wskaźniki typu void *, cd. ...

3434

Nie można wprost odwoływać się do obiektu wskazywanego przez wskaźnika
void * — inaczej mówiąc, nie można dokonać dereferencji takiego wskaźnika.

Aby odwołać się do obiektu wskazywanego, należy poinformować kompilator
jaki jest jego typ, dokonując konwersji (tzw. rzutowania) typu wskaźnika.

void * ptr;

ptr = &f;
cout << endl << *((float *) ptr);

Rzutowanie wskaźnika ptr ― wskazanie na obiekt typu float.Rzutowanie wskaźnika ptr ― wskazanie na obiekt typu float.

void * ptr;

ptr = &f;
cout << endl << * (float *) ptr;

Wskaźniki typu void *, cd. ...Wskaźniki typu void *, cd. ...

float f = 2.5;
int i = 5;
char c = 'A';

void * ptr;

ptr = &f;
cout << endl << *((float *)ptr);

ptr = &i;
cout << endl << *((int *)ptr);

ptr = &c;
cout << endl << *((char *)ptr);

Wskaźnik void * można rzutować na różne typy:

3535

Dynamiczny przydział pamięci — pojęcie sterty, sterta a stosDynamiczny przydział pamięci — pojęcie sterty, sterta a stos

Sterta (ang. heap) to wydzielony obszar pamięci wolnej:

przeznaczony do przechowywania danych dynamicznych,

kontrolowany ręcznie przez programistę,

ograniczony pod względem rozmiaru,

przydzielany pasującymi fragmentami.

. . .

. . .

. . .

St
er

ta
D

an
e

St
os

Stos (ang. stack) to wydzielony obszar pamięci roboczej:

przeznaczony do przechowywania danych automatycznych,

nie jest bezpośrednio kontrolowany przez programistę,

ograniczony pod względem rozmiaru,

przydzielany wg. zasady LIFO (ang. last in, first out).

. . .

3636

Dynamiczny przydział pamięciDynamiczny przydział pamięci

Typowy scenariusz wykorzystania dynamicznego przydziału pamięci:

Dynamiczny przydział pamięci polega na zarezerwowaniu fragmentu pamięci
w obszarze pamięci wolnej (sterty), dla obiektu pamięciowego zwanego dynamicznym.
Dynamiczny przydział pamięci polega na zarezerwowaniu fragmentu pamięci
w obszarze pamięci wolnej (sterty), dla obiektu pamięciowego zwanego dynamicznym.

Określenie wielkości potrzebnego obszaru pamięci.

Przydział pamięci i zapamiętanie wskazania tego obszaru w zmiennej
wskaźnikowej.

Sprawdzenie czy przydział pamięci się powiódł, jeżeli tak to:

Wykorzystanie przydzielonego bloku pamięci.

Zwolnienie przydzielonego bloku pamięci, gdy nie jest już potrzebny.

3737

Dynamiczny przydział pamięci w języku C++ — etap IDynamiczny przydział pamięci w języku C++ — etap I

int main()
{
 int * p = 0;

 p = new int;

 if(p != 0)
 {
 *p = 10;
 . . .
 cout << ++(*p);
 . . .
 delete p;
 }
 . . .
}

. . .

. . .

. . .

St
er

ta
D

an
e

St
os

. . .
p

Definicja zmiennej wskaźnikowej p, zainicjowanej
wskaźnikiem pustym.

3838

Dynamiczny przydział pamięci w języku C++ — etap IIDynamiczny przydział pamięci w języku C++ — etap II

. . .

. . .

. . .

St
er

ta
D

an
e

St
os

. . .
p

Operator new przydziela na stercie blok pamięci dla danej
typu int. Rezultatem funkcji jest wskaźnik do przydzielonego
obszaru lub 0 jeżeli polecenie nie może być zrealizowane
(czasem jest inaczej, o tym za chwilę).

3939

int main()
{
 int * p = 0;

 p = new int;

 if(p != 0)
 {
 *p = 10;
 . . .
 cout << ++(*p);
 . . .
 delete p;
 }
 . . .
}

Dynamiczny przydział pamięci w języku C++ — etap IIIDynamiczny przydział pamięci w języku C++ — etap III

. . .

. . .

. . .

St
er

ta
D

an
e

St
os

. . .
p

Zawsze należy sprawdzić poprawność przydziału pamięci.
Odwołanie do obiektu lokalizowanego przez wskaźnik pusty
jest błędem.

4040

int main()
{
 int * p = 0;

 p = new int;

 if(p != 0)
 {
 *p = 10;
 . . .
 cout << ++(*p);
 . . .
 delete p;
 }
 . . .
}

Dynamiczny przydział pamięci w języku C++ — etap IVDynamiczny przydział pamięci w języku C++ — etap IV

. . .

. . .

. . .

10

St
er

ta
D

an
e

St
os

. . .
p

Wykorzystanie przydzielonego bloku pamięci. Ponieważ
zmienna wskaźnikowa p jest skojarzona z typem int,
przydzielony obszar traktowany jest jak dana typu int.

*p

4141

int main()
{
 int * p = 0;

 p = new int;

 if(p != 0)
 {
 *p = 10;
 . . .
 cout << ++(*p);
 . . .
 delete p;
 }
 . . .
}

Dynamiczny przydział pamięci w języku C — etap IV, cd. ...Dynamiczny przydział pamięci w języku C — etap IV, cd. ...

. . .

. . .

. . .

11

St
er

ta
D

an
e

St
os

. . .
p

Z obiektem wskazywanym przez zmienną p można robić
wszystko to, co dozwolone dla danej typu int. Wyrażenie
++(*p) zwiększa obiekt wskazywany przez zmienną p.

*p

4242

int main()
{
 int * p = 0;

 p = new int;

 if(p != 0)
 {
 *p = 10;
 . . .
 cout << ++(*p);
 . . .
 delete p;
 }
 . . .
}

Dynamiczny przydział pamięci w języku C++ — etap VDynamiczny przydział pamięci w języku C++ — etap V

. . .

. . .

. . .

St
er

ta
D

an
e

St
os

. . .
p

Wywołanie operatora delete powoduje zwolnienie bloku
pamięci wskazywanego przez p, blok ten zwracany jest do
puli bloków wolnych. Uwaga — po wywołaniu delete
wskaźnik p dalej pokazuje na zwolniony blok pamięci!

4343

int main()
{
 int * p = 0;

 p = new int;

 if(p != 0)
 {
 *p = 10;
 . . .
 cout << ++(*p);
 . . .
 delete p;
 }
 . . .
}

int main()
{
 int * p = 0;

 p = new int;

 if(p != 0)
 {
 *p = 10;
 . . .
 cout << ++(*p);
 . . .
 delete p;
 *p = 0;
 }
 *p = 100;
 . . .
}

Dynamiczny przydział pamięci w języku C++ — uwagiDynamiczny przydział pamięci w języku C++ — uwagi

. . .

. . .

. . .

???

St
er

ta
D

an
e

St
os

. . .
p

Mimo, że po wywołaniu free wskaźnik p dalej pokazuje na
zwolniony obszar, próba odwołania się do niego jest błędem.

 Ten obszar być może został właśnie przydzielony ponownie.

Błąd. Odwołanie do zwolnionego
lub nieprzydzielonego bloku

Błąd. Odwołanie do zwolnionego
lub nieprzydzielonego bloku

4444

Dynamiczny przydział pamięci w języku C++ — uwagi, cd. ...Dynamiczny przydział pamięci w języku C++ — uwagi, cd. ...

. . .

. . .

. . .

St
er

ta
D

an
e

St
os

. . .
p

Dobrą praktyką jest zerowanie zmiennych wskaźnikowych na
etapie ich deklaracji, po zwolnieniu pamięci oraz testowanie
czy wskaźnik nie jest pusty przed odwołaniem do obiektu
wskazywanego.

4545

int main()
{
 int * p = 0;

 p = new int;

 if(p != 0)
 {
 *p = 10;
 . . .
 cout << ++(*p);
 . . .
 delete p;
 p = 0;
 }
 . . .
}

Dynamiczny przydział pamięci w języku C++ — dla int nie ma sensu...Dynamiczny przydział pamięci w języku C++ — dla int nie ma sensu...

int main()
{
 TBitmap * p = 0;

 p = new TBitmap;

 if(p != 0)
 {
 Operacje na bitmapie
 wskazywanej przez p;
 . . .
 delete p;
 p = 0;
 }
 . . .
}

Dana
typu

TBitmap

. . .

. . .

. . .

St
er

ta
D

an
e

St
os

. . .
p

Dynamiczny przydział pamięci dla pojedynczych danych typu
int, char czy double najczęściej nie ma sensu. Ale ma sens dla
obiektów zajmujących dużo pamięci operacyjnej oraz dla
złożonych struktur danych.

4646

Dynamiczny przydział pamięci w języku C++, zaszłościDynamiczny przydział pamięci w języku C++, zaszłości

int main()
{
 int * p = 0;

 p = new int;

 if(p != 0)
 {
 *p = 10;
 . . .
 cout << ++(*p);
 . . .
 delete p;
 p = 0;
 }
 . . .
}

Od standardu C++ z 2003 operator new działa inaczej. Aby zachować omówiony
styl przydziału pamięci, należy użyć jego specjalnej wersji: nothrow.

Aktualnie, gdy operator new nie potrafi przydzielić pamięci to generuje wyjątek,
zamiast oddawania rezultatu w postaci wskaźnika pustego.

Stare dzieje w C ++Stare dzieje w C ++ int main()
{
 int * p = 0;

 p = new (nothrow) int;

 if(p != 0)
 {
 *p = 10;
 . . .
 cout << ++(*p);
 . . .
 delete p;
 p = 0;
 }
 . . .
}

Aktualnie w C ++Aktualnie w C ++

4747

Dynamiczny przydział pamięci w języku C++, wyjątkiDynamiczny przydział pamięci w języku C++, wyjątki

int main()
{
 try
 {
 int * p = new int;

 *p = 10;
 . . .
 cout << ++(*p);
 . . .
 delete p;
 p = 0;
 }
 catch(...)
 {
 // Zrob cos gdy brak pamieci
 }
}

Aktualnie w C ++Aktualnie w C ++

Mechanizm obsługi wyjątków oraz zasady stosowania try-catch zostaną omówione
osobno.
Mechanizm obsługi wyjątków oraz zasady stosowania try-catch zostaną omówione
osobno.

4848

Jeżeli aktualnie użyjemy operatora w wersji new, wygenerowany zostanie wyjątek
klasy bad_alloc.

Zarządzanie pamięcią dynamiczną to rzecz podwójnie nieprostaZarządzanie pamięcią dynamiczną to rzecz podwójnie nieprosta

Zarządzanie pamięcią rozgrywane na poziomie kodu programu wymaga uwagi od
programisty. To pierwsza rzecz.

Druga jest po stronie systemu operacyjnego. Uczestniczy on w przydziale pamięci dla
procesów, oferując pamięć wirtualną. W rzeczywistości bloki pamięci naszego
programu mogą czasem znajdować się na dysku... . Proces zarządzania pamięcią
wirtualną bywa czasem bardzo złożony.

Zarządzanie pamięcią rozgrywane na poziomie kodu programu wymaga uwagi od
programisty. To pierwsza rzecz.

Druga jest po stronie systemu operacyjnego. Uczestniczy on w przydziale pamięci dla
procesów, oferując pamięć wirtualną. W rzeczywistości bloki pamięci naszego
programu mogą czasem znajdować się na dysku... . Proces zarządzania pamięcią
wirtualną bywa czasem bardzo złożony.

4949

Interesujące artykuły na temat zarządzania pamięcią:
● http://www.cprogramming.com/tutorial/virtual_memory_and_heaps.html

● http://www.ibm.com/developerworks/linux/library/l-memory/

● http://www.cantrip.org/wave12.html

● http://linuxdevcenter.com/pub/a/linux/2003/05/08/cpp_mm-1.html

Wyrażenia wskaźnikoweWyrażenia wskaźnikowe

Wskaźniki lokalizują obiekty w pamięci operacyjnej. Można budować wyrażenia
zawierające wskaźniki, wyrażenia te lokalizują również pewne obiekty w pamięci
operacyjnej.

W językach C/C++ obowiązuje specjalna arytmetyka na wskaźnikach.

Wskaźniki lokalizują obiekty w pamięci operacyjnej. Można budować wyrażenia
zawierające wskaźniki, wyrażenia te lokalizują również pewne obiekty w pamięci
operacyjnej.

W językach C/C++ obowiązuje specjalna arytmetyka na wskaźnikach.

5050

// ASCII: 0x41 - A 0x42 - B
short int n = 0x4241;
char * p;

p = (char *)&n;

cout << endl << *p;

++p;

cout << endl << *p;

. . .

n
0x41 | A

. . .

p

0x42 | B

Wyrażenia wskaźnikoweWyrażenia wskaźnikowe

Wskaźnik p lokalizuje młodszy bajt zmiennej m. Reszta tej liczby nie jest dla
wskaźnika p „widoczna” ponieważ służy on do lokalizowania znaków (bajtów).

Wyprowadzenie obiektu wskazywanego przez p do cout spowoduje potraktowanie
młodszego bajtu zmiennej m jako znaku i wyprowadzenie go do strumienia
wyjściowego.

Wskaźnik p lokalizuje młodszy bajt zmiennej m. Reszta tej liczby nie jest dla
wskaźnika p „widoczna” ponieważ służy on do lokalizowania znaków (bajtów).

Wyprowadzenie obiektu wskazywanego przez p do cout spowoduje potraktowanie
młodszego bajtu zmiennej m jako znaku i wyprowadzenie go do strumienia
wyjściowego.

5151

// ASCII: 0x41 - A 0x42 - B
short int n = 0x4241;
char * p;

p = (char *)&n;

cout << endl << *p;

++p;

cout << endl << *p;

. . .

n
0x41 | A

. . .

p

0x42 | B

A

*p

Wyrażenia wskaźnikoweWyrażenia wskaźnikowe

Do zmiennej wskaźnikowej wolno dodać (odjąć) liczbę całkowitą. Takie wyrażenie
lokalizuje w pamięci operacyjnej obiekt przesunięty w stosunku do wskaźnika
bazowego. Wyrażenie p = p + 1 przesuwa wskaźnik do następnego obiektu w pamięci,
wyrażenie p = p – 1 do poprzedniego obiektu, zgodnie z typem wskaźnika.

Wyrażenia te można oczywiście zapisać: ++p oraz --p.

Do zmiennej wskaźnikowej wolno dodać (odjąć) liczbę całkowitą. Takie wyrażenie
lokalizuje w pamięci operacyjnej obiekt przesunięty w stosunku do wskaźnika
bazowego. Wyrażenie p = p + 1 przesuwa wskaźnik do następnego obiektu w pamięci,
wyrażenie p = p – 1 do poprzedniego obiektu, zgodnie z typem wskaźnika.

Wyrażenia te można oczywiście zapisać: ++p oraz --p.

5252

// ASCII: 0x41 - A 0x42 - B
short int n = 0x4241;
char * p;

p = (char *)&n;

cout << endl << *p;

++p;

cout << endl << *p;

. . .

n
0x41 | A

. . .

p

0x42 | B

A
++p

Wyrażenia wskaźnikoweWyrażenia wskaźnikowe

Liczby dodawane lub odejmowana od wskaźnika są skalowane przez rozmiar typu
wskaźnika. Oznacza to, że dla char * p operacja ++p spowoduje przesunięcie
wskaźnika do następnego znaku w pamięci operacyjnej, a dla int * p operacja ++p
spowoduje przesunięcie wskaźnika do następnej liczby całkowitej, itp.

Liczby dodawane lub odejmowana od wskaźnika są skalowane przez rozmiar typu
wskaźnika. Oznacza to, że dla char * p operacja ++p spowoduje przesunięcie
wskaźnika do następnego znaku w pamięci operacyjnej, a dla int * p operacja ++p
spowoduje przesunięcie wskaźnika do następnej liczby całkowitej, itp.

5353

// ASCII: 0x41 - A 0x42 - B
short int n = 0x4241;
char * p;

p = (char *)&n;

cout << endl << *p;

++p;

cout << endl << *p;

. . .

n
0x41 | A

. . .

p

0x42 | B

A
B

*p

5454

Arytmetyka na wskaźnikach — zasadyArytmetyka na wskaźnikach — zasady

Dozwolone operacje wskaźnikowe to:

przypisywanie wskaźników do obiektów tego samego typu,

przypisywanie wskaźników do obiektów innego typu po konwersji,

dodawanie lub odejmowanie wskaźnika i liczby całkowitej,

odejmowanie lub porównanie dwóch wskaźników,

przypisanie wskaźnikowi wartości zero (lub wskazania puste NULL) lub
porównanie ze wskazaniem pustym.

5555

Wyrażenia wskaźnikowe — kolejny przykładWyrażenia wskaźnikowe — kolejny przykład

// ASCII: 0x41 - A 0x42 - B 0x43 - C 0x44 - D
int m = 0x44434241; // Zakładamy, e int jest 32 bitowyż
char * p;

p = (char *)&m;
cout << endl << *p ;
++p;
cout << endl << *p ;
++p;
cout << endl << *p ;
++p;
cout << endl << *p ;

A
B
C
D

lub:

// ASCII: 0x41 - A 0x42 - B 0x43 - C 0x44 - D
int m = 0x44434241; // Zakładamy, e int jest 32 bitowyż
char * p;

int i;

for(i = 0, p = (char *)&m; i < sizeof(int); i++)
 cout << endl << *(p++);

5656

Dla dociekliwych — funkcja ze zmienną liczbą parametrówDla dociekliwych — funkcja ze zmienną liczbą parametrów

int addInts(int count, ...)
{
 int total = 0;
 va_list argList;

 va_start(argList, count);
 for(; count; count--)
 total += va_arg(argList, int);
 va_end(argList);
 return total;
}

. . .

cout << endl << "Suma: " << addInts(2, 1, 2);
cout << endl << "Suma: " << addInts(3, 4, -1, 6);
cout << endl << "Suma: " << addInts(0);
cout << endl << "Suma: " << addInts(5, 1, 2, 3, 4, 5);

Suma: 3
Suma: 9
Suma: 0
Suma: 15

5757

Dla dociekliwych — funkcja ze zmienną liczbą parametrówDla dociekliwych — funkcja ze zmienną liczbą parametrów

int addIntsOwn(int count, ...)
{
 int total = 0;
 char * argList;

 argList = ((char *)&count) + sizeof(count);
 for(; count; count--)
 total += *((int *)((argList += sizeof(int)) - sizeof(int)));
 return total;
}

. . .

cout << endl << "Suma: " << addInts(2, 1, 2);
cout << endl << "Suma: " << addInts(3, 4, -1, 6);
cout << endl << "Suma: " << addInts(0);
cout << endl << "Suma: " << addInts(5, 1, 2, 3, 4, 5);

Suma: 3
Suma: 9
Suma: 0
Suma: 15

Aby obsłużyć zmienną liste parametrów nie trzeba koniecznie używać makr z pliku
stdarg.h, wystarczy wiedzieć jak są przekazywane parametry i rozumieć wskaźniki... .

Poniżej przykład do indywidualnego przemyślenia.

Aby obsłużyć zmienną liste parametrów nie trzeba koniecznie używać makr z pliku
stdarg.h, wystarczy wiedzieć jak są przekazywane parametry i rozumieć wskaźniki... .

Poniżej przykład do indywidualnego przemyślenia.

5858

Wskaźniki do funkcji — koncepcjaWskaźniki do funkcji — koncepcja

W trakcie uruchamiania programu, jego
kod maszynowy odczytywany z pliku
wykonywalnego, jest ładowany do
pamięci operacyjnej.

Każda funkcja w programie posiada
określony adres, począwszy od tego
adresu rozpoczyna się ciało funkcji
w postaci kodu maszynowego.

Nazwa funkcji w językach C/C++ jest
właśnie adresem funkcji w pamięci
operacyjnej.

Skoro funkcje posiadają swoje adresy, to
za możliwe jest operowanie na adresach
funkcji z wykorzystaniem zmiennych
wskaźnikowych.

. . .

. . .

01010101

00110011

. . .

10001010

01001011

St
er

ta
D

an
e

St
os

. . .

Ko
d

pisz

void pisz ()
{
 cout << ”Witaj!”;
}

5959

Wskaźniki do funkcji — jak deklarowaćWskaźniki do funkcji — jak deklarować

Wskaźniki do funkcji są deklarowane w specyficzny sposób.

W deklaracji wskaźnika do funkcji należy precyzyjnie określić informacje
o funkcji, jaką będzie mógł dany wskaźnik lokalizować.

Te informacje obejmują:

typ rezultatu funkcji,

liczbę i typy kolejnych parametrów,

Nazwy parametrów są nieistotne.

6060

Wskaźniki do funkcji — jak deklarowaćWskaźniki do funkcji — jak deklarować

Zakładamy, że wskazywana funkcja ma następującą definicję:

void pisz()
{
 cout << "Witaj!";
}

void (*funPtr)();

Zmienną wskaźnikowa, która może lokalizować taką funkcję, deklarujemy :

Nawiasy są niezbędne, bez nich następująca deklaracja:

void *funPtr();

oznaczała by, że funPtr to nazwa bezparametrowej funkcji, której rezultatem jest
wskaźnik typu void *.

co oznacza, że funPtr jest wskaźnikiem na bezparametrowe funkcje, które nie mają
rezultatu (rezultat typu void).

6161

Wskaźniki do funkcji — „kotwiczenie” wskaźnikaWskaźniki do funkcji — „kotwiczenie” wskaźnika

Wskaźnik do funkcji może być zerowany na etapie
deklarowania:

void (*funPtr)() = 0;

Wskaźnik do funkcji może być inicjowany na etapie
deklarowania:

void (*funPtr)() = &pisz; // Wersja nr 1

void (*funPtr)() = pisz; // Wersja nr 2

. . .

. . .

01010101

00110011

. . .

10001010

01001011

St
er

ta
D

an
e

St
os

. . .

funPtr

Ko
d

pisz

Po deklaracji, do wskaźnika można przypisywać
wskazanie na funkcje pisząc:

funPtr = &pisz; // Wersja nr 2

funPtr = pisz; // Wersja nr 2

6262

Wskaźniki do funkcji — wywołanie funkcji via wskaźnikWskaźniki do funkcji — wywołanie funkcji via wskaźnik

Po „zakotwiczeniu” wskaźnika o funkcję:

funPtr = pisz; . . .

. . .

01010101

00110011

. . .

10001010

01001011

St
er

ta
D

an
e

St
os

. . .
funPtr

Ko
d

pisz

można wywołać jej kod pisząc:

(*funPtr)(); // Wersja nr 1

lub:

funPtr(); // Wersja nr 2

W sensie semantycznym wskaźnik na funkcję
i nazwa funkcji są tożsame, zatem wersja 1
powyżej jest niepotrzebnie skomplikowana,
większość programistów wykorzysta wersję nr 2.

6363

Wskaźniki do funkcji — wskaźniki bywają niezbyt wierne...Wskaźniki do funkcji — wskaźniki bywają niezbyt wierne...

Wskaźnik zadeklarowany w ten sposób:

void (*funPtr)() = 0;

tak na prawdę, może pokazywać na dowolną bezparametrową funkcję, która nie ma
rezultatu (rezultat typu void).

void pisz()
{
 cout << "\nWitaj!";
}

void write()
{
 cout << "\nHello!";
}

void schreiben()
{
 cout << "\nHallo!";
}

funPtr = pisz;
funPtr();

funPtr = write;
funPtr();

funPtr = schreiben;
funPtr();

Witaj!
Hello!
Hallo!

6464

Wskaźniki do funkcji — tablicujemy kod?Wskaźniki do funkcji — tablicujemy kod?

Tablica wskaźników na bezparametrowe funkcje nieudostępniające rezultatu:

const int N = 3;
void (* funTab[N])();

„Zakotwiczenie” kolejnych elementów tablicy o funkcje:

funTab[0] = pisz;
funTab[1] = write;
funTab[2] = schreiben;

Wywołanie funkcji, lokalizowanych przez kolejne elementy tablicy:

for(int i = 0; i < N; ++i)
 funTab[i]();

void pisz()
{
 cout << "\nWitaj!";
}

void write()
{
 cout << "\nHello!";
}

void schreiben()
{
 cout << "\nHallo!";
}

funTab

6565

Wskaźniki do funkcji — inicjalizacja tablicy wskaźników funkcyjnychWskaźniki do funkcji — inicjalizacja tablicy wskaźników funkcyjnych

. . .
void pisz ()
{
 cout << "\nWitaj!";
}

void write()
{
 cout << "\nHello!";
}

void schreiben()
{
 cout << "\nHallo!";
}

int main()
{
 const int N = 3;
 void (* funTab[N])() = { pisz, write, schreiben };

 for(int i = 0; i < N; ++i)
 funTab[i]();

 . . .
}

6666

Wskaźniki do funkcji — a po co to wszystko?Wskaźniki do funkcji — a po co to wszystko?

Jest wiele bardzo ciekawych zastosowań wskaźników do funkcji. Ich przykłady
będą sukcesywnie omawiane.

Jednym z nich określanie funkcji, która ma być wywołana we wnętrzu innej
funkcji.

Przykład — sortowanie tablic z wykorzystaniem bibliotecznej funkcji qsort
(wymaga włączenia stdlib.h lub cstdlib).

Funkcja qsort pozwala na sortuje metodą quick sort dowolną tablicę.

Funkcja qsort to kwintesencja wykorzystania wskaźników, również do funkcji.

6767

Wskaźniki do funkcji — Wskaźniki do funkcji — qsortqsort

Prototyp funkcji qsort (może różnić się w zależności od kompilatora):

void qsort(

 void *base ,

 int nelem ,

 int width ,

 int (*fcmp)(const void *, const void *)

);

Wskaźnik na obszar pamięci, zawierający
dane do posortowania.

Wskaźnik na obszar pamięci, zawierający
dane do posortowania.

Liczba
elementów do
posortowania.

Liczba
elementów do
posortowania.

Wyrażony w bajtach rozmiar
elementu tablicy.

Wyrażony w bajtach rozmiar
elementu tablicy.

Wskaźnik na funkcję, która we wnętrzu
qsort zostanie wykorzystana do
porównania dwóch elementów sortowanej
tablicy.

Wskaźnik na funkcję, która we wnętrzu
qsort zostanie wykorzystana do
porównania dwóch elementów sortowanej
tablicy.

6868

Wskaźniki do funkcji — Wskaźniki do funkcji — qsortqsort w akcji w akcji

#include <cstdlib>
#include <iostream>
using namespace std;

int main()
{
 const int N = 5;
 int tab[N] = { 5, 3, 4, 1, 2 };

 qsort(tab, N, sizeof(tab[0]), compInt);

 for(int i = 0; i < N; ++i)
 cout << endl << tab[i];

 . . .
}

?

6969

Wskaźniki do funkcji — Wskaźniki do funkcji — qsortqsort, rola funkcji porównującej, rola funkcji porównującej

Funkcja qsort musi porównywać ze sobą pary elementów. Jednak funkcja ta
przecież nie wie, jakie są elementy sortowanej tablicy.

Programista musi zdefiniować odpowiednią funkcję porównującą i przekazać
wskaźnik do tej funkcji do wnętrza funkcji qsort.

Funkcja porównująca powinna mieć następującą postać:

int jakasNazwa(const void * a, const void * b)
{
 . . .
}

Parametry a i b to wskaźniki na elementy do porównania. Rezultatem funkcji
powinna być:

wartość ujemna gdy a < b,

wartość zero gdy a == b,

wartość dodatnia gdy a > b.

7070

Wskaźniki do funkcji — Wskaźniki do funkcji — qsortqsort w akcji, funkcja porównująca w akcji, funkcja porównująca

#include <cstdlib>
#include <iostream>
using namespace std;

int compInt(const void * a, const void * b)
{
 return (*(int *)a) - (*(int *)b));
}

int main()
{
 const int N = 5;
 int tab[N] = { 5, 3, 4, 1, 2 };

 qsort(tab, N, sizeof(tab[0]), compInt);

 for(int i = 0; i < N; ++i)
 cout << endl << tab[i];

 . . .
}

Suplement I: dynamiczny przydział pamięci w języku CSuplement I: dynamiczny przydział pamięci w języku C

Przydział pamięci realizują funkcje:

void * malloc(size_t size)

void * calloc(size_t nitems, size_t size)

void * realloc(void * ptr, size_t size)

Obszary pamięci przydzielone tymi funkcjami należało zwolnić funkcją:

void free(void * ptr)

Funkcje zarządzające przydziałem/zwalnianiem bloków pamięci operują na
wskaźnikach void *. Przydzielane bloki są amorficzne ― są to „kawałki” pamięci
o rozmiarze liczonym w bajtach.

Wykorzystanie powyższych funkcji wymaga włączenia pliku nagłówkowego
dyrektywą #include <stdlib.h> lub #include <cstdlib> w C++.

7171

Suplement I: dynamiczny przydział pamięci w języku C — etap ISuplement I: dynamiczny przydział pamięci w języku C — etap I

int main()
{
 int * p = NULL;

 p = malloc(sizeof(int));

 if(p != NULL)
 {
 *p = 10;
 . . .
 cout << ++(*p);
 . . .
 free(p);
 }
 . . .
}

. . .

. . .

. . .

St
er

ta
D

an
e

St
os

. . .
p

Definicja zmiennej wskaźnikowej p, zainicjowanej
wskaźnikiem pustym.

7272

Suplement I: dynamiczny przydział pamięci w języku C — etap IISuplement I: dynamiczny przydział pamięci w języku C — etap II

int main()
{
 int * p = NULL;

 p = malloc(sizeof(int));

 if(p != NULL)
 {
 *p = 10;
 . . .
 cout << ++(*p);
 . . .
 free(p);
 }
 . . .
}

. . .

. . .

. . .

St
er

ta
D

an
e

St
os

. . .
p

Funkcja malloc przydzielan na stercie blok pamięci o
rozmiarze sizeof(int). Rezultatem funkcji jest wskaźnik do
przydzielonego obszaru lub NULL jeżeli polecenie nie może
być zrealizowane.

7373

Suplement I: dynamiczny przydział pamięci w języku C — etap IIISuplement I: dynamiczny przydział pamięci w języku C — etap III

int main()
{
 int * p = NULL;

 p = malloc(sizeof(int));

 if(p != NULL)
 {
 *p = 10;
 . . .
 cout << ++(*p);
 . . .
 free(p);
 }
 . . .
}

. . .

. . .

. . .

St
er

ta
D

an
e

St
os

. . .
p

Zawsze należy sprawdzić poprawność przydziału pamięci.
Odwołanie do wskaźnika pustego jest błędem.

7474

Suplement I: dynamiczny przydział pamięci w języku C — etap IVSuplement I: dynamiczny przydział pamięci w języku C — etap IV

int main()
{
 int * p = NULL;

 p = malloc(sizeof(int));

 if(p != NULL)
 {
 *p = 10;
 . . .
 cout << ++(*p);
 . . .
 free(p);
 }
 . . .
}

. . .

. . .

. . .

10

St
er

ta
D

an
e

St
os

. . .
p

Wykorzystanie przydzielonego bloku pamięci. Ponieważ
zmienna wskaźnikowa p jest skojarzona z typem int,
przydzielony obszar traktowany jest jak dana typu int.

*p

7575

Suplement I: dynamiczny przydział pamięci w języku C — etap IV, cd. ...Suplement I: dynamiczny przydział pamięci w języku C — etap IV, cd. ...

int main()
{
 int * p = NULL;

 p = malloc(sizeof(int));

 if(p != NULL)
 {
 *p = 10;
 . . .
 cout << ++(*p);
 . . .
 free(p);
 }
 . . .
}

. . .

. . .

. . .

11

St
er

ta
D

an
e

St
os

. . .
p

Z obiektem wskazywanym przez zmienną p można robić
wszystko to, co dozwolone dla danej typu int. Wyrażenie
++(*p) zwiększa obiekt wskazywany przez zmienną p.

*p

7676

Suplement I: dynamiczny przydział pamięci w języku C — etap VSuplement I: dynamiczny przydział pamięci w języku C — etap V

int main()
{
 int * p = NULL;

 p = malloc(sizeof(int));

 if(p != NULL)
 {
 *p = 10;
 . . .
 cout << ++(*p);
 . . .
 free(p);
 }
 . . .
}

. . .

. . .

. . .

St
er

ta
D

an
e

St
os

. . .
p

Wywołanie funkcji free powoduje zwolnienie bloku pamięci
wskazywanego przez p, blok ten zwracany jest do puli bloków
wolnych. Uwaga — po wywołaniu free wskaźnik p dalej
pokazuje na zwolniony blok pamięci!

7777

Suplement I: dynamiczny przydział pamięci w języku C — uwagiSuplement I: dynamiczny przydział pamięci w języku C — uwagi

int main()
{
 int * p = NULL;

 p = malloc(sizeof(int));

 if(p != NULL)
 {
 *p = 10;
 . . .
 cout << ++(*p);
 . . .
 free(p);
 p = NULL;
 }
 . . .
}

. . .

. . .

. . .

St
er

ta
D

an
e

St
os

. . .
p

W C do zerowania wskaźnika wykorzystuje się zwyczajowo
stała symboliczną NULL.

7878

Suplement II: opis funkcji z biblioteki języka CSuplement II: opis funkcji z biblioteki języka C

Rezultatem funkcji malloc jest wskaźnik do obszaru pamięci przeznaczonego dla
obiektu o rozmiarze size. Rezultatem jest NULL, jeżeli polecenie nie może być
zrealizowane. Obszar nie jest inicjowany.

void * malloc(size_t size);

void * calloc(size_t nitems, size_t size);

Rezultatem funkcji calloc jest wskaźnik do obszaru pamięci przeznaczonego dla
nitems obiektów o rozmiarze size. Rezultatem jest NULL, jeżeli polecenie nie
może być zrealizowane. Obszar jest inicjowany zerami.

7979

Suplement II: opis funkcji z biblioteki języka CSuplement II: opis funkcji z biblioteki języka C

void * realloc(void * ptr, size_t size);

Funkcja dokonuje próby zmiany rozmiaru bloku wskazywanego przez ptr, który
był poprzednio przydzielony wywołaniem funkcji calloc lub malloc. Zawartość
wskazywanego obszaru pozostaje niezmieniona.

Jeżeli nowy rozmiar jest większy od poprzednio przydzielonego, dodatkowe
bajty mają nieokreśloną wartość. Jeżeli nowy rozmiar jest mniejszy, bajty z
różnicowego obszaru są zwalniane.

Jeżeli ptr == NULL to funkcja działa jak malloc. Rezultatem funkcji jest
wskaźnik na obszar pamięci o nowym rozmiarze (może być ulokowany w
pamięci w innej lokalizacji niż poprzednio). Rezultatem jest NULL w przypadku
błędu lub próby przydziału bloku o zerowym rozmiarze.

void free(void * ptr);

Zwalnia obszar pamięci wskazywany przez ptr. Parametr musi być wskaźnikiem
do obszaru pamięci przydzielonego uprzednio przez malloc, calloc lub realloc.

8080

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21
	Slajd 22
	Slajd 23
	Slajd 24
	Slajd 25
	Slajd 26
	Slajd 27
	Slajd 28
	Slajd 29
	Slajd 30
	Slajd 31
	Slajd 32
	Slajd 33
	Slajd 34
	Slajd 35
	Slajd 36
	Slajd 37
	Slajd 38
	Slajd 39
	Slajd 40
	Slajd 41
	Slajd 42
	Slajd 43
	Slajd 44
	Slajd 45
	Slajd 46
	Slajd 47
	Slajd 48
	Slajd 49
	Slajd 50
	Slajd 51
	Slajd 52
	Slajd 53
	Slajd 54
	Slajd 55
	Slajd 56
	Slajd 57
	Slajd 58
	Slajd 59
	Slajd 60
	Slajd 61
	Slajd 62
	Slajd 63
	Slajd 64
	Slajd 65
	Slajd 66
	Slajd 67
	Slajd 68
	Slajd 69
	Slajd 70
	Slajd 71
	Slajd 72
	Slajd 73
	Slajd 74
	Slajd 75
	Slajd 76
	Slajd 77
	Slajd 78
	Slajd 79
	Slajd 80

