—

|

Podstawy.
programowania

Czesc piata

Podprogramy

koncepcgja, zastosowania

Autor
Roman Siminski

Kontakt

roman.siminski@us.edu.pl
www.programowanie.siminskionline.pl

Niniejsze opracowanie zawiera skrot tre$ci wykladu, lektura tych materialow nie zastapi uwaznego w nim uczestnictwa.
Opracowanie to jest chronione prawem autorskim. Wykorzystywanie jakiegokolwiek fragmentu w celach innych niz nauka wlasna jest nielegalne.
Dystrybuowanie tego opracowania lub jakiejkolwiek jego czesci oraz wykorzystywanie zarobkowe bez zgody autora jest zabronione.

ols[SEVOUETLIETAELIENY Podprogramy, koncepcja, zastosowania

W programach czesto wystepuja powtarzajace sie fragmenty kodu

cout << "Sredni dochod to: " << dochod;
cout << "Nacisnij Enter by kontynuowac...";
cin.get(); Tyle razy pisaé

to samo...?
cout << "Dochody uporzadkowane rosnaco:";

cin.get();
cout << "Dochod minimalny:" << min;
cout << "Dochod maksymalny:" << maks;

cout << "Nacisnij Enter by kontynuowac...";

cout << "Nacisnij Enter by kontynuowac...";
cin.get();

- /

Copyright © Roman Siminski

ols[SEVOUETLIETAELIENY Podprogramy, koncepcja, zastosowania

Powtarzajace sie fragmenty kodu jako ,,klocek” — podprogram

» Definicja podprogramu

void czekajNaEnter() < Nagtowek podprogramu I
{
cout << "Nacisnij Enter by kontynuowac...";
_ F Ciato podprogramu I
cin.get();

» Naglowek podprogramu

Typ rezultatu I

Nazwa podprogramu I

Parametry podprogramu I

\J
\ void H czekajNaEnter\

Stowo kluczowe void nalezy rozumiec jako nic, brak wartosci

Copyright © Roman Siminski

ols[SEVOUETLIETAELIENY Podprogramy, koncepcja, zastosowania

Aby podprogram zadziatat nalezy go wywotac

Definicja podprogramu

~void czekajNaEnter() N
{
cout << "Nacisnij Enter by kontynuowac..."; <——
cin.get();
& /
éoﬂt.<< "Sredni dochod to: " << dochod;

chekajNaEnter();}<

cout << "Dochody uporzadkowane rosnaco:";

chekajNaEnter();}<

Wywotanie podprogramu

cout << "Dochod minimalny:" << min;
cout << "Dochod maksymalny:" << maks;

czekajNaEnter(); -

Copyright © Roman Siminski

ols[SEVOUETLIETAELIENY Podprogramy, koncepcja, zastosowania

Wywotanie podprogramu

~void czekajNaEnter() -
{
cout << "Nacisnij Enter by kontynuowac..."; D
cin.get(); o 1
} N
cout << "Sredni dochod to: " << dochod;
~ czekajNaEnter();
~ cout << "Dochody uporzadkowane rosnaco:"; F<Q3;
czekajNakEnter() ; -
1/ Wywotanie podprogramu |
cout << "Dochod minimalny:" << min;
cout << "Dochod maksymalny:" << maks; Py o
(2) Wykonanie ciata podprogramu
czekajNaknter(); i3: Powr6t podprogramu |

Copyright © Roman Siminski

ols[SEVOUETLIETAELIENY Podprogramy, koncepcja, zastosowania

Procedura a funkcja — rodzaje podprogramow:

Wykonac
i zameldowac
wykonanie

Wykonac

Procedura Funkcja

Copyright © Roman Siminski

ols[SEVOUETLIETAELIENY Podprogramy, koncepcja, zastosowania

Rodzaje podprograméw

» Podprogramy dzielimy na procedury i funkcje.

» Procedura, to podprogram, ktory wykonuje akcje okre$long instrukcjami
zapisanymi w ciele podprogramu ijuz!

czekajNaEnter();

» Funkcja, to podprogram, ktéry wykonuje akcje okreSlona instrukcjami
zapisanymi w ciele podprogramu i oddaje w miejscu wywolania
pewien rezultat!

]
Vs

X = Lsinus(0)

[
’
/

T Rezultat funkcji, udostepniany w miejscu wywotania,
poO powrocie z podprogramu

Copyright © Roman Siminski

ols[SEVOUETLIETAELIENY Podprogramy, koncepcja, zastosowania

Rodzaje podprograméw

» W jezyku C/C++ nie wystepuje podzial podprograméw na procedury i funkcje.
» Wszystkie podprogramy sa funkcjami.

» Istnieje jednak mozliwo$é¢ wykorzystywania funkeji jak procedur, badz
deklarowania funkgji tak, by przypominaly procedury.

» Slowo kluczowe void, bedace nazwa typu, oznacza brak, nieobecnosé
jakiejkolwiek wartosci.

» Jezeli typem rezultatu bedzie typ okre$lany stowem kluczowym void, to
oznacza, iz funkcja nie udostepnia rezultatu — staje sie wtedy czyms podobnym
do procedury z jezyka Pascal.

void nazwa funkcj dziatajgcej jak procedura()

{

cos tam, cos tam...

Copyright © Roman Siminski

ols[SEVOUETLIETAELIENY Podprogramy, koncepcja, zastosowania

Procedury — podsumowanie informacji

P Procedura to programowe narzedzie realizujace okreslone czynno$ci.
» Kazda procedura ma swoja nazwe.
P Whpisanie nazwy procedury w kodzie programu oznacza jej wywotanie.
» Wywolanie procedury polega na:
» zawileszeniu wykonania aktualnie realizowanego ciggu instrukgji,
» wykonaniu instrukcji przypisanych do procedury o danej nazwie,

» wznowieniu wykonania realizowanego ciggu instrukcji, poczagwszy od
instrukcji nastepnej po wywolaniu procedury.

wyswietlKomunikat("Uwaga, niepoprawne dane!”);

czekajNaEnter();

Copyright © Roman Siminski

ols[SEVOUETLIETAELIENY Podprogramy, koncepcja, zastosowania

Funkcje — podsumowanie informacji

P Funkcja to programowe narzedzie realizujace okre$lone czynnosci, po
wykonaniu ktérych, funkcja udostepnia w miejscu wywolania pewien rezultat.

P Zargonowo moéwi sie, ze funkeja oddaje warto$é w miejscu wywotania.

P Funkcja rézni sie od procedury tym, ze ta ostatnia tylko wykonuje czynnosci
1 nie udostepnia rezultatu w miejscu wywolania.

P Poza tg roznica procedury i funkcje sa podobne — wspdlnie nazywa sie je
podprogramami.

X =2 * R+ sinus(alfa) ;

delta = wyznaczDelte(5, 2, 8); // Delta réwnania: 5x> + 2x + 8 = 0

przyprostokatna = przeciwprostokatna * sinus(alfa);

Copyright © Roman Siminski

ols[SEVOUETLIETAELIENY Podprogramy, koncepcja, zastosowania

Podprogramy moga miec¢ parametry

» Paramtery (inaczej argumenty) to informacje przekazywane do wnetrza

podprogramu.
Brak parametrow, dodatkowe informacje
nie sg potrzebne wewnatrz podprogramu

—

czekajNaEnter{()

-

[}
’

» Parametry moga, ale nie musza wystepowaé. Dotyczy to zaréwno procedur jak

i funkcji.

X = sinus() ;

Niektore funkcje musza dostawac parametry,
ciato funkcji sinus musi wiedzie¢, dla jakiego kata ma
zostacC wyliczona jego wartosc

Copyright © Roman Siminski

ols[SEVOUETLIETAELIENY Podprogramy, koncepcja, zastosowania

Rola parametrow

P Instrukcje wykonywane wewnatrz podprogramoéw sg zwykle odseparowane od
reszty programu.

P Mozna powiedzieé, ze te instrukeje sg ,uwiezione” wewnatrz ,celi” jaka jest
procedura lub funkcja.

P Aby instrukcje wewnetrzne podprogramu ,wiedzialy” o naszych chciejstwach,
musimy im przekazaé informacje oficjalnym kanalem wymiany informacji.

Copyright © Roman Siminski

el SENE (1= N Podprogramy, koncepcja, zastosowania

Rola parametrow

P Oficjalny kanat wymiany informacji z instrukcjami wewnetrznymi podprogramoéow
to parametry (zwane tez argumentami).

Parametry - kanat wymiany informacji

Copyright © Roman Siminski

el SENE (1= N Podprogramy, koncepcja, zastosowania

Rola parametrow

P Parametry mogg by¢ ustalane na zewnatrz podprogramu i przekazywane do jego
wnetrza, maja wtedy charakter wejsciowy.

Copyright © Roman Siminski

el SENE (1= N Podprogramy, koncepcja, zastosowania

Rola parametrow

P WartoS$ci parametréw moga by¢ ustalane we wnetrzu podprogramu, i stanowié¢
odpowiedz podprogramu, maja wtedy charakter wyjsciowy.

Copyright © Roman Siminski

el SENE (1= N Podprogramy, koncepcja, zastosowania

Rola parametrow

P Parametry mogg by¢ ustalane stuzy¢ jednocze$nie do komunikacji dwustronne;.

Copyright © Roman Siminski

ols[SEVOUETLIETAELIENY Podprogramy, koncepcja, zastosowania

Pierwsza wtasna funkcja

#include <iostream>
#include <cstdlib> flObliczam pole kwadratu

using namespace std; IPodaj dlugosc boku: 25
Pole: 625

double oblicz pole kwadratu(double bok)
{

return bok * bok;

}

int main()

{
double dlugosc boku, pole;

cout << endl << "Obliczam pole kwadratu";
cout << endl << "Podaj dlugosc boku: ";

cin >> dlugosc boku;
pole = oblicz pole kwadratu(dlugosc boku);

cout << "Pole: " << pole;

return EXIT SUCCESS;

Copyright © Roman Siminski

: 17

ols[SEVOUETLIETAELIENY Podprogramy, koncepcja, zastosowania

Pierwsza wiasna funkcja — przed wywotaniem, wczytanie danych

#include <iostream>
#include <cstdlib>

using namespace std; Podaj dlugosc hoku: 25

Pole: 625

double oblicz pole kwadratu(double bok)
{

return bok * bok;

}

int main()

{ double dlugosc boku, pole;
cout << endl << "Obliczam pole kwadratu"; dlugosc_boku !
cout << endl << "Podaj dlugosc boku: "; pole ?

cin >> dlugosc boku;

pole = oblicz pole kwadratu(dlugosc boku);

cout << "Pole: " << pole;

return EXIT SUCCESS;

Copyright © Roman Siminski

Strona : 18

ols[SEVOUETLIETAELIENY Podprogramy, koncepcja, zastosowania

Pierwsza wtasna funkcja — przed wywotaniem, parametr aktualny.

#include <iostream>
#include <cstdlib>
using namespace std;

double oblicz pole kwadratu(double bok)

{
return bok * bok;
}
int main()
{
double dlugosc boku, pole;
: dlugosc_boku 25
cout << endl << "Obliczam pole kwadratu";
cout << endl << "Podaj dlugosc boku: "; pole !

cin >> dlugosc boku;

pole = oblicz pole kwadratu(dlugosc boku);

cout << "Pole: " << pole;
return EXIT SUCCESS: To jest parametr aktualny wywotania podprogramu!
} B To jest bardzo wazne pojecie — trzeba je
zrozumiec i zapamietac!

Copyright © Roman Siminski

: 19

ols[SEVOUETLIETAELIENY Podprogramy, koncepcja, zastosowania

Pierwsza witasna funkcja — wywotanie funkcji, parametr formalny

#include <iostream>
#include <cstdlib>
using namespace std;

» double oblicz pole kwadratu(double bok)

{
return bok * bok;
}
int main()
{
double dlugosc boku, pole; bok 25 -
dl bok 25
cout << endl << "Obliczam pole kwadratu"; N EE
cout << endl << "Podaj dlugosc boku: "; pole i
cin >> dlugosc boku;
pole = oblicz pole kwadratu(dlugosc boku);
cout << "Pole: " << pole;
. To jest parametr formalny podprogramu!
) T To jest bardzo wazne pojecie — trzeba je zrozumiec
i zapamietac!

Copyright © Roman Siminski

: 20

ols[SEVOUETLIETAELIENY Podprogramy, koncepcja, zastosowania

Parametr formalny to zmienna komunikacyjna

P Parametr formalny to specjalna zmienna komunikacyjna, zadeklarowana
wewnatrz podprogramu.

P Jej warto$¢ ustalana jest na etapie wywotania podprogramu na podstawie
parametru aktualnego wywolania.

P Patrzac z punktu widzenia wnetrza podprogramu:

double oblicz pole kwadratu(double bok)
{

return bok * bok;

}

Comitu
znowu
dzisiaj dali... .

Wartos¢, ktora jest kopig parametru
aktualnego wywotania

Parametr formalny podprogramu

Copyright © Roman Siminski

ols[SEVOUETLIETAELIENY Podprogramy, koncepcja, zastosowania

Pierwsza wiasna funkcja — wywotanie funkcji, przekazanie parametrow:

#include <iostream>
#include <cstdlib>
using namespace std;

» double oblicz pole kwadratu(double bok -

{
return bok * bok;
}
int main()
{
double dlugosc boku, pole; 25 = bok 25 -
dl bok 25
cout << endl << "Obliczam pole kwadratu"; N EE
cout << endl << "Podaj dlugosc boku: "; pole !
cin >> dlugosc boku;
pole = oblicz_pole_kwadratu(\dlugosc_boku Hj
cout << "Pole: " << pole;
. Przekazanie parametrow przez wartos¢ — wartosc
) return EXIT SUCCESS; parametru aktualnego jest kopiowana do parametru
formalnego podprogramu.

Copyright © Roman Siminski 1 22

ols[SEVOUETLIETAELIENY Podprogramy, koncepcja, zastosowania

Przekazywanie parametrow przez wartosc

P Na etapie wywolania podprogramu wyznaczana jest warto$é parametru
aktualnego wywolania.

» Wyznaczona warto$¢ jest kopiowana do parametru formalnego podprogramu.

P Operacje na parametrach formalnych wykonywane wewnatrz podprogramu nie
przenosza sie na parametry aktualne.

P Parametry aktualne mogg by¢ literatami, statymi i zmiennymi.

Copyright © Roman Siminski

ols[SEVOUETLIETAELIENY Podprogramy, koncepcja, zastosowania

Pierwsza wtasna funkcja — wykonanie funkcji

#include <iostream>
#include <cstdlib>
using namespace std;

double oblicz pole kwadratu(double bok)

» return bok * bok ;

|

int main()
! bok 25
double dlugosc boku, pole; 0
625 dlugosc_boku 25
cout << endl << "Obliczam pole kwadratu"; pole ?

cout << endl << "Podaj dlugosc boku: ";

’

cin >> dlugosc boku;

pole =\oblicz_pole_kwadratu(dlugosc boku)bt————

cout << "Pole: " << pole;

return EXIT SUCCESS;

Copyright © Roman Siminski

. 24

Pierwsza witasna funkcja — po powrocie funkcji

#include <iostream>
#include <cstdlib>
using namespace std;

double oblicz pole kwadratu(double bok)
{

return bok * bok;

}

int main()

{
double dlugosc boku, pole;

cout << endl << "Obliczam pole kwadratu";
cout << endl << "Podaj dlugosc boku: “;

cin >> dlugosc boku;
pole = oblicz pole kwadratu(dlugosc boku);

» cout << "Pole: " << pole;

return EXIT SUCCESS;
}

Copyright © Roman Siminski

ols[SEVOUETLIETAELIENY Podprogramy, koncepcja, zastosowania

dlugosc boku
pole

25

625

1 : 25

ols[SEVOUETLIETAELIENY Podprogramy, koncepcja, zastosowania

Pierwsza wtasna funkcja — drobna optymalizacja

#include <iostream>
#include <cstdlib>
using namespace std;

double oblicz pole kwadratu(double bok)

{
return bok * bok;
} Zmienna pole jest niepotrzebna, rezultat funkcji moze by¢
int main() przekazany do strumienia wyj$ciowego bezposrednio.
{

double dlugosc boku;

cout << endl << "Obliczam pole kwadratu";
cout << endl << "Podaj dlugosc boku: ";

’

cin >> dlugosc boku;

cout << "Pole: " << oblicz pole kwadratu(dlugosc boku);

return EXIT SUCCESS;

Copyright © Roman Siminski

ols[SEVOUETLIETAELIENY Podprogramy, koncepcja, zastosowania

Przekazywanie parametrow przez wartosc (jezyk Ci C++)

void inc(int i)

{
++1; .
} Co wyprowadzi
program?
int a = 5;
inc(a);
cout << "a =" << a;

Copyright © Roman Siminski

ols[SEVOUETLIETAELIENY Podprogramy, koncepcja, zastosowania

Przekazywanie parametrow przez wartosc (jezyk Ci C++)

void inc(int i)

{
++1; Jaki jest stan
} pamieci przed
wywolaniem?
int a = 5;
inc(a);
cout << "a =" << a;

Przed wywotaniem
inc(a)

a 5

Copyright © Roman Siminski

ols[SEVOUETLIETAELIENY Podprogramy, koncepcja, zastosowania

Przekazywanie parametrow przez wartosc (jezyk Ci C++)

void inc(int i)

{

++1; Co sie dzieje w
} trakcie

wywolania?

int a = 5;
inc(a);
cout << "a =" << a;

Przed wywotaniem Wywotanie

inc(a) inc(a)
a 5 a 5

Copyright © Roman Siminski

ols[SEVOUETLIETAELIENY Podprogramy, koncepcja, zastosowania

Przekazywanie parametrow przez wartosc (jezyk Ci C++)

void inc(int i)

{

++1; Co sie dzieje w
} trakcie

wykonania?

int a = 5;
inc(a);
cout << "a =" << a;

Przed wywotaniem Wywotanie Wykonanie

inc(a) inc(a) inc(a)
a 5 a 5 a 5

| S

Copyright © Roman Siminski

ols[SEVOUETLIETAELIENY Podprogramy, koncepcja, zastosowania

Przekazywanie parametrow przez wartosc (jezyk Ci C++)

void inc(int i)

{

++1; Jaki jest stan
} pamieci po

wywolaniu?
int a = 5;
inc(a);
cout << "a =" << a;
Przed wywotaniem Wywotanie Wykonanie Po wykonaniu
inc(a) inc(a) inc(a) inc(a)
a 5 a 5 \ a 5 a 5

Copyright © Roman Siminski

ols[SEVOUETLIETAELIENY Podprogramy, koncepcja, zastosowania

Przekazywanie parametrow przez wartosc (jezyk Ci C++)

void inc(int i)

{
++1; 5, stownie: pieé,
} nic sie nie
zmienilo!
int a = 5;
inc(a);
cout << "a =" << a;

» Przy przekazywaniu parametrow przez warto$¢, warto$é parametru aktualnego
wywolania funkcji kopiowana jest do parametru formalnego funkcji.

» Od tego momentu parametr aktualny i formalny sg od siebie niezalezne.

» Zadna modyfikacja parametru formalnego funkcji nie przenosi sie na
parametr aktualny wywolania — wnetrze funkcji nie jest w stanie zmodyfikowac
parametru formalnego funkcji.

Copyright © Roman Siminski

ols[SEVOUETLIETAELIENY Podprogramy, koncepcja, zastosowania

Przekazywanie parametrow przez referencje (tylko C++)

void inc(int & i)

: ++1; \

} . Co wyprowadzi
Parametr formalny 1jest program?
referencjq do parametru
aktualnego wywolania

_ funkcji.

int a = 5;

inc(a);

cout << "a =" << a;

Copyright © Roman Siminski

ols[SEVOUETLIETAELIENY Podprogramy, koncepcja, zastosowania

Przekazywanie parametrow przez referencje (tylko C++)

void inc(int & 1)

{
++1; Jaki jest stan
} pamieci przed
wywolaniem?
int a = 5;
inc(a);
cout << "a =" << a;

Przed wywotaniem
inc(a)

a 5

Copyright © Roman Siminski

ols[SEVOUETLIETAELIENY Podprogramy, koncepcja, zastosowania

Przekazywanie parametrow przez referencje (tylko C++)

void inc(int & 1)

{

++1; Co sie dzieje w
} trakcie

wywolania?

int a = 5;
inc(a);
cout << "a =" << a;

Przed wywotaniem Wywotanie

inc(a) inc(a)

a 5 a 5 i

Copyright © Roman Siminski

ols[SEVOUETLIETAELIENY Podprogramy, koncepcja, zastosowania

Przekazywanie parametrow przez referencje (tylko C++)

void inc(int & 1)

{

++1; Co sie dzieje w
} trakcie

wykonania?

int a = 5;
inc(a);
cout << "a =" << a;

Przed wywotaniem Wywotanie Wykonanie

inc(a) inc(a) inc(a)

a 5 a 5 i a@L+@i

Copyright © Roman Siminski

ols[SEVOUETLIETAELIENY Podprogramy, koncepcja, zastosowania

Przekazywanie parametrow przez referencje (tylko C++)

void inc(int & 1)

{

++1; Jaki jest stan
} pamieci po

wywolaniu?

int a = 5;
inc(a);
cout << "a =" << a;

Przed wywotaniem Wywotanie Wykonanie Po wykonaniu

inc(a) inc(a) inc(a) inc(a)

a 5 a 5 i a,@LL@i a 6

Copyright © Roman Siminski

ols[SEVOUETLIETAELIENY Podprogramy, koncepcja, zastosowania

Przekazywanie parametrow przez referencje (tylko C++)

void inc(int & 1)

{ L]
++1; 6, stownie:

} szes$¢, wartose

sie zmienila!

- O

int a = 5;
inc(a);
cout << "a =" << a;

» Przy przekazywaniu parametrow przez referencje, parametr aktualny

wywolania funkcji ,naklada” sie na parametr formalny funkcji.

» Od tego momentu parametr aktualny i formalny odnosza sie do tej samej
lokalizacji (adresu) w pamieci operacyjnej.

» Kazda modyfikacja parametru formalnego funkcji przenosi sie na parametr
aktualny wywolania, wnetrze funkcji moze zmodyfikowaé parametr formalny
funkc;ji.

Copyright © Roman Siminski

ols[SEVOUETLIETAELIENY Podprogramy, koncepcja, zastosowania

Informacje wyjsciowe z funkcji — rezultat czy parametr referencyjny?

Wezytywanie liczby — wezytana wartos¢ jako rezultat funke;ji:

double czytajDystans()

{
double liczba;

do
{

cout << endl << "Podaj dystans: ";
cin >> liczba;

if(liczba <= 0)
cout << "Dystans musi byc liczba dodatnia";
}

while(liczba <= 0);
return liczba;

}

double dystans;

dystans = czytajDystans();

Copyright © Roman Siminski

ols[SEVOUETLIETAELIENY Podprogramy, koncepcja, zastosowania

Informacje wyjsciowe z funkcji — rezultat czy parametr referencyjny?

Wezytywanie liczby — wezytana wartos¢ jako parametr referencyjny

void czytajDystans(double & liczba)

{
do
{
cout << endl << "Podaj dystans: ";
cin >> liczba;
if(liczba <= 0)
cout << "Dystans musi byc liczba dodatnia";
}
while(liczba <= 0);
}

double dystans;

czytajDystans(dystans);

Copyright © Roman Siminski

ols[SEVOUETLIETAELIENY Podprogramy, koncepcja, zastosowania

Informacje wyjsciowe z funkcji — rezultat czy parametr referencyjny?

Wezytywanie liczby — wezytana wartos¢ jako rezultat funkce;ji:
double dystans;

dystans = czytajDystans();

Wezytywanie liczby — wezytana warto$¢ jako parametr referencyjny

double dystans;

Czy rzeczywiscie

czytajbDystans(dystans); : ;
ytajby L Y) jest referencja?

void czytajDystans(double & liczba)

=

void czytajDystans(double liczba)
{

}.

Copyright © Roman Siminski

ols[SEVOUETLIETAELIENY Podprogramy, koncepcja, zastosowania

Wiele danych wyjsciowy — parametry referencyjne

void czytajPaliwoIDystans(double & p, double & d)

{
do
{
cout << endl << "\nPodaj ilosc paliwa: ";
cin >> p;
if(p<=0)
cout << "Ilosc paliwa musi byc liczba dodatnia";
}
while(p <= 0);
do
{
cout << endl << "\nPodaj dystans: ";
cin >> d;
if(d<=0)
cout << "Dystans musi byc liczba dodatnia";
}
while(d <= 0);

double dystans, paliwo;

czytajPaliwoIDystans(paliwo, dystans);

Copyright © Roman Siminski

ols[SEVOUETLIETAELIENY Podprogramy, koncepcja, zastosowania

Definicja funkcji po jej wywotaniu

int main()

{
double dlugosc boku, pole;

[pole = oblicz pole kwadratu(dlugosc boku);}4 Wywolanie funkcji
}
[double oblicz pole kwadratu(double bok)}4 Definicja funkcji |
{
return bok * bok;
}

Czy
kompilatorowi
sie to
spodoba?

Copyright © Roman Siminski

ols[SEVOUETLIETAELIENY Podprogramy, koncepcja, zastosowania

Czy kompilatorowi sie to spodoba?

int main()

{
double dlugosc boku, pole;

[pole = oblicz pole kwadratu(dlugosc boku);}4 Wywolanie funkcji

}
[double oblicz pole kwadratu(double bok)]4 Definicja funkcji |
{

return bok * bok;
}

» Tak, bez bedbw i ostrzezen — w starszych wersjach kompilatorow.

» Tak, bez bledéw lecz z ostrzezeniem — w nowszych wersjach kompilatoréw, oraz
tych pracujacych w trybie zgodnosci z normg ANSI.

» Nie, wystgpi blgd — w kompilatorach pracujacych w trybie C++.

Copyright © Roman Siminski

ols[SEVOUETLIETAELIENY Podprogramy, koncepcja, zastosowania

Skad te rozbieznosci?

» Definicja funkcji wystepuje po jej wywotaniu.
» Kompilator na etapie wywolania jej jeszcze nie zna.

» Czyni w stosunku do niej zalozenia — ze to funkcja, ktorej rezultatem jest
wartosé int. To zalozenie moze by¢ shusznie albo nie.

» Aby kompilator moégl kontrolowaé poprawno$é wywotania funkeji, nalezy to
wywolanie poprzedzi¢ definicjg lub deklaracjqg wywolywanej funkc;ji.

» Aby unikngé¢ niejednoznaczno$ci, wprowadza sie prototypy funkcji.

» Deklaracja przyjmuje postaé prototypu funkcji.

Copyright © Roman Siminski

ols[SEVOUETLIETAELIENY Podprogramy, koncepcja, zastosowania

Prototypy funkcji

Definicja funkcji:

double oblicz pole kwadratu(double bok)
{

}

return bok * bok;

Deklaracja — prototyp — funkcji:
double oblicz pole kwadratu(double bok);

Ogoblna postaé definicji funkcji:

typ rezultatu nazwa funkcji(lista parametrdéw formalnych)

{
}

ciato funkcji

Ogéblna postac prototypu funkeji:

typ rezultatu nazwa funkcji(lista parametréow formalnych);

Copyright © Roman Siminski

ols[SEVOUETLIETAELIENY Podprogramy, koncepcja, zastosowania

Wykorzystanie prototypow funkcji — zadeklaruj funkcje potem wotaj

#include <iostream>
#include <cstdlib>
using namespace std;

double oblicz pole kwadratu(double bok);

int main()

{
double dlugosc boku;

cout << endl << "Obliczam pole kwadratu";
cout << endl << "Podaj dlugosc boku: ";

’

cin >> dlugosc boku;

cout << "Pole: " << oblicz pole kwadratu(dlugosc boku);

return EXIT_SUCCESS;
}

double oblicz pole kwadratu(double bok)
{

return bok * bok;
}

Copyright © Roman Siminski

ols[SEVOUETLIETAELIENY Podprogramy, koncepcja, zastosowania

Mozna jednak bez prototypu — zdefiniuj funkcje potem wotaj

#include <iostream>
#include <cstdlib>
using namespace std;

double oblicz pole kwadratu(double bok)
{

return bok * bok;

}

int main()

{
double dlugosc boku;

cout << endl << "Obliczam pole kwadratu";
cout << endl << "Podaj dlugosc boku: ";

’

cin >> dlugosc boku;

cout << "Pole: " << oblicz pole kwadratu(dlugosc boku);

return EXIT SUCCESS;

Copyright © Roman Siminski

ols[SEVOUETLIETAELIENY Podprogramy, koncepcja, zastosowania

Podsumowanie informacji o prototypach

» Starsze implementacje C dopuszczaly wywolywanie funkeji weze$nie;
kompilatorowi nieznanych.

» W trakcie kompilowania wywolania nieznanej funkeji przez domniemanie
przyjmowano, ze jej rezultatem jest wartos¢ int i nic nie wiadomo na temat jej
parametrow. Nie pozwalalo to kompilatorowi kontrolowaé¢ poprawnosci
wywolania funkgji.

» Aby kompilator mogl kontrolowaé poprawnosé wywolania funkcji, nalezy to
wywolanie poprzedzi¢ definicjq lub deklaracjqg wywolywanej funkcji.

» Deklaracja przyjmuje postaé prototypu funkeji.

» Deklaracja i definicja funkeji powinna byé zgodna. Jezeli w obrebie jednego
pliku wystapi niezgodnos¢, kompilator zglosi blad kompilacji.

Copyright © Roman Siminski

ols[SEVOUETLIETAELIENY Podprogramy, koncepcja, zastosowania

Podsumowanie informacji o podprogramach

Historycznie 1 technicznie pierwotna przyczyna wyodrebnienia podprogramoéw to
eliminowanie powtarzajgcych sie fragmentow kodu.

Z czasem podprogramy staly sie podstawowym $rodkiem podzialu programu na
mniejsze czeSci, stajac sie podstawa dla programowania proceduralnego.

P Stosowanie podprograméw zwykle skraca program — zaréwno kod zZrédlowy jak
1 wynikowy.

P Program staje sie czytelniejszy.

» Modyfikacje programu stajg sie fatwiejsze.

P Latwiejsze jest lokalizowanie i eliminowanie bledow.
P Program staje sie podatniejszy na modularyzacje.

P Latwiej wyodrebnié zbiory spojnych podprograméw, stanowiace zalazek
potencjalnych bibliotek.

Copyright © Roman Siminski

ols[SEVOUETLIETAELIENY Podprogramy, koncepcja, zastosowania

Przyktad programu podzielonego na funkcje

#include <iostream>
#include <cmath> {
using namespace std;

void komunikat wstepny();
void oblicz();

float obwod kola(float r);
float pole kola(float r);

void oblicz()

float r;

cout << "\nPodaj promien R = ";
cin >> r;

cout << "\nObwod :
cout << "\nPole

" << obwod kola(r);
" << pole kola(r);

int main()
{ cout << "\nNacisnij Enter by ...";
komunikat wstepny(); cin.ignore();
oblicz(); cin.get();
}
return EXIT SUCCESS;
} float obwod kola(float r)
{

void komunikat wstepny()

{ }

cout << "\nObliczam obwod ...";

return 2 * M PT * r;

} float pole kola(float r)

{
}

return M PI * r * r;

Copyright © Roman Siminski

ols[SEVOUETLIETAELIENY Podprogramy, koncepcja, zastosowania

Programowanie zstepujace

int main()

{
[komunikat_wstepny();

-

oblicz();

-/

return EXIT SUCCESS;

}

\J
void komunikat wstepny()
{
cout << "\nObliczam obwod ...";
}
\J float pole kola(float r)
void oblicz() {
{ return M PI * r * r;
Coe }
cout << "\nObwod : " <<[obwod kola(r); |
cout << "\nPole : " <<[pole kola(r): } Iloat obwod kola(float r)
) S return 2 * M PI * r;
}

Copyright © Roman Siminski

ols[SEVOUETLIETAELIENY Podprogramy, koncepcja, zastosowania

Suplement | — przecigzanie funkcji

B Przecigzanie funkcji (ang. function overloading) — tworzenie wiekszej liczby
funkcji o takiej samej nazwie.

P Nazwa funkeji moze by¢ zatem uzyta wielokrotnie do realizacji r6znych czynno$ci.
Jest wiec ,przecigzona” dodatkowymi ,,obowigzkami”.

» Kompilator zadba o dobranie wla$ciwej wersji funkeji przeciazonej w zalezno$ci
od kontekstu jej wywolania.

int dodaj(int a, int b) // 1-sza wersja funkcji przecigzonej add
{

return a + b;

}

double dodaj(double a, double b) // 2-ga wersja funkcji przecigzonej add
{

return a + b;

}
cout << endl << "Dodawanie int " << dodaj(1, 1);
cout << endl << "Dodawanie double :" << dodaj(1.0, 1.0);

Uwaga, z przecigzaniem funkcji wigze sie szereg subtelnych niuansow, ich omowienie wykracza
poza ramy tego wyktadu. Nalezy zachowac duzg ostroznosc przy definiowaniu tego typu funkcji.

Copyright © Roman Siminski

ols[SEVOUETLIETAELIENY Podprogramy, koncepcja, zastosowania

Suplement Il — funkcje inline czyli funkcje wstawiane

P Funkcje inline nie sa wywolywane w spos6b klasyczny — ich kod jest umieszezany

w miejscu wywolania i w rzeczywisto$ci nie sa one wywolywane.

inline int dodaj(int a,

{
}

return a + b;

int main()

{
int i =2, 3 =2, k;
k = dodaj(1, j);

return EXIT SUCCESS;
}

int b)

int main()
{
inti=2, j=2, k;
{
K =1+ j;
}

return EXIT SUCCESS;
}

Wywotanie podprogramu, opracowanie i przekazanie parametrow oraz powrot z podprogramu
to dodatkowe instrukcje maszynowe — zatem instrukcje wpakowane do podprogramu wykonuja
sie odrobine wolniej. Jednak we wiekszosci typowych przypadkow opoznienie to jest nieznaczace.

Copyright © Roman Siminski

ols[SEVOUETLIETAELIENY Podprogramy, koncepcja, zastosowania

Suplement Il — funkcje inline czyli funkcje wstawiane, cd. ...

P Specyfikacja ze stowem kluczowym inline to tylko rekomendacja dla kompilatora
— niektérych funkcji nie mozna w pelni rozwinac i bedg one wywolywane
klasycznie (np. rekurencyjne).

P Funkcje wstawiane zastepuja w jezyku C++ makra, stosowanie powszechnie
wjezyku C.

» W poréwnaniu z makrami funkeje inline zapewniaja kontrole typow i wychwy-
tywanie bledow na etapie kompilacji

Mechanizm funkcji zadeklarowanych jako inline przeznaczony jest do optymalizacji
matych, prostych i czesto wykorzystywanych funkcji.

Kod wielokrotnie wykorzystujacy pewng funkcje inline:

P Moze dzialaé szybciej — brak narzutu czasowego zwigzanego z organizacja
wywolania funkcji i powrotu z podprogramu,

B Bedzie dtuzszy, zawiera bowiem rozwiniecia ciala funkeji w miejscu jej
kazdorazowego wywolania.

Copyright © Roman Siminski

ols[SEVOUETLIETAELIENY Podprogramy, koncepcja, zastosowania

Suplement lll — parametry domysine

» Bardzo czesto przy wywolywaniu funkeji, przy kolejnych wywolaniach pewne
parametry sie powtarzaja.

P Powtarzajace sie parametry aktualne wywolania mozna ustawié¢ jako parametry
domysilne, mozna je poming¢ przy wywolaniu. Jako parametr aktualny zostanie
przyjeta warto$¢ domyslna.

void outInt(int value, bool asDecimal = true)«

{
cout << ((asDecimal) ? dec : hex) << value;

}

Parametr domys$lny |

Przykladowe wywolania:

outInt(22); // Parametr asDecimal otrzyma wartosc true

outInt(22, true); // Parametr asDecimal otrzyma wartosc jak w wywolaniu
outInt(22, false); // Parametr asDecimal otrzyma wartosc jak w wywolaniu

Copyright © Roman Siminski

ols[SEVOUETLIETAELIENY Podprogramy, koncepcja, zastosowania

Suplement lll — parametry domysine, cd. ...

enum outFormat
{

AS DEC,

AS OCT,

AS HEX

}i

void outInt(int value, int base = AS DEC 3

{

switch(base) Parametr domylny |

{
case AS DEC : cout << dec;
break;
case AS OCT : cout << oct;
break;
case AS HEX : cout << hex;
break;
}
cout << value;

}

outInt(10, AS OCT);
outInt(10, AS HEX);
outInt(10); // Parametr domyslny AS DEC

Copyright © Roman Siminski

ols[SEVOUETLIETAELIENY Podprogramy, koncepcja, zastosowania

Suplement IV — zmienna liczba parametrow

P Czasem trudno oszacowaé, ile bedzie parametréw wywolania. W jezykach C/C++
mozna definiowac funkcje ze zmiennq liczbqg parametroéw.

P Do obstugi zmiennej liczby parametréw stuza makra zdefiniowane w stdargs.h.
P Parametry zmienne oznaczane sa w nagléwku funkeji znakiem operatorem ...
P Scenariusz obstugi zmiennej liczby argumentow:

@ Definicja zmiennej identyfikujacej parametry zmienne (typ va_ list),

@ Ustalenie poczatku listy parametréw zmiennych (makro va_ start),

@ Pobranie kolejnych parametréw zmiennych (makro va_arg),

@ Zakonczenie pobierania parametrow zmiennych (makro va_end).

Uwaga, aby to zadziatato, funkcja musi posiadac¢ przynajmniej jeden parametr ,,zwykty”,
oraz funkcja musi ,,wiedziec” jakie sg typy kolejnych argumentow zmiennych.

Copyright © Roman Siminski

ols[SEVOUETLIETAELIENY Podprogramy, koncepcja, zastosowania

Suplement IV — zmienna liczba parametrow, cd. ...

void varArgsFunction(jakisTyp normalnyParametr, ...)
{

typParametru parametr; Typ zmiennej uzywanej do wydobywania
kolejnych parametréw funkcji.

va_list arglList; |«

va start(argList, normalnyParametr);
parametr = va arg(argList, typParametru);
parametr = va arg(arglList, typParametru);

Qa;eﬁd(argList);

Copyright © Roman Siminski

ols[SEVOUETLIETAELIENY Podprogramy, koncepcja, zastosowania

Suplement IV — zmienna liczba parametrow, cd. ...

void varArgsFunction([jakisTyp normalnyParametﬂ, cae)

{

typParametru parametr;

va list arglList;

Obowigzkowy ,normalny” parametr.

va start(argList, normalnyParametr);

parametr

parametr

va arg(argList, typParametru);

va arg(argList, typParametru);

Qa;eﬁd(argList);

Copyright © Roman Siminski

ols[SEVOUETLIETAELIENY Podprogramy, koncepcja, zastosowania

Suplement IV — zmienna liczba parametrow, cd. ...

void varArgsFunction(jakisTyp normalnyParametr,)

{

typParametru parametr;

va list arglList; Oznaczenie zmiennej czeSci parametrow

va start(argList, normalnyParametr);

parametr

parametr

va arg(argList, typParametru);

va arg(argList, typParametru);

Qa;eﬁd(argList);

Copyright © Roman Siminski

ols[SEVOUETLIETAELIENY Podprogramy, koncepcja, zastosowania

Suplement IV — zmienna liczba parametrow, cd. ...

void varArgsFunction(jakisTyp normalnyParametr, ...)
{
typParametru parametr; Zakotwiczenie zmiennej argList o pierwszy
parametr zmienny, czyli nastepny za ostatnim
va list arglList; normalnym parametrem.

[va_start(argList, normalnyParametr);}4

parametr = va arg(arglList, typParametru);
parametr = va arg(arglList, typParametru);

Qa;eﬁd(argList);

Copyright © Roman Siminski

ols[SEVOUETLIETAELIENY Podprogramy, koncepcja, zastosowania

Suplement IV — zmienna liczba parametrow, cd. ...

void varArgsFunction(jakisTyp normalnyParametr, ...)

{

typParametru parametr; . .)
Wydobycie kolejnego parametru o okreslonym

va list arglList; typie.

va start(argList, normalnyParametr);

parametr =[va_arg(argList, typParametru ﬂﬁ

parametr = va arg(arglList, typParametru);

Qa;eﬁd(argList);

Copyright © Roman Siminski

ols[SEVOUETLIETAELIENY Podprogramy, koncepcja, zastosowania

Suplement IV — zmienna liczba parametrow, cd. ...

void varArgsFunction(jakisTyp normalnyParametr, ...)

{

typParametru parametr; Wydobycie kolejnego parametru o okre§lonym

va list arglList; ypie.

va start(argList, normalnyParametr);

parametr = va arg(argList, typParametru);

parametr = va arg(arglList, typParametru)

Qa;eﬁd(argList);

Copyright © Roman Siminski

ols[SEVOUETLIETAELIENY Podprogramy, koncepcja, zastosowania

Suplement IV — zmienna liczba parametrow, cd. ...

void varArgsFunction(jakisTyp normalnyParametr, ...)

{

typParametru parametr;
va list arglList;

va start(argList, normalnyParametr);

parametr

parametr

Zakonczenie wydobywania parametrow.

va arg(argList, typParametru);

va arg(argList, typParametru);

[&a;eﬁd(arglList)«

Copyright © Roman Siminski

ols[SEVOUETLIETAELIENY Podprogramy, koncepcja, zastosowania

Suplement IV — zmienna liczba parametrow, konkretny przyktad

» Dodawanie dowolnej liczby danych typu int, wersja naiwna:

int addInts(int count, ...)
{

int total = 0;

va list arglList;

va start(arglList, count);

for(int i = 1; i <= count; i++)

{
int value = va arg(argList, int);
total += value;

}

va end(arglList);

return total;

}

cout << endl << addInts(2, 1, 2);

cout << endl << addInts(3, 4, -1, 6);

cout << endl << addInts(0);

cout << endl << addInts(5, 1, 2, 3, 4, 5);

Copyright © Roman Siminski

ols[SEVOUETLIETAELIENY Podprogramy, koncepcja, zastosowania

Suplement IV — zmienna liczba parametrow, konkretny przyktad

» Dodawanie dowolnej liczby danych typu int, wersja poprawiona:

int addInts(int count, ...)
{

int total = 0;

va list arglList;

va start(argList, count);
for(; count; count--)
total += va arg(argList, int);
va end(argList);
return total;
}

cout << endl << addInts(2, 1, 2);

cout << endl << addInts(3, 4, -1, 6);

cout << endl << addInts(0);

cout << endl << addInts(5, 1, 2, 3, 4, 5);

Copyright © Roman Siminski

ols[SEVOUETLIETAELIENY Podprogramy, koncepcja, zastosowania

Suplement IV — zmienna liczba parametrow, printf jako przyktad

» Funkcja printf pochodzi z biblioteki stdio z jezyka C.

» Funkcja printf wyprowadzane sformatowane dane do stdout.

» Pierwszy parametr funkcji, bedacy tancuchem znakéw, moze zawierac
specyfikacje przeksztalcen, rozpoczynajace sie znakiem %.

» W miejsce specyfikatorow przeksztatcen wstawiane sg wartosci kolejnych
parametrow wywolania funkcji printf, sformatowane zgodnie z okreslonym
formatem.

Przeliczanie odleglosci wyrazonej w Kilometrach na mile
Podaj odleglosc w kilometrach: 508

To w milach: 312 ._.58888040

printf("To w milach: %f", wynik);:

Copyright © Roman Siminski

ols[SEVOUETLIETAELIENY Podprogramy, koncepcja, zastosowania

Suplement IV — zmienna liczba parametrow, printf jako przykiad

Sekwencje rozpoczynajace sie od znaku % stanowig specyfikacje przeksztalcen
kolejnych parametréw funkcji printf:

» %d — wyprowadza liczbe calkowitg dziesietna,
» %f — wyprowadza liczbe rzeczywista,
» %c — wyprowadza znak,

» %s — wyprowadza napis.

Mozliwos$ci formatowania funkcji sq bardzo szerokie, oméwione zostang
osobno.

o
6C

printf(" lat

’ﬁ})

Copyright © Roman Siminski

ols[SEVOUETLIETAELIENY Podprogramy, koncepcja, zastosowania

Suplement IV — zmienna liczba parametrow, printf jako przyktad

Podaj odleglosc w kilometrach: 568
To w milach: J312.58_

printf("To w milach: %10.2f", wynik);

Przeiiczanie udieglusci wyrazonej w kilometrach na mile
Podaj odleglosc w kilometrach: 5HH

To w milach: 312.58

printf("To w milach: %-10.2f", wynik) ;

Przelic=zanie odleglosci wyrazonej w kilometrach na mile
Podaj odleglosc w kilometrach: 584

To w milach: 312.58_

printf("To w milach: %0.2f", wynik);

Copyright © Roman Siminski

Strona : 70

ols[SEVOUETLIETAELIENY Podprogramy, koncepcja, zastosowania

Suplement IV — zmienna liczba parametrow, printf jako przyktad

Prﬂellc“anlé odleglosci wyrazonej w kilometrach na mile
Podaj odleglosc w kilometrach: 588

588 km to w 312.5 mil_

-
) .
’

J

printf(" lkm to w(% } 1",(kilometry}[

%9
vl

» %f — wyprowadza liczbe rzeczywista,

» %g — wyprowadza liczbe rzeczywista w najkrotszej postaci.

Copyright © Roman Siminski a: 71

ols[SEVOUETLIETAELIENY Podprogramy, koncepcja, zastosowania

Czas zakonczyc¢ tego pdf-a!

Na chwile konczymy z funkcjami ..., ale od teraz beda
one juz na zawsze obecne w programowaniu!

Copyright © Roman Siminski

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21
	Slajd 22
	Slajd 23
	Slajd 24
	Slajd 25
	Slajd 26
	Slajd 27
	Slajd 28
	Slajd 29
	Slajd 30
	Slajd 31
	Slajd 32
	Slajd 33
	Slajd 34
	Slajd 35
	Slajd 36
	Slajd 37
	Slajd 38
	Slajd 39
	Slajd 40
	Slajd 41
	Slajd 42
	Slajd 43
	Slajd 44
	Slajd 45
	Slajd 46
	Slajd 47
	Slajd 48
	Slajd 49
	Slajd 50
	Slajd 51
	Slajd 52
	Slajd 53
	Slajd 54
	Slajd 55
	Slajd 56
	Slajd 57
	Slajd 58
	Slajd 59
	Slajd 60
	Slajd 61
	Slajd 62
	Slajd 63
	Slajd 64
	Slajd 65
	Slajd 66
	Slajd 67
	Slajd 68
	Slajd 69
	Slajd 70
	Slajd 71
	Slajd 72

