
  

Podstawy Podstawy 
programowaniaprogramowania

Podprogramy

koncepcja, zastosowania

Część piąta

Niniejsze opracowanie zawiera skrót treści wykładu, lektura tych materiałów nie zastąpi uważnego w nim uczestnictwa.
Opracowanie to jest chronione prawem autorskim. Wykorzystywanie jakiegokolwiek fragmentu w celach innych niż nauka własna jest nielegalne.

Dystrybuowanie tego opracowania lub jakiejkolwiek jego części oraz wykorzystywanie zarobkowe bez zgody autora jest zabronione.

Roman Simiński

roman.siminski@us.edu.pl
www.programowanie.siminskionline.pl

Autor

Kontakt



  

W programach często występują powtarzające się fragmenty kodu W programach często występują powtarzające się fragmenty kodu 
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 2Strona :

Podprog ramy,  koncepc ja ,  z a s to sowan iaPodprog ramy,  koncepc ja ,  z a s to sowan ia

. . .
cout << "Sredni dochod to: " << dochod;

cout << "Nacisnij Enter by kontynuowac...";
cin.get();

cout << "Dochody uporzadkowane rosnaco:";
. . .

cout << "Nacisnij Enter by kontynuowac...";
cin.get();

cout << "Dochod minimalny:"  << min;
cout << "Dochod maksymalny:" << maks;
. . .

cout << "Nacisnij Enter by kontynuowac...";
cin.get();

. . .

Tyle razy pisać 
to samo...?



  

Powtarzające się fragmenty kodu jako „klocek” — podprogram Powtarzające się fragmenty kodu jako „klocek” — podprogram 
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 3Strona :

Podprog ramy,  koncepc ja ,  z a s to sowan iaPodprog ramy,  koncepc ja ,  z a s to sowan ia

void czekajNaEnter()

{

  cout << "Nacisnij Enter by kontynuowac...";

  cin.get();

}

Nagłówek podprogramuNagłówek podprogramu

Ciało podprogramuCiało podprogramu

void  czekajNaEnter  ()

Typ rezultatuTyp rezultatu

Nazwa podprogramuNazwa podprogramu

Parametry podprogramuParametry podprogramu

Definicja podprogramu

Nagłówek podprogramu

Słowo kluczowe void należy rozumieć jako nic, brak wartościSłowo kluczowe void należy rozumieć jako nic, brak wartości



  

Aby podprogram zadziałał należy go wywołaćAby podprogram zadziałał należy go wywołać
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 4Strona :

Podprog ramy,  koncepc ja ,  z a s to sowan iaPodprog ramy,  koncepc ja ,  z a s to sowan ia

void czekajNaEnter()

{

  cout << "Nacisnij Enter by kontynuowac...";

  cin.get();

}
. . .
cout << "Sredni dochod to: " << dochod;

czekajNaEnter();

cout << "Dochody uporzadkowane rosnaco:";
. . .

czekajNaEnter();

cout << "Dochod minimalny:"  << min;
cout << "Dochod maksymalny:" << maks;
. . .

czekajNaEnter();

. . .

Wywołanie podprogramuWywołanie podprogramu

Definicja podprogramuDefinicja podprogramu



  

Wywołanie podprogramuWywołanie podprogramu
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 5Strona :

Podprog ramy,  koncepc ja ,  z a s to sowan iaPodprog ramy,  koncepc ja ,  z a s to sowan ia

void czekajNaEnter()

{

  cout << "Nacisnij Enter by kontynuowac...";

  cin.get();

}
. . .
cout << "Sredni dochod to: " << dochod;

czekajNaEnter();

cout << "Dochody uporzadkowane rosnaco:";
. . .

czekajNaEnter();

cout << "Dochod minimalny:"  << min;
cout << "Dochod maksymalny:" << maks;
. . .

czekajNaEnter();

. . .

1

2

3

Wywołanie podprogramuWywołanie podprogramu1

Wykonanie ciała podprogramuWykonanie ciała podprogramu2

Powrót  podprogramuPowrót  podprogramu3



  

Procedura a funkcja — rodzaje podprogramówProcedura a funkcja — rodzaje podprogramów
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 6Strona :

Podprog ramy,  koncepc ja ,  z a s to sowan iaPodprog ramy,  koncepc ja ,  z a s to sowan ia

Procedura
Funkcja

Wywołanie
Odpowiedź

Wykonać 
i zameldować 

wykonanie
Wykonać 



  

Rodzaje podprogramówRodzaje podprogramów
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 7Strona :

Podprog ramy,  koncepc ja ,  z a s to sowan iaPodprog ramy,  koncepc ja ,  z a s to sowan ia

Podprogramy dzielimy na procedury i funkcje.

Procedura, to podprogram, który wykonuje akcję określoną instrukcjami 
zapisanymi w ciele podprogramu i już!

Funkcja, to podprogram, który wykonuje akcję określoną instrukcjami 
zapisanymi w ciele podprogramu i oddaje w miejscu wywołania 
pewien rezultat!

. . .

czekajNaEnter();

. . .

. . .

x =  sinus( 0 ) ;

. . .
Rezultat funkcji, udostępniany w miejscu wywołania,

po powrocie z podprogramu
Rezultat funkcji, udostępniany w miejscu wywołania,

po powrocie z podprogramu



  

Rodzaje podprogramówRodzaje podprogramów
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 8Strona :

Podprog ramy,  koncepc ja ,  z a s to sowan iaPodprog ramy,  koncepc ja ,  z a s to sowan ia

W języku C/C++ nie występuje podział podprogramów na procedury i funkcje.

Wszystkie podprogramy są funkcjami. 

Istnieje jednak możliwość wykorzystywania funkcji jak procedur, bądź 
deklarowania funkcji tak, by przypominały procedury.

Słowo kluczowe void, będące nazwą typu, oznacza brak, nieobecność 
jakiejkolwiek wartości. 

Jeżeli typem rezultatu będzie typ określany słowem kluczowym void, to 
oznacza, iż funkcja nie udostępnia rezultatu – staje się wtedy czymś podobnym 
do procedury z języka Pascal.

void nazwa_funkcj_działaj cej_jak_procedura()ą
{

  co  tam, co  tam...ś ś

}



  

Procedury — podsumowanie informacjiProcedury — podsumowanie informacji
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 9Strona :

Podprog ramy,  koncepc ja ,  z a s to sowan iaPodprog ramy,  koncepc ja ,  z a s to sowan ia

Procedura to programowe narzędzie realizujące określone czynności.

Każda procedura ma swoją nazwę.

Wpisanie nazwy procedury w kodzie programu oznacza jej wywołanie.

Wywołanie procedury polega na:

zawieszeniu wykonania aktualnie realizowanego ciągu instrukcji, 

wykonaniu instrukcji przypisanych do procedury o danej nazwie, 

wznowieniu wykonania realizowanego ciągu instrukcji, począwszy od 
instrukcji następnej po wywołaniu procedury.

. . .

wyswietlKomunikat( ”Uwaga, niepoprawne dane!” );

. . . 

czekajNaEnter();

. . .



  

Funkcje — podsumowanie informacjiFunkcje — podsumowanie informacji
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 10Strona :

Podprog ramy,  koncepc ja ,  z a s to sowan iaPodprog ramy,  koncepc ja ,  z a s to sowan ia

Funkcja to programowe narzędzie realizujące określone czynności, po 
wykonaniu których, funkcja udostępnia w miejscu wywołania pewien rezultat.

Żargonowo mówi się, że funkcja oddaje wartość w miejscu wywołania.

Funkcja różni się od procedury tym, że ta ostatnia tylko wykonuje czynności 
i nie udostępnia rezultatu w miejscu wywołania.

Poza tą różnicą procedury i funkcje są podobne — wspólnie nazywa się je 
podprogramami.

. . .

x = 2 * R + sinus( alfa ) ;

. . . 

delta = wyznaczDelte( 5, 2, 8 );   // Delta równania: 5x2 + 2x + 8 = 0

. . .

przyprostokatna = przeciwprostokatna * sinus( alfa );



  

Podprogramy mogą mieć parametryPodprogramy mogą mieć parametry
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 11Strona :

Podprog ramy,  koncepc ja ,  z a s to sowan iaPodprog ramy,  koncepc ja ,  z a s to sowan ia

Paramtery (inaczej argumenty) to informacje przekazywane do wnętrza 
podprogramu.

Parametry mogą, ale nie muszą występować. Dotyczy to zarówno procedur jak 
i funkcji.

. . .

czekajNaEnter () ;

. . .

. . .

x = sinus( 0 ) ;

. . .

Niektóre funkcje muszą dostawać parametry,
ciało funkcji sinus musi wiedzieć, dla jakiego kąta ma 

zostać wyliczona jego wartość

Niektóre funkcje muszą dostawać parametry,
ciało funkcji sinus musi wiedzieć, dla jakiego kąta ma 

zostać wyliczona jego wartość

Brak parametrów, dodatkowe informacje 
nie są potrzebne wewnątrz podprogramu 
Brak parametrów, dodatkowe informacje 
nie są potrzebne wewnątrz podprogramu 



  

Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 12Strona :

Podprog ramy,  koncepc ja ,  z a s to sowan iaPodprog ramy,  koncepc ja ,  z a s to sowan ia

Rola parametrówRola parametrów

Instrukcje wykonywane wewnątrz podprogramów są zwykle odseparowane od 
reszty programu.

Można powiedzieć, że te instrukcje są „uwięzione” wewnątrz „celi” jaką jest 
procedura lub funkcja.

Aby instrukcje wewnętrzne podprogramu „wiedziały” o naszych chciejstwach, 
musimy im przekazać informacje oficjalnym kanałem wymiany informacji. 



  

Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 13Strona :

Podprog ramy,  koncepc ja ,  z a s to sowan iaPodprog ramy,  koncepc ja ,  z a s to sowan ia

Rola parametrówRola parametrów

Oficjalny kanał wymiany informacji z instrukcjami wewnętrznymi podprogramów 
to parametry (zwane też argumentami).

Parametry – kanał wymiany informacjiParametry – kanał wymiany informacji



  

Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 14Strona :

Podprog ramy,  koncepc ja ,  z a s to sowan iaPodprog ramy,  koncepc ja ,  z a s to sowan ia

Rola parametrówRola parametrów

Parametry mogą być ustalane na zewnątrz podprogramu i przekazywane do jego 
wnętrza, mają wtedy charakter wejściowy.



  

Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 15Strona :

Podprog ramy,  koncepc ja ,  z a s to sowan iaPodprog ramy,  koncepc ja ,  z a s to sowan ia

Rola parametrówRola parametrów

Wartości parametrów mogą być ustalane  we wnętrzu podprogramu, i stanowić 
odpowiedź podprogramu, mają wtedy charakter wyjściowy.



  

Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 16Strona :

Podprog ramy,  koncepc ja ,  z a s to sowan iaPodprog ramy,  koncepc ja ,  z a s to sowan ia

Rola parametrówRola parametrów

Parametry mogą być ustalane  służyć jednocześnie do komunikacji dwustronnej.



  

Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 17Strona :

Podprog ramy,  koncepc ja ,  z a s to sowan iaPodprog ramy,  koncepc ja ,  z a s to sowan ia

Pierwsza własna funkcjaPierwsza własna funkcja

#include <iostream>
#include <cstdlib>
using namespace std;

double oblicz_pole_kwadratu( double bok )
{
  return bok * bok;      
}

int main()
{
  double dlugosc_boku, pole;
  
  cout << endl << "Obliczam pole kwadratu";
  cout << endl << "Podaj dlugosc boku: ";
  
  cin >> dlugosc_boku;
  
  pole = oblicz_pole_kwadratu( dlugosc_boku );
  
  cout << "Pole: " << pole;
     
  return EXIT_SUCCESS;  
}



  

Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 18Strona :

Podprog ramy,  koncepc ja ,  z a s to sowan iaPodprog ramy,  koncepc ja ,  z a s to sowan ia

#include <iostream>
#include <cstdlib>
using namespace std;

double oblicz_pole_kwadratu( double bok )
{
  return bok * bok;      
}

int main()
{
  double dlugosc_boku, pole;
  
  cout << endl << "Obliczam pole kwadratu";
  cout << endl << "Podaj dlugosc boku: ";
  
  cin >> dlugosc_boku;
  
  pole = oblicz_pole_kwadratu( dlugosc_boku );
  
  cout << "Pole: " << pole;
     
  return EXIT_SUCCESS;  
}

Pierwsza własna funkcja — przed wywołaniem, wczytanie danychPierwsza własna funkcja — przed wywołaniem, wczytanie danych

» cin >> dlugosc_boku;

?dlugosc_boku

?pole



  

Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 19Strona :

Podprog ramy,  koncepc ja ,  z a s to sowan iaPodprog ramy,  koncepc ja ,  z a s to sowan ia

#include <iostream>
#include <cstdlib>
using namespace std;

double oblicz_pole_kwadratu( double bok )
{
  return bok * bok;      
}

int main()
{
  double dlugosc_boku, pole;
  
  cout << endl << "Obliczam pole kwadratu";
  cout << endl << "Podaj dlugosc boku: ";
  
  cin >> dlugosc_boku;
  
  pole = oblicz_pole_kwadratu( dlugosc_boku );
  
  cout << "Pole: " << pole;
     
  return EXIT_SUCCESS;  
}

Pierwsza własna funkcja — przed wywołaniem, parametr aktualnyPierwsza własna funkcja — przed wywołaniem, parametr aktualny

» pole = oblicz_pole_kwadratu( dlugosc_boku );

25dlugosc_boku

?pole

To jest parametr aktualny wywołania podprogramu!
To jest bardzo ważne pojęcie — trzeba je

zrozumieć i zapamiętać!

To jest parametr aktualny wywołania podprogramu!
To jest bardzo ważne pojęcie — trzeba je

zrozumieć i zapamiętać!



  

Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 20Strona :

Podprog ramy,  koncepc ja ,  z a s to sowan iaPodprog ramy,  koncepc ja ,  z a s to sowan ia

#include <iostream>
#include <cstdlib>
using namespace std;

double oblicz_pole_kwadratu( double bok )
{
  return bok * bok;      
}

int main()
{
  double dlugosc_boku, pole;
  
  cout << endl << "Obliczam pole kwadratu";
  cout << endl << "Podaj dlugosc boku: ";
  
  cin >> dlugosc_boku;
  
  pole = oblicz_pole_kwadratu( dlugosc_boku );
  
  cout << "Pole: " << pole;
     
  return EXIT_SUCCESS;  
}

Pierwsza własna funkcja — wywołanie funkcji, parametr formalnyPierwsza własna funkcja — wywołanie funkcji, parametr formalny

» double oblicz_pole_kwadratu( double bok )

25dlugosc_boku

25bok

?pole

To jest parametr formalny podprogramu!
To jest bardzo ważne pojęcie — trzeba je zrozumieć 

i zapamiętać!

To jest parametr formalny podprogramu!
To jest bardzo ważne pojęcie — trzeba je zrozumieć 

i zapamiętać!



  

Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 21Strona :

Podprog ramy,  koncepc ja ,  z a s to sowan iaPodprog ramy,  koncepc ja ,  z a s to sowan ia

Parametr formalny to specjalna zmienna komunikacyjna, zadeklarowana 
wewnątrz podprogramu. 

Jej wartość ustalana jest na etapie wywołania podprogramu na podstawie 
parametru aktualnego wywołania.

Patrząc z punktu widzenia wnętrza podprogramu: 

Parametr formalny to zmienna komunikacyjnaParametr formalny to zmienna komunikacyjna

double oblicz_pole_kwadratu( double bok )
{
  return bok * bok;      
}

Parametr formalny podprogramuParametr formalny podprogramu

Wartość, która jest kopią parametru 
aktualnego wywołania

Wartość, która jest kopią parametru 
aktualnego wywołania

Co mi tu 
znowu 

dzisiaj dali... .



  

Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 22Strona :

Podprog ramy,  koncepc ja ,  z a s to sowan iaPodprog ramy,  koncepc ja ,  z a s to sowan ia

#include <iostream>
#include <cstdlib>
using namespace std;

double oblicz_pole_kwadratu( double bok )
{
  return bok * bok;      
}

int main()
{
  double dlugosc_boku, pole;
  
  cout << endl << "Obliczam pole kwadratu";
  cout << endl << "Podaj dlugosc boku: ";
  
  cin >> dlugosc_boku;
  
  pole = oblicz_pole_kwadratu( dlugosc_boku );
  
  cout << "Pole: " << pole;
     
  return EXIT_SUCCESS;  
}

Pierwsza własna funkcja — wywołanie funkcji, przekazanie parametrówPierwsza własna funkcja — wywołanie funkcji, przekazanie parametrów

» double oblicz_pole_kwadratu( double bok )

25dlugosc_boku

25bok25

?pole

Przekazanie parametrów przez wartość — wartość
parametru aktualnego jest kopiowana do parametru 

formalnego podprogramu. 

Przekazanie parametrów przez wartość — wartość
parametru aktualnego jest kopiowana do parametru 

formalnego podprogramu. 



  

Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 23Strona :

Podprog ramy,  koncepc ja ,  z a s to sowan iaPodprog ramy,  koncepc ja ,  z a s to sowan ia

Na etapie wywołania podprogramu wyznaczana jest wartość parametru 
aktualnego wywołania. 

Wyznaczona wartość jest kopiowana do parametru formalnego podprogramu.

Operacje na parametrach formalnych wykonywane wewnątrz podprogramu nie 
przenoszą się na parametry aktualne. 

Parametry aktualne mogą być literałami, stałymi i zmiennymi.

Przekazywanie parametrów przez wartośćPrzekazywanie parametrów przez wartość



  

Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 24Strona :

Podprog ramy,  koncepc ja ,  z a s to sowan iaPodprog ramy,  koncepc ja ,  z a s to sowan ia

#include <iostream>
#include <cstdlib>
using namespace std;

double oblicz_pole_kwadratu( double bok )
{

  return bok * bok;      

}

int main()
{
  double dlugosc_boku, pole;
  
  cout << endl << "Obliczam pole kwadratu";
  cout << endl << "Podaj dlugosc boku: ";
  
  cin >> dlugosc_boku;
  
  pole = oblicz_pole_kwadratu( dlugosc_boku );
  
  cout << "Pole: " << pole;
     
  return EXIT_SUCCESS;  
}

Pierwsza własna funkcja — wykonanie funkcjiPierwsza własna funkcja — wykonanie funkcji

» return bok * bok ;

25dlugosc_boku

25bok

625

?pole



  

Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 25Strona :

Podprog ramy,  koncepc ja ,  z a s to sowan iaPodprog ramy,  koncepc ja ,  z a s to sowan ia

#include <iostream>
#include <cstdlib>
using namespace std;

double oblicz_pole_kwadratu( double bok )
{
  return bok * bok;      
}

int main()
{
  double dlugosc_boku, pole;
  
  cout << endl << "Obliczam pole kwadratu";
  cout << endl << "Podaj dlugosc boku: ";
  
  cin >> dlugosc_boku;
  
  pole = oblicz_pole_kwadratu( dlugosc_boku );
  
  cout << "Pole: " << pole;
     
  return EXIT_SUCCESS;  
}

Pierwsza własna funkcja — po powrocie funkcjiPierwsza własna funkcja — po powrocie funkcji

» cout << "Pole: " << pole;

25dlugosc_boku

625pole



  

Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 26Strona :

Podprog ramy,  koncepc ja ,  z a s to sowan iaPodprog ramy,  koncepc ja ,  z a s to sowan ia

#include <iostream>
#include <cstdlib>
using namespace std;

double oblicz_pole_kwadratu( double bok )
{
  return bok * bok;      
}

int main()
{
  double dlugosc_boku;
  
  cout << endl << "Obliczam pole kwadratu";
  cout << endl << "Podaj dlugosc boku: ";
  
  cin >> dlugosc_boku;
  
  cout << "Pole: " << oblicz_pole_kwadratu( dlugosc_boku );
     
  return EXIT_SUCCESS;  
}

Pierwsza własna funkcja — drobna optymalizacjaPierwsza własna funkcja — drobna optymalizacja

Zmienna pole jest niepotrzebna, rezultat funkcji może być 
przekazany do strumienia wyjściowego bezpośrednio.
Zmienna pole jest niepotrzebna, rezultat funkcji może być 
przekazany do strumienia wyjściowego bezpośrednio.



  

Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 27Strona :

Podprog ramy,  koncepc ja ,  z a s to sowan iaPodprog ramy,  koncepc ja ,  z a s to sowan ia

void inc( int i )
{
  ++i;      
}

. . .

int a = 5;

inc( a );

cout << ”a = ” << a;

Przekazywanie parametrów przez wartość (język C i C++)Przekazywanie parametrów przez wartość (język C i C++)

Co wyprowadzi 
program?

a = ?



  

Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 28Strona :

Podprog ramy,  koncepc ja ,  z a s to sowan iaPodprog ramy,  koncepc ja ,  z a s to sowan ia

void inc( int i )
{
  ++i;      
}

. . .

int a = 5;

inc( a );

cout << ”a = ” << a;

Przekazywanie parametrów przez wartość (język C i C++)Przekazywanie parametrów przez wartość (język C i C++)

Jaki jest stan 
pamięci przed 
wywołaniem?

5a

Przed wywołaniem
inc( a )

5a



  

Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 29Strona :

Podprog ramy,  koncepc ja ,  z a s to sowan iaPodprog ramy,  koncepc ja ,  z a s to sowan ia

void inc( int i )
{
  ++i;      
}

. . .

int a = 5;

inc( a );

cout << ”a = ” << a;

Przekazywanie parametrów przez wartość (język C i C++)Przekazywanie parametrów przez wartość (język C i C++)

Co się dzieje w 
trakcie 

wywołania?

5a

Przed wywołaniem
inc( a )

5a

Wywołanie
inc( a )

5i

5a



  

Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 30Strona :

Podprog ramy,  koncepc ja ,  z a s to sowan iaPodprog ramy,  koncepc ja ,  z a s to sowan ia

void inc( int i )
{
  ++i;      
}

. . .

int a = 5;

inc( a );

cout << ”a = ” << a;

Przekazywanie parametrów przez wartość (język C i C++)Przekazywanie parametrów przez wartość (język C i C++)

Co się dzieje w 
trakcie 

wykonania?

5a

Przed wywołaniem
inc( a )

5a

Wywołanie
inc( a )

5i

5a

Wykonanie
inc( a )

6    5Xi

5a

++i



  

Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 31Strona :

Podprog ramy,  koncepc ja ,  z a s to sowan iaPodprog ramy,  koncepc ja ,  z a s to sowan ia

void inc( int i )
{
  ++i;      
}

. . .

int a = 5;

inc( a );

cout << ”a = ” << a;

Przekazywanie parametrów przez wartość (język C i C++)Przekazywanie parametrów przez wartość (język C i C++)

Jaki jest stan 
pamięci po 
wywołaniu?

5a

Przed wywołaniem
inc( a )

5a

Wywołanie
inc( a )

5i

5a 5a

Po wykonaniu
inc( a )

5a5a

Wykonanie
inc( a )

6    5Xi

++i



  

Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 32Strona :

Podprog ramy,  koncepc ja ,  z a s to sowan iaPodprog ramy,  koncepc ja ,  z a s to sowan ia

void inc( int i )
{
  ++i;      
}

. . .

int a = 5;

inc( a );

cout << ”a = ” << a;

Przekazywanie parametrów przez wartość (język C i C++)Przekazywanie parametrów przez wartość (język C i C++)

5, słownie: pięć, 
nic się nie
zmieniło!

a = 5

Przy przekazywaniu parametrów przez wartość, wartość parametru aktualnego 
wywołania funkcji kopiowana jest do parametru formalnego funkcji.

Od tego momentu parametr aktualny i formalny są od siebie niezależne.

Żadna modyfikacja parametru formalnego funkcji nie przenosi się na 
parametr aktualny wywołania — wnętrze funkcji nie jest w stanie zmodyfikować 
parametru formalnego funkcji.



  

Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 33Strona :

Podprog ramy,  koncepc ja ,  z a s to sowan iaPodprog ramy,  koncepc ja ,  z a s to sowan ia

Przekazywanie parametrów przez referencję (tylko C++)Przekazywanie parametrów przez referencję (tylko C++)

void inc( int & i )
{
  ++i;      
}

. . .

int a = 5;

inc( a );

cout << ”a = ” << a;

Co wyprowadzi 
program?Parametr formalny i jest 

referencją do parametru 
aktualnego wywołania 
funkcji.

Parametr formalny i jest 
referencją do parametru 
aktualnego wywołania 
funkcji.

a = ?



  

Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 34Strona :

Podprog ramy,  koncepc ja ,  z a s to sowan iaPodprog ramy,  koncepc ja ,  z a s to sowan ia

Przekazywanie parametrów przez referencję (tylko C++)Przekazywanie parametrów przez referencję (tylko C++)

void inc( int & i )
{
  ++i;      
}

. . .

int a = 5;

inc( a );

cout << ”a = ” << a;

Jaki jest stan 
pamięci przed 
wywołaniem?

5a

Przed wywołaniem
inc( a )

5a



  

Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 35Strona :

Podprog ramy,  koncepc ja ,  z a s to sowan iaPodprog ramy,  koncepc ja ,  z a s to sowan ia

Przekazywanie parametrów przez referencję (tylko C++)Przekazywanie parametrów przez referencję (tylko C++)

void inc( int & i )
{
  ++i;      
}

. . .

int a = 5;

inc( a );

cout << ”a = ” << a;

5a

Przed wywołaniem
inc( a )

5a

Co się dzieje w 
trakcie 

wywołania?

5a

Wywołanie
inc( a )

i



  

Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 36Strona :

Podprog ramy,  koncepc ja ,  z a s to sowan iaPodprog ramy,  koncepc ja ,  z a s to sowan ia

Przekazywanie parametrów przez referencję (tylko C++)Przekazywanie parametrów przez referencję (tylko C++)

void inc( int & i )
{
  ++i;      
}

. . .

int a = 5;

inc( a );

cout << ”a = ” << a;

5a

Przed wywołaniem
inc( a )

5a 5a

Wywołanie
inc( a )

Co się dzieje w 
trakcie 

wykonania?

a

Wykonanie
inc( a )

i i++i6    5X



  

Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 37Strona :

Podprog ramy,  koncepc ja ,  z a s to sowan iaPodprog ramy,  koncepc ja ,  z a s to sowan ia

Przekazywanie parametrów przez referencję (tylko C++)Przekazywanie parametrów przez referencję (tylko C++)

void inc( int & i )
{
  ++i;      
}

. . .

int a = 5;

inc( a );

cout << ”a = ” << a;

5a

Przed wywołaniem
inc( a )

5a 5a

Wywołanie
inc( a )

a

Wykonanie
inc( a )

i i++i6    5X

Jaki jest stan 
pamięci po 
wywołaniu?

5a 6a

Po wykonaniu
inc( a )



  

Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 38Strona :

Podprog ramy,  koncepc ja ,  z a s to sowan iaPodprog ramy,  koncepc ja ,  z a s to sowan ia

Przekazywanie parametrów przez referencję (tylko C++)Przekazywanie parametrów przez referencję (tylko C++)

void inc( int & i )
{
  ++i;      
}

. . .

int a = 5;

inc( a );

cout << ”a = ” << a;

6, słownie: 
sześć, wartość 
się zmieniła!

a = 6

Przy przekazywaniu parametrów przez referencję,                     parametr aktualny 
wywołania funkcji „nakłada” się na parametr formalny funkcji.

Od tego momentu parametr aktualny i formalny odnoszą się do tej samej 
lokalizacji (adresu) w pamięci operacyjnej.

Każda modyfikacja parametru formalnego funkcji przenosi się na parametr 
aktualny wywołania, wnętrze funkcji może zmodyfikować parametr formalny 
funkcji. 



  

Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 39Strona :

Podprog ramy,  koncepc ja ,  z a s to sowan iaPodprog ramy,  koncepc ja ,  z a s to sowan ia

Informacje wyjściowe z funkcji — rezultat czy parametr referencyjny?Informacje wyjściowe z funkcji — rezultat czy parametr referencyjny?

double czytajDystans()
{
  double liczba;

  do
  {
    cout << endl << "Podaj dystans: ";
    cin >> liczba;

    if( liczba <= 0 )
      cout << "Dystans musi byc liczba dodatnia";
  }
  while( liczba <= 0 ); 

  return liczba;
}

Wczytywanie liczby — wczytana wartość jako rezultat funkcji:

double dystans;

dystans = czytajDystans();



  

Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 40Strona :

Podprog ramy,  koncepc ja ,  z a s to sowan iaPodprog ramy,  koncepc ja ,  z a s to sowan ia

Informacje wyjściowe z funkcji — rezultat czy parametr referencyjny?Informacje wyjściowe z funkcji — rezultat czy parametr referencyjny?

void czytajDystans( double & liczba )
{
  do
  {
    cout << endl << "Podaj dystans: ";
    cin >> liczba;
    if( liczba <= 0 )
      cout << "Dystans musi byc liczba dodatnia";
  }
  while( liczba <= 0 ); 
}

Wczytywanie liczby — wczytana wartość jako parametr referencyjny

double dystans;

czytajDystans( dystans );



  

Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 41Strona :

Podprog ramy,  koncepc ja ,  z a s to sowan iaPodprog ramy,  koncepc ja ,  z a s to sowan ia

Informacje wyjściowe z funkcji — rezultat czy parametr referencyjny?Informacje wyjściowe z funkcji — rezultat czy parametr referencyjny?

double dystans;

dystans = czytajDystans();

double dystans;

czytajDystans( dystans );

Wczytywanie liczby — wczytana wartość jako parametr referencyjny

Wczytywanie liczby — wczytana wartość jako rezultat funkcji:

void czytajDystans( double & liczba )
{
 . . . 
}

void czytajDystans( double liczba )
{
 . . . 
}

Czy rzeczywiście 
jest referencja?



  

Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 42Strona :

Podprog ramy,  koncepc ja ,  z a s to sowan iaPodprog ramy,  koncepc ja ,  z a s to sowan ia

Wiele danych wyjściowy — parametry referencyjneWiele danych wyjściowy — parametry referencyjne

void czytajPaliwoIDystans( double & p, double & d )
{
  do
  {
    cout << endl << "\nPodaj ilosc  paliwa: ";
    cin >> p;
    if( p <= 0 )
      cout << "Ilosc paliwa musi byc liczba dodatnia";
  }
  while( p <= 0 ); 
  
  do
  {
    cout << endl << "\nPodaj dystans: ";
    cin >> d;
    if( d <= 0 )
      cout << "Dystans musi byc liczba dodatnia";
  }
  while( d <= 0 ); 
}

double dystans, paliwo;

czytajPaliwoIDystans( paliwo, dystans );



  

Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 43Strona :

Podprog ramy,  koncepc ja ,  z a s to sowan iaPodprog ramy,  koncepc ja ,  z a s to sowan ia

Definicja funkcji po jej wywołaniuDefinicja funkcji po jej wywołaniu

 int main()
 {
   double dlugosc_boku, pole;
  
   . . .
  
   pole = oblicz_pole_kwadratu( dlugosc_boku );
  
   . . .
     
 }

 double oblicz_pole_kwadratu( double bok )
 {
   return bok * bok;      
 }

Wywołanie funkcjiWywołanie funkcji

Definicja funkcjiDefinicja funkcji

Czy 
kompilatorowi 

się to 
spodoba? 



  

Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 44Strona :

Podprog ramy,  koncepc ja ,  z a s to sowan iaPodprog ramy,  koncepc ja ,  z a s to sowan ia

Czy kompilatorowi się to spodoba?Czy kompilatorowi się to spodoba?

 int main()
 {
   double dlugosc_boku, pole;
  
   . . .
  
   pole = oblicz_pole_kwadratu( dlugosc_boku );
  
   . . .
     
 }

 double oblicz_pole_kwadratu( double bok )
 {
   return bok * bok;      
 }

Wywołanie funkcjiWywołanie funkcji

Definicja funkcjiDefinicja funkcji

Tak, bez błędów i ostrzeżeń — w starszych wersjach kompilatorów.

Tak, bez błędów lecz z ostrzeżeniem — w nowszych wersjach kompilatorów, oraz 
tych pracujących w trybie zgodności z normą ANSI.

Nie, wystąpi błąd — w kompilatorach pracujących w trybie C++.



  

Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 45Strona :

Podprog ramy,  koncepc ja ,  z a s to sowan iaPodprog ramy,  koncepc ja ,  z a s to sowan ia

Skąd te rozbieżności?Skąd te rozbieżności?

Definicja funkcji występuje po jej wywołaniu. 

Kompilator na etapie wywołania jej jeszcze nie zna. 

Czyni w stosunku do niej założenia — że to funkcja, której rezultatem jest 
wartość int. To założenie może być słusznie albo nie.

Aby kompilator mógł kontrolować poprawność wywołania funkcji, należy to 
wywołanie poprzedzić definicją lub deklaracją wywoływanej funkcji. 

Aby uniknąć niejednoznaczności, wprowadza się prototypy funkcji.

Deklaracja przyjmuje postać prototypu funkcji.



  

Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 46Strona :

Podprog ramy,  koncepc ja ,  z a s to sowan iaPodprog ramy,  koncepc ja ,  z a s to sowan ia

Prototypy funkcjiPrototypy funkcji

double oblicz_pole_kwadratu( double bok )
{
  return bok * bok;      
}

Definicja funkcji:

double oblicz_pole_kwadratu( double bok );

Deklaracja — prototyp —  funkcji:

typ_rezultatu nazwa_funkcji( lista_parametrów_formalnych )
{
  ciało_funkcji
}

Ogólna postać definicji funkcji:

typ_rezultatu nazwa_funkcji( lista_parametrów_formalnych );

Ogólna postać prototypu funkcji:



  

Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 47Strona :

Podprog ramy,  koncepc ja ,  z a s to sowan iaPodprog ramy,  koncepc ja ,  z a s to sowan ia

Wykorzystanie prototypów funkcji — zadeklaruj funkcję potem wołajWykorzystanie prototypów funkcji — zadeklaruj funkcję potem wołaj

#include <iostream>
#include <cstdlib>
using namespace std;

double oblicz_pole_kwadratu( double bok );

int main()
{
  double dlugosc_boku;
  
  cout << endl << "Obliczam pole kwadratu";
  cout << endl << "Podaj dlugosc boku: ";
  
  cin >> dlugosc_boku;
  
  cout << "Pole: " << oblicz_pole_kwadratu( dlugosc_boku );
     
  return EXIT_SUCCESS;  
}

double oblicz_pole_kwadratu( double bok )
{
  return bok * bok;      
}



  

Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 48Strona :

Podprog ramy,  koncepc ja ,  z a s to sowan iaPodprog ramy,  koncepc ja ,  z a s to sowan ia

Można jednak bez prototypu — zdefiniuj funkcje potem wołajMożna jednak bez prototypu — zdefiniuj funkcje potem wołaj

#include <iostream>
#include <cstdlib>
using namespace std;

double oblicz_pole_kwadratu( double bok )
{
  return bok * bok;      
}

int main()
{
  double dlugosc_boku;
  
  cout << endl << "Obliczam pole kwadratu";
  cout << endl << "Podaj dlugosc boku: ";
  
  cin >> dlugosc_boku;
  
  cout << "Pole: " << oblicz_pole_kwadratu( dlugosc_boku );
     
  return EXIT_SUCCESS;  
}



  

Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 49Strona :

Podprog ramy,  koncepc ja ,  z a s to sowan iaPodprog ramy,  koncepc ja ,  z a s to sowan ia

Podsumowanie informacji o prototypachPodsumowanie informacji o prototypach

Starsze implementacje C dopuszczały wywoływanie funkcji wcześniej 
kompilatorowi nieznanych.

 W trakcie kompilowania wywołania nieznanej funkcji przez domniemanie 
przyjmowano, że jej rezultatem jest wartość int i nic nie wiadomo na temat jej 
parametrów. Nie pozwalało to kompilatorowi kontrolować poprawności 
wywołania funkcji.

Aby kompilator mógł kontrolować poprawność wywołania funkcji, należy to 
wywołanie poprzedzić definicją lub deklaracją wywoływanej funkcji. 

Deklaracja przyjmuje postać prototypu funkcji.

Deklaracja i definicja funkcji powinna być zgodna. Jeżeli w obrębie jednego 
pliku wystąpi niezgodność, kompilator zgłosi błąd kompilacji.



  

Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 50Strona :

Podprog ramy,  koncepc ja ,  z a s to sowan iaPodprog ramy,  koncepc ja ,  z a s to sowan ia

Podsumowanie informacji o podprogramachPodsumowanie informacji o podprogramach

Stosowanie podprogramów zwykle skraca program — zarówno kod źródłowy jak 
i wynikowy.

Program staje się czytelniejszy.

Modyfikacje programu stają się łatwiejsze.

Łatwiejsze jest lokalizowanie i eliminowanie błędów.

Program staje się podatniejszy na modularyzację.

Łatwiej wyodrębnić zbiory spójnych podprogramów, stanowiące zalążek 
potencjalnych bibliotek.

Historycznie i technicznie pierwotna przyczyna wyodrębnienia podprogramów to 
eliminowanie powtarzających się fragmentów kodu.

Z czasem podprogramy stały się podstawowym środkiem podziału programu na 
mniejsze części,  stając się podstawą dla programowania proceduralnego.



  

Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 51Strona :

Podprog ramy,  koncepc ja ,  z a s to sowan iaPodprog ramy,  koncepc ja ,  z a s to sowan ia

Przykład programu podzielonego na funkcjePrzykład programu podzielonego na funkcje

#include <iostream>
#include <cmath>
using namespace std;

void komunikat_wstepny();
void oblicz();
float obwod_kola( float r );
float pole_kola( float r );

int main()
{
  komunikat_wstepny();
  oblicz();

  return EXIT_SUCCESS;
}

void komunikat_wstepny()
{
  cout << "\nObliczam obwod ...";
}

void oblicz()
{
  float r;
 
  cout << "\nPodaj promien R = ";
  cin >> r;

  cout << "\nObwod : " << obwod_kola( r );
  cout << "\nPole  : " << pole_kola( r );

  cout << "\nNacisnij Enter by ...";
  cin.ignore();
  cin.get();
}

float obwod_kola( float r )
{
  return 2 * M_PI * r;
}

float pole_kola( float r )
{
  return M_PI * r * r;
}



  

Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 52Strona :

Podprog ramy,  koncepc ja ,  z a s to sowan iaPodprog ramy,  koncepc ja ,  z a s to sowan ia

Programowanie zstępująceProgramowanie zstępujące

int main()
{
  komunikat_wstepny();
  
  oblicz();

  return EXIT_SUCCESS;
}

void komunikat_wstepny()
{
  cout << "\nObliczam obwod ...";
}

void oblicz()
{
  . . .
  cout << "\nObwod : " << obwod_kola( r );
  
  cout << "\nPole  : " << pole_kola( r );
  . . .
}

float obwod_kola( float r )
{
  return 2 * M_PI * r;
}

float pole_kola( float r )
{
  return M_PI * r * r;
}



  

Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 53Strona :

Podprog ramy,  koncepc ja ,  z a s to sowan iaPodprog ramy,  koncepc ja ,  z a s to sowan ia

Suplement I — przeciążanie funkcjiSuplement I — przeciążanie funkcji

Przeciążanie funkcji (ang. function overloading) — tworzenie większej liczby 
funkcji o takiej samej nazwie. 

Nazwa funkcji może być zatem użyta wielokrotnie do realizacji różnych czynności. 
Jest więc „przeciążona” dodatkowymi „obowiązkami”.

Kompilator zadba o dobranie właściwej wersji funkcji przeciążonej w zależności 
od kontekstu jej wywołania.

int dodaj( int a, int b ) // 1-sza wersja funkcji przeci onej addąż
{
  return a + b;
}

double dodaj( double a, double b ) // 2-ga wersja funkcji przeci onej addąż
{
  return a + b;
}

cout << endl << "Dodawanie int    :" << dodaj( 1, 1 ); 
cout << endl << "Dodawanie double :" << dodaj( 1.0, 1.0 );

Uwaga, z przeciążaniem funkcji wiąże się szereg subtelnych niuansów, ich omówienie wykracza
poza ramy tego wykładu. Należy zachować dużą ostrożność przy definiowaniu tego typu funkcji.
Uwaga, z przeciążaniem funkcji wiąże się szereg subtelnych niuansów, ich omówienie wykracza
poza ramy tego wykładu. Należy zachować dużą ostrożność przy definiowaniu tego typu funkcji.



  

Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 54Strona :

Podprog ramy,  koncepc ja ,  z a s to sowan iaPodprog ramy,  koncepc ja ,  z a s to sowan ia

Suplement II — funkcje inline czyli funkcje wstawiane Suplement II — funkcje inline czyli funkcje wstawiane 

Funkcje inline nie są wywoływane w sposób klasyczny — ich kod jest umieszczany

w miejscu wywołania i w rzeczywistości nie są one wywoływane.

int main() 
{
   int i = 2 , j = 2, k;
   
   k = dodaj( i, j );
 
   return EXIT_SUCCESS;
}

int main() 
{
   int i = 2 , j = 2, k;
   
   {
      k = i + j; 
   }
 
   return EXIT_SUCCESS;
}

inline int dodaj( int a, int b )
{
  return a + b;
}

Wywołanie podprogramu, opracowanie i przekazanie parametrów oraz powrót z podprogramu 
to dodatkowe instrukcje maszynowe — zatem instrukcje wpakowane do podprogramu wykonują

się odrobinę wolniej. Jednak we większości typowych przypadków opóźnienie to jest nieznaczące. 

Wywołanie podprogramu, opracowanie i przekazanie parametrów oraz powrót z podprogramu 
to dodatkowe instrukcje maszynowe — zatem instrukcje wpakowane do podprogramu wykonują

się odrobinę wolniej. Jednak we większości typowych przypadków opóźnienie to jest nieznaczące. 



  

Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 55Strona :

Podprog ramy,  koncepc ja ,  z a s to sowan iaPodprog ramy,  koncepc ja ,  z a s to sowan ia

Suplement II — funkcje inline czyli funkcje wstawiane, cd. ... Suplement II — funkcje inline czyli funkcje wstawiane, cd. ... 

Specyfikacja ze słowem kluczowym inline to tylko rekomendacja dla kompilatora 
— niektórych funkcji nie można w pełni rozwinąć i będą one wywoływane 
klasycznie (np. rekurencyjne).

Funkcje wstawiane zastępują w języku C++ makra, stosowanie powszechnie 
w języku C .

W porównaniu z makrami funkcje inline zapewniają kontrolę typów i wychwy-
tywanie błędów na etapie kompilacji

Mechanizm funkcji zadeklarowanych jako inline przeznaczony jest do optymalizacji 
małych, prostych i często wykorzystywanych funkcji.
Mechanizm funkcji zadeklarowanych jako inline przeznaczony jest do optymalizacji 
małych, prostych i często wykorzystywanych funkcji.

Kod wielokrotnie wykorzystujący pewną funkcję inline: 

Może działać szybciej — brak narzutu czasowego związanego z organizacją 
wywołania funkcji i powrotu z podprogramu;

Będzie dłuższy, zawiera bowiem rozwinięcia ciała funkcji w miejscu jej 
każdorazowego wywołania.



  

Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 56Strona :

Podprog ramy,  koncepc ja ,  z a s to sowan iaPodprog ramy,  koncepc ja ,  z a s to sowan ia

Suplement III — parametry domyślneSuplement III — parametry domyślne

Bardzo często przy wywoływaniu funkcji, przy kolejnych wywołaniach pewne 
parametry się powtarzają.

Powtarzające się parametry aktualne wywołania można ustawić jako parametry 
domyślne, można je pominąć przy wywołaniu. Jako parametr aktualny zostanie 
przyjęta wartość domyślna.

void outInt( int value, bool asDecimal = true )
{
  cout << (( asDecimal ) ? dec : hex ) << value;
}

Parametr domyślnyParametr domyślny

outInt( 22 ); // Parametr asDecimal otrzyma wartosc true
 
outInt( 22, true ); // Parametr asDecimal otrzyma wartosc jak w wywolaniu
outInt( 22, false ); // Parametr asDecimal otrzyma wartosc jak w wywolaniu

Przykładowe wywołania:



  

Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 57Strona :

Podprog ramy,  koncepc ja ,  z a s to sowan iaPodprog ramy,  koncepc ja ,  z a s to sowan ia

Suplement III — parametry domyślne, cd. ...Suplement III — parametry domyślne, cd. ...

enum outFormat
{
  AS_DEC,
  AS_OCT,
  AS_HEX
};

void outInt( int value, int base = AS_DEC )
{
  switch( base )
  {
    case AS_DEC : cout << dec;
                  break;
    case AS_OCT : cout << oct;
                  break;
    case AS_HEX : cout << hex;
                  break;
  }
  cout << value;
}

. . .
outInt( 10, AS_OCT );
outInt( 10, AS_HEX );
outInt( 10 ); // Parametr domyslny AS_DEC

Parametr domyślnyParametr domyślny



  

Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 58Strona :

Podprog ramy,  koncepc ja ,  z a s to sowan iaPodprog ramy,  koncepc ja ,  z a s to sowan ia

Suplement IV — zmienna liczba parametrówSuplement IV — zmienna liczba parametrów

Czasem trudno oszacować, ile będzie parametrów wywołania. W językach C/C++ 
można definiować funkcje ze zmienną liczbą parametrów.

Do obsługi zmiennej liczby parametrów służą makra zdefiniowane w stdargs.h.

Parametry zmienne oznaczane są w nagłówku funkcji znakiem operatorem ...

Scenariusz obsługi zmiennej liczby argumentów:

Definicja zmiennej identyfikującej parametry zmienne (typ va_list),

Ustalenie początku listy parametrów zmiennych (makro va_start),

Pobranie kolejnych parametrów zmiennych (makro va_arg),

Zakończenie pobierania parametrów zmiennych (makro va_end).

Uwaga, aby to zadziałało, funkcja musi posiadać przynajmniej jeden parametr „zwykły”, 
oraz funkcja musi „wiedzieć” jakie są typy kolejnych argumentów zmiennych.

Uwaga, aby to zadziałało, funkcja musi posiadać przynajmniej jeden parametr „zwykły”, 
oraz funkcja musi „wiedzieć” jakie są typy kolejnych argumentów zmiennych.



  

Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 59Strona :

Podprog ramy,  koncepc ja ,  z a s to sowan iaPodprog ramy,  koncepc ja ,  z a s to sowan ia

Suplement IV — zmienna liczba parametrów, cd. ...Suplement IV — zmienna liczba parametrów, cd. ...

void varArgsFunction( jakisTyp normalnyParametr, ... )
{
  typParametru parametr;
  
  va_list argList;
  . . .
  va_start( argList, normalnyParametr );
  . . .
  parametr = va_arg( argList, typParametru );
  . . .
  parametr = va_arg( argList, typParametru );
  . . . 
  va_end( argList );
  . . .
}

Typ zmiennej używanej do wydobywania 
kolejnych parametrów funkcji. 
Typ zmiennej używanej do wydobywania 
kolejnych parametrów funkcji. 



  

Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 60Strona :

Podprog ramy,  koncepc ja ,  z a s to sowan iaPodprog ramy,  koncepc ja ,  z a s to sowan ia

Suplement IV — zmienna liczba parametrów, cd. ...Suplement IV — zmienna liczba parametrów, cd. ...

void varArgsFunction( jakisTyp normalnyParametr, ... )
{
  typParametru parametr;
  
  va_list argList;
  . . .
  va_start( argList, normalnyParametr );
  . . .
  parametr = va_arg( argList, typParametru );
  . . .
  parametr = va_arg( argList, typParametru );
  . . . 
  va_end( argList );
  . . .
}

Obowiązkowy „normalny” parametr.Obowiązkowy „normalny” parametr.



  

Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 61Strona :

Podprog ramy,  koncepc ja ,  z a s to sowan iaPodprog ramy,  koncepc ja ,  z a s to sowan ia

Suplement IV — zmienna liczba parametrów, cd. ...Suplement IV — zmienna liczba parametrów, cd. ...

void varArgsFunction( jakisTyp normalnyParametr, ... )
{
  typParametru parametr;
  
  va_list argList;
  . . .
  va_start( argList, normalnyParametr );
  . . .
  parametr = va_arg( argList, typParametru );
  . . .
  parametr = va_arg( argList, typParametru );
  . . . 
  va_end( argList );
  . . .
}

Oznaczenie zmiennej części parametrów Oznaczenie zmiennej części parametrów 



  

Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 62Strona :

Podprog ramy,  koncepc ja ,  z a s to sowan iaPodprog ramy,  koncepc ja ,  z a s to sowan ia

Suplement IV — zmienna liczba parametrów, cd. ...Suplement IV — zmienna liczba parametrów, cd. ...

void varArgsFunction( jakisTyp normalnyParametr, ... )
{
  typParametru parametr;
  
  va_list argList;
  . . .
  va_start( argList, normalnyParametr );
  . . .
  parametr = va_arg( argList, typParametru );
  . . .
  parametr = va_arg( argList, typParametru );
  . . . 
  va_end( argList );
  . . .
}

Zakotwiczenie zmiennej argList o pierwszy 
parametr zmienny, czyli następny za ostatnim 
normalnym parametrem. 

Zakotwiczenie zmiennej argList o pierwszy 
parametr zmienny, czyli następny za ostatnim 
normalnym parametrem. 



  

Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 63Strona :

Podprog ramy,  koncepc ja ,  z a s to sowan iaPodprog ramy,  koncepc ja ,  z a s to sowan ia

Suplement IV — zmienna liczba parametrów, cd. ...Suplement IV — zmienna liczba parametrów, cd. ...

void varArgsFunction( jakisTyp normalnyParametr, ... )
{
  typParametru parametr;
  
  va_list argList;
  . . .
  va_start( argList, normalnyParametr );
  . . .
  parametr = va_arg( argList, typParametru );
  . . .
  parametr = va_arg( argList, typParametru );
  . . . 
  va_end( argList );
  . . .
}

Wydobycie kolejnego parametru o określonym 
typie. 
Wydobycie kolejnego parametru o określonym 
typie. 



  

Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 64Strona :

Podprog ramy,  koncepc ja ,  z a s to sowan iaPodprog ramy,  koncepc ja ,  z a s to sowan ia

Suplement IV — zmienna liczba parametrów, cd. ...Suplement IV — zmienna liczba parametrów, cd. ...

void varArgsFunction( jakisTyp normalnyParametr, ... )
{
  typParametru parametr;
  
  va_list argList;
  . . .
  va_start( argList, normalnyParametr );
  . . .
  parametr = va_arg( argList, typParametru );
  . . .
  parametr = va_arg( argList, typParametru );
  . . . 
  va_end( argList );
  . . .
}

Wydobycie kolejnego parametru o określonym 
typie. 
Wydobycie kolejnego parametru o określonym 
typie. 



  

Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 65Strona :

Podprog ramy,  koncepc ja ,  z a s to sowan iaPodprog ramy,  koncepc ja ,  z a s to sowan ia

Suplement IV — zmienna liczba parametrów, cd. ...Suplement IV — zmienna liczba parametrów, cd. ...

void varArgsFunction( jakisTyp normalnyParametr, ... )
{
  typParametru parametr;
  
  va_list argList;
  . . .
  va_start( argList, normalnyParametr );
  . . .
  parametr = va_arg( argList, typParametru );
  . . .
  parametr = va_arg( argList, typParametru );
  . . . 
  va_end( argList );
  . . .
}

Zakończenie wydobywania parametrów.Zakończenie wydobywania parametrów.



  

Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 66Strona :

Podprog ramy,  koncepc ja ,  z a s to sowan iaPodprog ramy,  koncepc ja ,  z a s to sowan ia

Suplement IV — zmienna liczba parametrów, konkretny przykładSuplement IV — zmienna liczba parametrów, konkretny przykład

int addInts( int count, ... )
{
  int total = 0;
  va_list argList;

  va_start( argList, count );
  for( int i = 1; i <= count; i++ )
  {
    int value = va_arg( argList, int );
    total += value;
  }
  va_end( argList );
  return total;
}

cout << endl << addInts( 2, 1, 2 );
cout << endl << addInts( 3, 4, -1, 6 );
cout << endl << addInts( 0 );
cout << endl << addInts( 5, 1, 2, 3, 4, 5 );

Dodawanie dowolnej liczby danych typu int, wersja naiwna:



  

Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 67Strona :

Podprog ramy,  koncepc ja ,  z a s to sowan iaPodprog ramy,  koncepc ja ,  z a s to sowan ia

Suplement IV — zmienna liczba parametrów, konkretny przykładSuplement IV — zmienna liczba parametrów, konkretny przykład

int addInts( int count, ... )
{
  int total = 0;
  va_list argList;

  va_start( argList, count );
  for( ; count; count-- )
    total += va_arg( argList, int );
  va_end( argList );
  return total;
}

cout << endl << addInts( 2, 1, 2 );
cout << endl << addInts( 3, 4, -1, 6 );
cout << endl << addInts( 0 );
cout << endl << addInts( 5, 1, 2, 3, 4, 5 );

Dodawanie dowolnej liczby danych typu int, wersja poprawiona:



  

Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 68Strona :

Podprog ramy,  koncepc ja ,  z a s to sowan iaPodprog ramy,  koncepc ja ,  z a s to sowan ia

Suplement IV — zmienna liczba parametrów, printf jako przykładSuplement IV — zmienna liczba parametrów, printf jako przykład

printf( "To w milach: %f",   wynik   );

Funkcja printf pochodzi z biblioteki stdio z języka C.

Funkcja printf wyprowadzane sformatowane dane do stdout.

Pierwszy parametr funkcji, będący łańcuchem znaków, może zawierać 
specyfikacje przekształceń, rozpoczynające się znakiem %.

W miejsce specyfikatorów przekształceń wstawiane są wartości kolejnych 
parametrów wywołania funkcji printf, sformatowane zgodnie z określonym 
formatem. 



  

Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 69Strona :

Podprog ramy,  koncepc ja ,  z a s to sowan iaPodprog ramy,  koncepc ja ,  z a s to sowan ia

Suplement IV — zmienna liczba parametrów, printf jako przykładSuplement IV — zmienna liczba parametrów, printf jako przykład

Sekwencje rozpoczynające się od znaku % stanowią specyfikacje przekształceń 
kolejnych parametrów funkcji printf: 

%d — wyprowadza liczbę całkowitą dziesiętną, 

%f — wyprowadza liczbę rzeczywistą,

%c — wyprowadza znak,

%s — wyprowadza napis. 

Możliwości formatowania funkcji są bardzo szerokie, omówione zostaną 
osobno. 

printf( "%s ma %d lat%c", "Ala", 18, '!' );



  

Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 70Strona :

Podprog ramy,  koncepc ja ,  z a s to sowan iaPodprog ramy,  koncepc ja ,  z a s to sowan ia

Suplement IV — zmienna liczba parametrów, printf jako przykładSuplement IV — zmienna liczba parametrów, printf jako przykład

printf( "To w milach: %10.2f",   wynik   );

printf( "To w milach: %-10.2f",   wynik   );

printf( "To w milach: %0.2f",   wynik   );



  

Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 71Strona :

Podprog ramy,  koncepc ja ,  z a s to sowan iaPodprog ramy,  koncepc ja ,  z a s to sowan ia

Suplement IV — zmienna liczba parametrów, printf jako przykładSuplement IV — zmienna liczba parametrów, printf jako przykład

printf( "%g km to w %g mil", kilometry, wynik );

%f — wyprowadza liczbę rzeczywistą,

%g — wyprowadza liczbę rzeczywistą w najkrótszej postaci.



  

Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 72Strona :

Podprog ramy,  koncepc ja ,  z a s to sowan iaPodprog ramy,  koncepc ja ,  z a s to sowan ia

Czas zakończyć tego pdf-a!Czas zakończyć tego pdf-a!

Na chwilę kończymy z funkcjami ..., ale od teraz będą 
one już na zawsze obecne w programowaniu!

Na chwilę kończymy z funkcjami ..., ale od teraz będą 
one już na zawsze obecne w programowaniu!


	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21
	Slajd 22
	Slajd 23
	Slajd 24
	Slajd 25
	Slajd 26
	Slajd 27
	Slajd 28
	Slajd 29
	Slajd 30
	Slajd 31
	Slajd 32
	Slajd 33
	Slajd 34
	Slajd 35
	Slajd 36
	Slajd 37
	Slajd 38
	Slajd 39
	Slajd 40
	Slajd 41
	Slajd 42
	Slajd 43
	Slajd 44
	Slajd 45
	Slajd 46
	Slajd 47
	Slajd 48
	Slajd 49
	Slajd 50
	Slajd 51
	Slajd 52
	Slajd 53
	Slajd 54
	Slajd 55
	Slajd 56
	Slajd 57
	Slajd 58
	Slajd 59
	Slajd 60
	Slajd 61
	Slajd 62
	Slajd 63
	Slajd 64
	Slajd 65
	Slajd 66
	Slajd 67
	Slajd 68
	Slajd 69
	Slajd 70
	Slajd 71
	Slajd 72

