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ols[SEVOUETLIETAELIENY Podprogramy, koncepcja, zastosowania

W programach czesto wystepuja powtarzajace sie fragmenty kodu

cout << "Sredni dochod to: " << dochod;
cout << "Nacisnij Enter by kontynuowac...";
cin.get(); Tyle razy pisaé

to samo...?
cout << "Dochody uporzadkowane rosnaco:";

cin.get();
cout << "Dochod minimalny:" << min;
cout << "Dochod maksymalny:" << maks;

cout << "Nacisnij Enter by kontynuowac...";

cout << "Nacisnij Enter by kontynuowac...";
cin.get();

- /
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Powtarzajace sie fragmenty kodu jako ,,klocek” — podprogram

» Definicja podprogramu

void czekajNaEnter() < Nagtowek podprogramu I
{
cout << "Nacisnij Enter by kontynuowac...";
_ F Ciato podprogramu I
cin.get();

» Naglowek podprogramu

Typ rezultatu I

Nazwa podprogramu I

Parametry podprogramu I

\J
\ void H czekajNaEnter\

Stowo kluczowe void nalezy rozumiec jako nic, brak wartosci
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Aby podprogram zadziatat nalezy go wywotac

Definicja podprogramu

~void czekajNaEnter() N
{
cout << "Nacisnij Enter by kontynuowac..."; <——
cin.get();
& /
éoﬂt.<< "Sredni dochod to: " << dochod;

chekajNaEnter();}<

cout << "Dochody uporzadkowane rosnaco:";

chekajNaEnter();}<

Wywotanie podprogramu

cout << "Dochod minimalny:" << min;
cout << "Dochod maksymalny:" << maks;

czekajNaEnter(); -

Copyright © Roman Siminski




ols[SEVOUETLIETAELIENY Podprogramy, koncepcja, zastosowania

Wywotanie podprogramu

~void czekajNaEnter() -
{
cout << "Nacisnij Enter by kontynuowac..."; D
cin.get(); o 1
} N
cout << "Sredni dochod to: " << dochod;
~ czekajNaEnter();
~ cout << "Dochody uporzadkowane rosnaco:"; F<Q3;
czekajNakEnter() ; -
1/ Wywotanie podprogramu |
cout << "Dochod minimalny:" << min;
cout << "Dochod maksymalny:" << maks; Py o
(2) Wykonanie ciata podprogramu
czekajNaknter(); i3: Powr6t podprogramu |
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Procedura a funkcja — rodzaje podprogramow:

Wykonac
i zameldowac
wykonanie

Wykonac

Procedura Funkcja
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Rodzaje podprograméw

» Podprogramy dzielimy na procedury i funkcje.

» Procedura, to podprogram, ktory wykonuje akcje okre$long instrukcjami
zapisanymi w ciele podprogramu ijuz!

czekajNaEnter();

» Funkcja, to podprogram, ktéry wykonuje akcje okreSlona instrukcjami
zapisanymi w ciele podprogramu i oddaje w miejscu wywolania
pewien rezultat!

]
Vs

X = Lsinus( 0 )

[
’
/

T Rezultat funkcji, udostepniany w miejscu wywotania,
poO powrocie z podprogramu
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Rodzaje podprograméw

» W jezyku C/C++ nie wystepuje podzial podprograméw na procedury i funkcje.
» Wszystkie podprogramy sa funkcjami.

» Istnieje jednak mozliwo$é¢ wykorzystywania funkeji jak procedur, badz
deklarowania funkgji tak, by przypominaly procedury.

» Slowo kluczowe void, bedace nazwa typu, oznacza brak, nieobecnosé
jakiejkolwiek wartosci.

» Jezeli typem rezultatu bedzie typ okre$lany stowem kluczowym void, to
oznacza, iz funkcja nie udostepnia rezultatu — staje sie wtedy czyms podobnym
do procedury z jezyka Pascal.

void nazwa funkcj dziatajgcej jak procedura()

{

cos tam, cos tam...
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Procedury — podsumowanie informacji

P Procedura to programowe narzedzie realizujace okreslone czynno$ci.
» Kazda procedura ma swoja nazwe.
P Whpisanie nazwy procedury w kodzie programu oznacza jej wywotanie.
» Wywolanie procedury polega na:
» zawileszeniu wykonania aktualnie realizowanego ciggu instrukgji,
» wykonaniu instrukcji przypisanych do procedury o danej nazwie,

» wznowieniu wykonania realizowanego ciggu instrukcji, poczagwszy od
instrukcji nastepnej po wywolaniu procedury.

wyswietlKomunikat( "Uwaga, niepoprawne dane!” );

czekajNaEnter();
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Funkcje — podsumowanie informacji

P Funkcja to programowe narzedzie realizujace okre$lone czynnosci, po
wykonaniu ktérych, funkcja udostepnia w miejscu wywolania pewien rezultat.

P Zargonowo moéwi sie, ze funkeja oddaje warto$é w miejscu wywotania.

P Funkcja rézni sie od procedury tym, ze ta ostatnia tylko wykonuje czynnosci
1 nie udostepnia rezultatu w miejscu wywolania.

P Poza tg roznica procedury i funkcje sa podobne — wspdlnie nazywa sie je
podprogramami.

X =2 * R+ sinus( alfa ) ;

delta = wyznaczDelte( 5, 2, 8 ); // Delta réwnania: 5x> + 2x + 8 = 0

przyprostokatna = przeciwprostokatna * sinus( alfa );
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Podprogramy moga miec¢ parametry

» Paramtery (inaczej argumenty) to informacje przekazywane do wnetrza

podprogramu.
Brak parametrow, dodatkowe informacje
nie sg potrzebne wewnatrz podprogramu

—

czekajNaEnter{()

-

[}
’

» Parametry moga, ale nie musza wystepowaé. Dotyczy to zaréwno procedur jak

i funkcji.

X = sinus() ;

Niektore funkcje musza dostawac parametry,
ciato funkcji sinus musi wiedzie¢, dla jakiego kata ma
zostacC wyliczona jego wartosc
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Rola parametrow

P Instrukcje wykonywane wewnatrz podprogramoéw sg zwykle odseparowane od
reszty programu.

P Mozna powiedzieé, ze te instrukeje sg ,uwiezione” wewnatrz ,celi” jaka jest
procedura lub funkcja.

P Aby instrukcje wewnetrzne podprogramu ,wiedzialy” o naszych chciejstwach,
musimy im przekazaé informacje oficjalnym kanalem wymiany informacji.
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Rola parametrow

P Oficjalny kanat wymiany informacji z instrukcjami wewnetrznymi podprogramoéow
to parametry (zwane tez argumentami).

Parametry - kanat wymiany informacji

Copyright © Roman Siminski
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Rola parametrow

P Parametry mogg by¢ ustalane na zewnatrz podprogramu i przekazywane do jego
wnetrza, maja wtedy charakter wejsciowy.

Copyright © Roman Siminski
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Rola parametrow

P WartoS$ci parametréw moga by¢ ustalane we wnetrzu podprogramu, i stanowié¢
odpowiedz podprogramu, maja wtedy charakter wyjsciowy.
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Rola parametrow

P Parametry mogg by¢ ustalane stuzy¢ jednocze$nie do komunikacji dwustronne;.

Copyright © Roman Siminski
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Pierwsza wtasna funkcja

#include <iostream>
#include <cstdlib> flObliczam pole kwadratu

using namespace std; IPodaj dlugosc boku: 25
Pole: 625

double oblicz pole kwadratu( double bok )
{

return bok * bok;

}

int main()

{
double dlugosc boku, pole;

cout << endl << "Obliczam pole kwadratu";
cout << endl << "Podaj dlugosc boku: ";

cin >> dlugosc boku;
pole = oblicz pole kwadratu( dlugosc boku );

cout << "Pole: " << pole;

return EXIT SUCCESS;

Copyright © Roman Siminski
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Pierwsza wiasna funkcja — przed wywotaniem, wczytanie danych

#include <iostream>
#include <cstdlib>

using namespace std; Podaj dlugosc hoku: 25

Pole: 625

double oblicz pole kwadratu( double bok )
{

return bok * bok;

}

int main()

{ double dlugosc boku, pole;
cout << endl << "Obliczam pole kwadratu"; dlugosc_boku !
cout << endl << "Podaj dlugosc boku: "; pole ?

cin >> dlugosc boku;

pole = oblicz pole kwadratu( dlugosc boku );

cout << "Pole: " << pole;

return EXIT SUCCESS;

Copyright © Roman Siminski
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Pierwsza wtasna funkcja — przed wywotaniem, parametr aktualny.

#include <iostream>
#include <cstdlib>
using namespace std;

double oblicz pole kwadratu( double bok )

{
return bok * bok;
}
int main()
{
double dlugosc boku, pole;
: dlugosc_boku 25
cout << endl << "Obliczam pole kwadratu";
cout << endl << "Podaj dlugosc boku: "; pole !

cin >> dlugosc boku;

pole = oblicz pole kwadratu( dlugosc boku );

cout << "Pole: " << pole;
return EXIT SUCCESS: To jest parametr aktualny wywotania podprogramu!
} B To jest bardzo wazne pojecie — trzeba je
zrozumiec i zapamietac!

Copyright © Roman Siminski
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Pierwsza witasna funkcja — wywotanie funkcji, parametr formalny

#include <iostream>
#include <cstdlib>
using namespace std;

» double oblicz pole kwadratu( double bok )

{
return bok * bok;
}
int main()
{
double dlugosc boku, pole; bok 25 -
dl bok 25
cout << endl << "Obliczam pole kwadratu"; N EE
cout << endl << "Podaj dlugosc boku: "; pole i
cin >> dlugosc boku;
pole = oblicz pole kwadratu( dlugosc boku );
cout << "Pole: " << pole;
. To jest parametr formalny podprogramu!
) T To jest bardzo wazne pojecie — trzeba je zrozumiec
i zapamietac!

Copyright © Roman Siminski
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Parametr formalny to zmienna komunikacyjna

P Parametr formalny to specjalna zmienna komunikacyjna, zadeklarowana
wewnatrz podprogramu.

P Jej warto$¢ ustalana jest na etapie wywotania podprogramu na podstawie
parametru aktualnego wywolania.

P Patrzac z punktu widzenia wnetrza podprogramu:

double oblicz pole kwadratu( double bok )
{

return bok * bok;

}

Comitu
znowu
dzisiaj dali... .

Wartos¢, ktora jest kopig parametru
aktualnego wywotania

Parametr formalny podprogramu
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Pierwsza wiasna funkcja — wywotanie funkcji, przekazanie parametrow:

#include <iostream>
#include <cstdlib>
using namespace std;

» double oblicz pole kwadratu( double bok -

{
return bok * bok;
}
int main()
{
double dlugosc boku, pole; 25 = bok 25 -
dl bok 25
cout << endl << "Obliczam pole kwadratu"; N EE
cout << endl << "Podaj dlugosc boku: "; pole !
cin >> dlugosc boku;
pole = oblicz_pole_kwadratu(\dlugosc_boku Hj
cout << "Pole: " << pole;
. Przekazanie parametrow przez wartos¢ — wartosc
) return EXIT SUCCESS; parametru aktualnego jest kopiowana do parametru
formalnego podprogramu.
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Przekazywanie parametrow przez wartosc

P Na etapie wywolania podprogramu wyznaczana jest warto$é parametru
aktualnego wywolania.

» Wyznaczona warto$¢ jest kopiowana do parametru formalnego podprogramu.

P Operacje na parametrach formalnych wykonywane wewnatrz podprogramu nie
przenosza sie na parametry aktualne.

P Parametry aktualne mogg by¢ literatami, statymi i zmiennymi.

Copyright © Roman Siminski
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Pierwsza wtasna funkcja — wykonanie funkcji

#include <iostream>
#include <cstdlib>
using namespace std;

double oblicz pole kwadratu( double bok )

» return bok * bok ;

|

int main()
! bok 25
double dlugosc boku, pole; 0
625 dlugosc_boku 25
cout << endl << "Obliczam pole kwadratu"; pole ?

cout << endl << "Podaj dlugosc boku: ";

’

cin >> dlugosc boku;

pole =\oblicz_pole_kwadratu( dlugosc boku )bt————

cout << "Pole: " << pole;

return EXIT SUCCESS;

Copyright © Roman Siminski
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Pierwsza witasna funkcja — po powrocie funkcji

#include <iostream>
#include <cstdlib>
using namespace std;

double oblicz pole kwadratu( double bok )
{

return bok * bok;

}

int main()

{
double dlugosc boku, pole;

cout << endl << "Obliczam pole kwadratu";
cout << endl << "Podaj dlugosc boku: “;

cin >> dlugosc boku;
pole = oblicz pole kwadratu( dlugosc boku );

» cout << "Pole: " << pole;

return EXIT SUCCESS;
}

Copyright © Roman Siminski
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dlugosc boku
pole

25

625

1 : 25
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Pierwsza wtasna funkcja — drobna optymalizacja

#include <iostream>
#include <cstdlib>
using namespace std;

double oblicz pole kwadratu( double bok )

{
return bok * bok;
} Zmienna pole jest niepotrzebna, rezultat funkcji moze by¢
int main() przekazany do strumienia wyj$ciowego bezposrednio.
{

double dlugosc boku;

cout << endl << "Obliczam pole kwadratu";
cout << endl << "Podaj dlugosc boku: ";

’

cin >> dlugosc boku;

cout << "Pole: " << oblicz pole kwadratu( dlugosc boku );

return EXIT SUCCESS;

Copyright © Roman Siminski
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Przekazywanie parametrow przez wartosc (jezyk Ci C++)

void inc( int i )

{
++1; .
} Co wyprowadzi
program?
int a = 5;
inc( a );
cout << "a =" << a;

Copyright © Roman Siminski
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Przekazywanie parametrow przez wartosc (jezyk Ci C++)

void inc( int i )

{
++1; Jaki jest stan
} pamieci przed
wywolaniem?
int a = 5;
inc( a );
cout << "a =" << a;

Przed wywotaniem
inc(a)

a 5

Copyright © Roman Siminski
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Przekazywanie parametrow przez wartosc (jezyk Ci C++)

void inc( int i )

{

++1; Co sie dzieje w
} trakcie

wywolania?

int a = 5;
inc( a );
cout << "a =" << a;

Przed wywotaniem Wywotanie

inc(a) inc(a)
a 5 a 5

Copyright © Roman Siminski
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Przekazywanie parametrow przez wartosc (jezyk Ci C++)

void inc( int i )

{

++1; Co sie dzieje w
} trakcie

wykonania?

int a = 5;
inc( a );
cout << "a =" << a;

Przed wywotaniem Wywotanie Wykonanie

inc(a) inc(a) inc(a)
a 5 a 5 a 5

| S
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Przekazywanie parametrow przez wartosc (jezyk Ci C++)

void inc( int i )

{

++1; Jaki jest stan
} pamieci po

wywolaniu?
int a = 5;
inc( a );
cout << "a =" << a;
Przed wywotaniem Wywotanie Wykonanie Po wykonaniu
inc(a) inc(a) inc(a) inc(a)
a 5 a 5 \ a 5 a 5
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Przekazywanie parametrow przez wartosc (jezyk Ci C++)

void inc( int i )

{
++1; 5, stownie: pieé,
} nic sie nie
zmienilo!
int a = 5;
inc( a );
cout << "a =" << a;

» Przy przekazywaniu parametrow przez warto$¢, warto$é parametru aktualnego
wywolania funkcji kopiowana jest do parametru formalnego funkcji.

» Od tego momentu parametr aktualny i formalny sg od siebie niezalezne.

» Zadna modyfikacja parametru formalnego funkcji nie przenosi sie na
parametr aktualny wywolania — wnetrze funkcji nie jest w stanie zmodyfikowac
parametru formalnego funkcji.
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Przekazywanie parametrow przez referencje (tylko C++)

void inc( int & i)

: ++1; \

} . Co wyprowadzi
Parametr formalny 1jest program?
referencjq do parametru
aktualnego wywolania

_ funkcji.

int a = 5;

inc( a );

cout << "a =" << a;
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Przekazywanie parametrow przez referencje (tylko C++)

void inc( int & 1 )

{
++1; Jaki jest stan
} pamieci przed
wywolaniem?
int a = 5;
inc( a );
cout << "a =" << a;

Przed wywotaniem
inc(a)

a 5

Copyright © Roman Siminski
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Przekazywanie parametrow przez referencje (tylko C++)

void inc( int & 1 )

{

++1; Co sie dzieje w
} trakcie

wywolania?

int a = 5;
inc( a );
cout << "a =" << a;

Przed wywotaniem Wywotanie

inc(a) inc(a)

a 5 a 5 i
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Przekazywanie parametrow przez referencje (tylko C++)

void inc( int & 1 )

{

++1; Co sie dzieje w
} trakcie

wykonania?

int a = 5;
inc( a );
cout << "a =" << a;

Przed wywotaniem Wywotanie Wykonanie

inc(a) inc(a) inc(a)

a 5 a 5 i a@L+@i
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Przekazywanie parametrow przez referencje (tylko C++)

void inc( int & 1 )

{

++1; Jaki jest stan
} pamieci po

wywolaniu?

int a = 5;
inc( a );
cout << "a =" << a;

Przed wywotaniem Wywotanie Wykonanie Po wykonaniu

inc(a) inc(a) inc(a) inc(a)

a 5 a 5 i a,@LL@i a 6
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Przekazywanie parametrow przez referencje (tylko C++)

void inc( int & 1 )

{ L]
++1; 6, stownie:

} szes$¢, wartose

sie zmienila!

- O

int a = 5;
inc( a );
cout << "a =" << a;

» Przy przekazywaniu parametrow przez referencje, parametr aktualny

wywolania funkcji ,naklada” sie na parametr formalny funkcji.

» Od tego momentu parametr aktualny i formalny odnosza sie do tej samej
lokalizacji (adresu) w pamieci operacyjnej.

» Kazda modyfikacja parametru formalnego funkcji przenosi sie na parametr
aktualny wywolania, wnetrze funkcji moze zmodyfikowaé parametr formalny
funkc;ji.

Copyright © Roman Siminski



ols[SEVOUETLIETAELIENY Podprogramy, koncepcja, zastosowania

Informacje wyjsciowe z funkcji — rezultat czy parametr referencyjny?

Wezytywanie liczby — wezytana wartos¢ jako rezultat funke;ji:

double czytajDystans()

{
double liczba;

do
{

cout << endl << "Podaj dystans: ";
cin >> liczba;

if( liczba <= 0 )
cout << "Dystans musi byc liczba dodatnia";
}

while( liczba <= 0 );
return liczba;

}

double dystans;

dystans = czytajDystans();

Copyright © Roman Siminski
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Informacje wyjsciowe z funkcji — rezultat czy parametr referencyjny?

Wezytywanie liczby — wezytana wartos¢ jako parametr referencyjny

void czytajDystans( double & liczba )

{
do
{
cout << endl << "Podaj dystans: ";
cin >> liczba;
if( liczba <= 0 )
cout << "Dystans musi byc liczba dodatnia";
}
while( liczba <= 0 );
}

double dystans;

czytajDystans( dystans );
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Informacje wyjsciowe z funkcji — rezultat czy parametr referencyjny?

Wezytywanie liczby — wezytana wartos¢ jako rezultat funkce;ji:
double dystans;

dystans = czytajDystans();

Wezytywanie liczby — wezytana warto$¢ jako parametr referencyjny

double dystans;

Czy rzeczywiscie

czytajbDystans( dystans ); : ;
ytajby L Y ) jest referencja?

void czytajDystans( double & liczba )

=

void czytajDystans( double liczba )
{

}.
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Wiele danych wyjsciowy — parametry referencyjne

void czytajPaliwoIDystans( double & p, double & d )

{
do
{
cout << endl << "\nPodaj ilosc paliwa: ";
cin >> p;
if(p<=0)
cout << "Ilosc paliwa musi byc liczba dodatnia";
}
while( p <= 0 );
do
{
cout << endl << "\nPodaj dystans: ";
cin >> d;
if( d<=0)
cout << "Dystans musi byc liczba dodatnia";
}
while( d <= 0 );

double dystans, paliwo;

czytajPaliwoIDystans( paliwo, dystans );

Copyright © Roman Siminski



ols[SEVOUETLIETAELIENY Podprogramy, koncepcja, zastosowania

Definicja funkcji po jej wywotaniu

int main()

{
double dlugosc boku, pole;

[pole = oblicz pole kwadratu( dlugosc boku );}4 Wywolanie funkcji
}
[double oblicz pole kwadratu( double bok )}4 Definicja funkcji |
{
return bok * bok;
}

Czy
kompilatorowi
sie to
spodoba?
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Czy kompilatorowi sie to spodoba?

int main()

{
double dlugosc boku, pole;

[pole = oblicz pole kwadratu( dlugosc boku );}4 Wywolanie funkcji

}
[double oblicz pole kwadratu( double bok )]4 Definicja funkcji |
{

return bok * bok;
}

» Tak, bez bedbw i ostrzezen — w starszych wersjach kompilatorow.

» Tak, bez bledéw lecz z ostrzezeniem — w nowszych wersjach kompilatoréw, oraz
tych pracujacych w trybie zgodnosci z normg ANSI.

» Nie, wystgpi blgd — w kompilatorach pracujacych w trybie C++.
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Skad te rozbieznosci?

» Definicja funkcji wystepuje po jej wywotaniu.
» Kompilator na etapie wywolania jej jeszcze nie zna.

» Czyni w stosunku do niej zalozenia — ze to funkcja, ktorej rezultatem jest
wartosé int. To zalozenie moze by¢ shusznie albo nie.

» Aby kompilator moégl kontrolowaé poprawno$é wywotania funkeji, nalezy to
wywolanie poprzedzi¢ definicjg lub deklaracjqg wywolywanej funkc;ji.

» Aby unikngé¢ niejednoznaczno$ci, wprowadza sie prototypy funkcji.

» Deklaracja przyjmuje postaé prototypu funkcji.

Copyright © Roman Siminski



ols[SEVOUETLIETAELIENY Podprogramy, koncepcja, zastosowania

Prototypy funkcji

Definicja funkcji:

double oblicz pole kwadratu( double bok )
{

}

return bok * bok;

Deklaracja — prototyp — funkcji:
double oblicz pole kwadratu( double bok );

Ogoblna postaé definicji funkcji:

typ rezultatu nazwa funkcji( lista parametrdéw formalnych )

{
}

ciato funkcji

Ogéblna postac prototypu funkeji:

typ rezultatu nazwa funkcji( lista parametréow formalnych );
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Wykorzystanie prototypow funkcji — zadeklaruj funkcje potem wotaj

#include <iostream>
#include <cstdlib>
using namespace std;

double oblicz pole kwadratu( double bok );

int main()

{
double dlugosc boku;

cout << endl << "Obliczam pole kwadratu";
cout << endl << "Podaj dlugosc boku: ";

’

cin >> dlugosc boku;

cout << "Pole: " << oblicz pole kwadratu( dlugosc boku );

return EXIT_SUCCESS;
}

double oblicz pole kwadratu( double bok )
{

return bok * bok;
}
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Mozna jednak bez prototypu — zdefiniuj funkcje potem wotaj

#include <iostream>
#include <cstdlib>
using namespace std;

double oblicz pole kwadratu( double bok )
{

return bok * bok;

}

int main()

{
double dlugosc boku;

cout << endl << "Obliczam pole kwadratu";
cout << endl << "Podaj dlugosc boku: ";

’

cin >> dlugosc boku;

cout << "Pole: " << oblicz pole kwadratu( dlugosc boku );

return EXIT SUCCESS;
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Podsumowanie informacji o prototypach

» Starsze implementacje C dopuszczaly wywolywanie funkeji weze$nie;
kompilatorowi nieznanych.

» W trakcie kompilowania wywolania nieznanej funkeji przez domniemanie
przyjmowano, ze jej rezultatem jest wartos¢ int i nic nie wiadomo na temat jej
parametrow. Nie pozwalalo to kompilatorowi kontrolowaé¢ poprawnosci
wywolania funkgji.

» Aby kompilator mogl kontrolowaé poprawnosé wywolania funkcji, nalezy to
wywolanie poprzedzi¢ definicjq lub deklaracjqg wywolywanej funkcji.

» Deklaracja przyjmuje postaé prototypu funkeji.

» Deklaracja i definicja funkeji powinna byé zgodna. Jezeli w obrebie jednego
pliku wystapi niezgodnos¢, kompilator zglosi blad kompilacji.
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Podsumowanie informacji o podprogramach

Historycznie 1 technicznie pierwotna przyczyna wyodrebnienia podprogramoéw to
eliminowanie powtarzajgcych sie fragmentow kodu.

Z czasem podprogramy staly sie podstawowym $rodkiem podzialu programu na
mniejsze czeSci, stajac sie podstawa dla programowania proceduralnego.

P Stosowanie podprograméw zwykle skraca program — zaréwno kod zZrédlowy jak
1 wynikowy.

P Program staje sie czytelniejszy.

» Modyfikacje programu stajg sie fatwiejsze.

P Latwiejsze jest lokalizowanie i eliminowanie bledow.
P Program staje sie podatniejszy na modularyzacje.

P Latwiej wyodrebnié zbiory spojnych podprograméw, stanowiace zalazek
potencjalnych bibliotek.
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Przyktad programu podzielonego na funkcje

#include <iostream>
#include <cmath> {
using namespace std;

void komunikat wstepny();
void oblicz();

float obwod kola( float r );
float pole kola( float r );

void oblicz()

float r;

cout << "\nPodaj promien R = ";
cin >> r;

cout << "\nObwod :
cout << "\nPole

" << obwod kola( r );
" << pole kola( r );

int main()
{ cout << "\nNacisnij Enter by ...";
komunikat wstepny(); cin.ignore();
oblicz(); cin.get();
}
return EXIT SUCCESS;
} float obwod kola( float r )
{

void komunikat wstepny()

{ }

cout << "\nObliczam obwod ...";

return 2 * M PT * r;

} float pole kola( float r )

{
}

return M PI * r * r;
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Programowanie zstepujace

int main()

{
[komunikat_wstepny();

-

oblicz();

-/

return EXIT SUCCESS;

}

\J
void komunikat wstepny()
{
cout << "\nObliczam obwod ...";
}
\J float pole kola( float r )
void oblicz() {
{ return M PI * r * r;
Coe }
cout << "\nObwod : " <<[obwod kola( r ); |
cout << "\nPole : " <<[pole kola( r ): } Iloat obwod kola( float r )
) S return 2 * M PI * r;
}
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Suplement | — przecigzanie funkcji

B Przecigzanie funkcji (ang. function overloading) — tworzenie wiekszej liczby
funkcji o takiej samej nazwie.

P Nazwa funkeji moze by¢ zatem uzyta wielokrotnie do realizacji r6znych czynno$ci.
Jest wiec ,przecigzona” dodatkowymi ,,obowigzkami”.

» Kompilator zadba o dobranie wla$ciwej wersji funkeji przeciazonej w zalezno$ci
od kontekstu jej wywolania.

int dodaj( int a, int b ) // 1-sza wersja funkcji przecigzonej add
{

return a + b;

}

double dodaj( double a, double b ) // 2-ga wersja funkcji przecigzonej add
{

return a + b;

}
cout << endl << "Dodawanie int " << dodaj( 1, 1 );
cout << endl << "Dodawanie double :" << dodaj( 1.0, 1.0 );

Uwaga, z przecigzaniem funkcji wigze sie szereg subtelnych niuansow, ich omowienie wykracza
poza ramy tego wyktadu. Nalezy zachowac duzg ostroznosc przy definiowaniu tego typu funkcji.
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Suplement Il — funkcje inline czyli funkcje wstawiane

P Funkcje inline nie sa wywolywane w spos6b klasyczny — ich kod jest umieszezany

w miejscu wywolania i w rzeczywisto$ci nie sa one wywolywane.

inline int dodaj( int a,

{
}

return a + b;

int main()

{
int i =2, 3 =2, k;
k = dodaj( 1, j );

return EXIT SUCCESS;
}

int b )

int main()
{
inti=2, j=2, k;
{
K =1+ j;
}

return EXIT SUCCESS;
}

Wywotanie podprogramu, opracowanie i przekazanie parametrow oraz powrot z podprogramu
to dodatkowe instrukcje maszynowe — zatem instrukcje wpakowane do podprogramu wykonuja
sie odrobine wolniej. Jednak we wiekszosci typowych przypadkow opoznienie to jest nieznaczace.
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Suplement Il — funkcje inline czyli funkcje wstawiane, cd. ...

P Specyfikacja ze stowem kluczowym inline to tylko rekomendacja dla kompilatora
— niektérych funkcji nie mozna w pelni rozwinac i bedg one wywolywane
klasycznie (np. rekurencyjne).

P Funkcje wstawiane zastepuja w jezyku C++ makra, stosowanie powszechnie
wjezyku C.

» W poréwnaniu z makrami funkeje inline zapewniaja kontrole typow i wychwy-
tywanie bledow na etapie kompilacji

Mechanizm funkcji zadeklarowanych jako inline przeznaczony jest do optymalizacji
matych, prostych i czesto wykorzystywanych funkcji.

Kod wielokrotnie wykorzystujacy pewng funkcje inline:

P Moze dzialaé szybciej — brak narzutu czasowego zwigzanego z organizacja
wywolania funkcji i powrotu z podprogramu,

B Bedzie dtuzszy, zawiera bowiem rozwiniecia ciala funkeji w miejscu jej
kazdorazowego wywolania.
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Suplement lll — parametry domysine

» Bardzo czesto przy wywolywaniu funkeji, przy kolejnych wywolaniach pewne
parametry sie powtarzaja.

P Powtarzajace sie parametry aktualne wywolania mozna ustawié¢ jako parametry
domysilne, mozna je poming¢ przy wywolaniu. Jako parametr aktualny zostanie
przyjeta warto$¢ domyslna.

void outInt( int value, bool asDecimal = true )«

{
cout << (( asDecimal ) ? dec : hex ) << value;

}

Parametr domys$lny |

Przykladowe wywolania:

outInt( 22 ); // Parametr asDecimal otrzyma wartosc true

outInt( 22, true ); // Parametr asDecimal otrzyma wartosc jak w wywolaniu
outInt( 22, false ); // Parametr asDecimal otrzyma wartosc jak w wywolaniu
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Suplement lll — parametry domysine, cd. ...

enum outFormat
{

AS DEC,

AS OCT,

AS HEX

}i

void outInt( int value, int base = AS DEC 3

{

switch( base ) Parametr domylny |

{
case AS DEC : cout << dec;
break;
case AS OCT : cout << oct;
break;
case AS HEX : cout << hex;
break;
}
cout << value;

}

outInt( 10, AS OCT );
outInt( 10, AS HEX );
outInt( 10 ); // Parametr domyslny AS DEC
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Suplement IV — zmienna liczba parametrow

P Czasem trudno oszacowaé, ile bedzie parametréw wywolania. W jezykach C/C++
mozna definiowac funkcje ze zmiennq liczbqg parametroéw.

P Do obstugi zmiennej liczby parametréw stuza makra zdefiniowane w stdargs.h.
P Parametry zmienne oznaczane sa w nagléwku funkeji znakiem operatorem ...
P Scenariusz obstugi zmiennej liczby argumentow:

@ Definicja zmiennej identyfikujacej parametry zmienne (typ va_ list),

@ Ustalenie poczatku listy parametréw zmiennych (makro va_ start),

@ Pobranie kolejnych parametréw zmiennych (makro va_arg),

@ Zakonczenie pobierania parametrow zmiennych (makro va_end).

Uwaga, aby to zadziatato, funkcja musi posiadac¢ przynajmniej jeden parametr ,,zwykty”,
oraz funkcja musi ,,wiedziec” jakie sg typy kolejnych argumentow zmiennych.
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Suplement IV — zmienna liczba parametrow, cd. ...

void varArgsFunction( jakisTyp normalnyParametr, ... )
{

typParametru parametr; Typ zmiennej uzywanej do wydobywania
kolejnych parametréw funkcji.

va_list arglList; |«

va start( argList, normalnyParametr );
parametr = va arg( argList, typParametru );
parametr = va arg( arglList, typParametru );

Qa;eﬁd( argList );

Copyright © Roman Siminski




ols[SEVOUETLIETAELIENY Podprogramy, koncepcja, zastosowania

Suplement IV — zmienna liczba parametrow, cd. ...

void varArgsFunction([jakisTyp normalnyParametﬂ, cae )

{

typParametru parametr;

va list arglList;

Obowigzkowy ,normalny” parametr.

va start( argList, normalnyParametr );

parametr

parametr

va arg( argList, typParametru );

va arg( argList, typParametru );

Qa;eﬁd( argList );
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Suplement IV — zmienna liczba parametrow, cd. ...

void varArgsFunction( jakisTyp normalnyParametr, )

{

typParametru parametr;

va list arglList; Oznaczenie zmiennej czeSci parametrow

va start( argList, normalnyParametr );

parametr

parametr

va arg( argList, typParametru );

va arg( argList, typParametru );

Qa;eﬁd( argList );
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Suplement IV — zmienna liczba parametrow, cd. ...

void varArgsFunction( jakisTyp normalnyParametr, ... )
{
typParametru parametr; Zakotwiczenie zmiennej argList o pierwszy
parametr zmienny, czyli nastepny za ostatnim
va list arglList; normalnym parametrem.

[va_start( argList, normalnyParametr );}4

parametr = va arg( arglList, typParametru );
parametr = va arg( arglList, typParametru );

Qa;eﬁd( argList );

Copyright © Roman Siminski



ols[SEVOUETLIETAELIENY Podprogramy, koncepcja, zastosowania

Suplement IV — zmienna liczba parametrow, cd. ...

void varArgsFunction( jakisTyp normalnyParametr, ... )

{

typParametru parametr; . . )
Wydobycie kolejnego parametru o okreslonym

va list arglList; typie.

va start( argList, normalnyParametr );

parametr =[va_arg( argList, typParametru ﬂﬁ

parametr = va arg( arglList, typParametru );

Qa;eﬁd( argList );
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Suplement IV — zmienna liczba parametrow, cd. ...

void varArgsFunction( jakisTyp normalnyParametr, ... )

{

typParametru parametr; Wydobycie kolejnego parametru o okre§lonym

va list arglList; ypie.

va start( argList, normalnyParametr );

parametr = va arg( argList, typParametru );

parametr = va arg( arglList, typParametru )

Qa;eﬁd( argList );
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Suplement IV — zmienna liczba parametrow, cd. ...

void varArgsFunction( jakisTyp normalnyParametr, ... )

{

typParametru parametr;
va list arglList;

va start( argList, normalnyParametr );

parametr

parametr

Zakonczenie wydobywania parametrow.

va arg( argList, typParametru );

va arg( argList, typParametru );

[&a;eﬁd( arglList )«
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Suplement IV — zmienna liczba parametrow, konkretny przyktad

» Dodawanie dowolnej liczby danych typu int, wersja naiwna:

int addInts( int count, ... )
{

int total = 0;

va list arglList;

va start( arglList, count );

for( int i = 1; i <= count; i++ )

{
int value = va arg( argList, int );
total += value;

}

va end( arglList );

return total;

}

cout << endl << addInts( 2, 1, 2 );

cout << endl << addInts( 3, 4, -1, 6 );

cout << endl << addInts( 0 );

cout << endl << addInts( 5, 1, 2, 3, 4, 5 );
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Suplement IV — zmienna liczba parametrow, konkretny przyktad

» Dodawanie dowolnej liczby danych typu int, wersja poprawiona:

int addInts( int count, ... )
{

int total = 0;

va list arglList;

va start( argList, count );
for( ; count; count-- )
total += va arg( argList, int );
va end( argList );
return total;
}

cout << endl << addInts( 2, 1, 2 );

cout << endl << addInts( 3, 4, -1, 6 );

cout << endl << addInts( 0 );

cout << endl << addInts( 5, 1, 2, 3, 4, 5 );
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Suplement IV — zmienna liczba parametrow, printf jako przyktad

» Funkcja printf pochodzi z biblioteki stdio z jezyka C.

» Funkcja printf wyprowadzane sformatowane dane do stdout.

» Pierwszy parametr funkcji, bedacy tancuchem znakéw, moze zawierac
specyfikacje przeksztalcen, rozpoczynajace sie znakiem %.

» W miejsce specyfikatorow przeksztatcen wstawiane sg wartosci kolejnych
parametrow wywolania funkcji printf, sformatowane zgodnie z okreslonym
formatem.

Przeliczanie odleglosci wyrazonej w Kilometrach na mile
Podaj odleglosc w kilometrach: 508

To w milach: 312 ._.58888040

printf( "To w milach: %f",  wynik );:
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Suplement IV — zmienna liczba parametrow, printf jako przykiad

Sekwencje rozpoczynajace sie od znaku % stanowig specyfikacje przeksztalcen
kolejnych parametréw funkcji printf:

» %d — wyprowadza liczbe calkowitg dziesietna,
» %f — wyprowadza liczbe rzeczywista,
» %c — wyprowadza znak,

» %s — wyprowadza napis.

Mozliwos$ci formatowania funkcji sq bardzo szerokie, oméwione zostang
osobno.

o
6C

printf( " lat

’ﬁ})
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Suplement IV — zmienna liczba parametrow, printf jako przyktad

Podaj odleglosc w kilometrach: 568
To w milach: J312.58_

printf( "To w milach: %10.2f", wynik );

Przeiiczanie udieglusci wyrazonej w kilometrach na mile
Podaj odleglosc w kilometrach: 5HH

To w milach: 312.58

printf( "To w milach: %-10.2f", wynik ) ;

Przelic=zanie odleglosci wyrazonej w kilometrach na mile
Podaj odleglosc w kilometrach: 584

To w milach: 312.58_

printf( "To w milach: %0.2f", wynik );
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Suplement IV — zmienna liczba parametrow, printf jako przyktad

Prﬂellc“anlé odleglosci wyrazonej w kilometrach na mile
Podaj odleglosc w kilometrach: 588

588 km to w 312.5 mil_

-
) .
’

J

printf( " lkm to w(% } 1",(kilometry}[

%9
vl

» %f — wyprowadza liczbe rzeczywista,

» %g — wyprowadza liczbe rzeczywista w najkrotszej postaci.
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Czas zakonczyc¢ tego pdf-a!

Na chwile konczymy z funkcjami ..., ale od teraz beda
one juz na zawsze obecne w programowaniu!
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