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I n s t rukc je  s te ru j ące  wykonan iem prog ram uIn s t rukc je  s te ru j ące  wykonan iem prog ram u

#include <iostream>
#include <cmath>
using namespace std;

int main()
{
  float dystans, paliwo;

  cout << endl << "Obliczam ile Twoj pojazd spala paliwa na 100 km" << endl;

  cout << "Dystans: " << flush;
  cin >> dystans;
  dystans = fabs( dystans );
   
  cout << "Paliwo: " << flush;
  cin >> paliwo; 
  paliwo = fabs( paliwo );

  if( dystans == 0 )
    cout << "Nie dokonam obliczen dla zerowego dystansu" << endl;
  else
    cout << "Spalanie " << (paliwo*100)/dystans << "l na 100 km" << endl;
    
  cout << "Nacisnij Enter by zakonczyc program..." << endl;
  cin.ignore(); 
  cin.get();

  return EXIT_SUCCESS;
}
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if( W )
  I

if( W )
  I1
else
  I2

Instrukcja warunkowa Instrukcja alternatywy

II

WW
tak

nie I1I1

WW
taknie

I2I2

Instrukcja alternatywy i warunkowa należą go grupy instrukcji sterujących 
wykonaniem programu. Wspólnie są nazywane instrukcjami warunkowymi.

Instrukcja if oraz if-else obejmują swoim zasięgiem jedną instrukcję zapisaną 
dalej! Aby obejmowały większą liczbę instrukcji, trzeba je połączyć w instrukcję 

grupującą, tworzącą blok instrukcji.

Instrukcja if oraz if-else obejmują swoim zasięgiem jedną instrukcję zapisaną 
dalej! Aby obejmowały większą liczbę instrukcji, trzeba je połączyć w instrukcję 

grupującą, tworzącą blok instrukcji.
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if( delta < 0 )
  cout << "Brak pierwiastków rzeczywistych" << endl;

if( delta == 0  )
  cout << "Jeden pierwiastek rzeczywisty" << endl;

if( delta > 0  )
  cout << "Dwa pierwiastki rzeczywiste" << endl;

if( delta < 0 )
  cout << "Brak pierwiastków rzeczywistych" << endl;
else
  if( delta == 0  )
    cout << "Jeden pierwiastek rzeczywisty" << endl;
  else
    cout << "Dwa pierwiastki rzeczywiste" << endl;

Złożenie instrukcji alternatywy:

Kolejne instrukcje warunkowe:
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> większy >= większy lub równy
< mniejszy <= mniejszy lub równyOperatory relacji:
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. . .
double kwota;

cout << "Podaj przychod: ";
cin >> kwota;

if( kwota >= 0 )   
  if( kwota > 0 )
    cout << "Dochod";
else
  cout << "Strata";

cout << "Koniec”;
. . .

Podaj przyc
hod: -100

???



  

. . .
double kwota;

cout << "Podaj przychod: ";
cin >> kwota;

if( kwota >= 0 )   
  if( kwota > 0 )
    cout << "Dochod";
else
  cout << "Strata";

cout << "Koniec”;
. . .

Uwaga na zagnieżdżone instrukcje warunkowe!Uwaga na zagnieżdżone instrukcje warunkowe!
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 6Strona :

I n s t rukc je  s te ru j ące  wykonan iem prog ram uIn s t rukc je  s te ru j ące  wykonan iem prog ram u

Podaj przyc
hod: -100

Koniec

Dlaczego?
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„Ify” z pułapką, wydaje się, że jest tak 
jak sugerują wcięcia:

if( kwota >= 0 )   
  if( kwota > 0 )
    cout << "Dochod";
else
  cout << "Strata";

A jest tak:

if( kwota >= 0 )        
  if( kwota > 0 )
    cout << "Dochod";
  else
    cout << "Strata";

Trzeba użyć instrukcji złożonej lub „sparować” if z else:

if( kwota >= 0 )
{
  if( kwota > 0 )
    cout << "Dochod";
}
else
  cout << "Strata";

if( kwota >= 0 )
  if( kwota > 0 )
    cout << "Dochod";
  else
    cout << "Zero!"; 
else
  cout << "Strata";
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{
  cout << "Podaj promien kola: ";
  cin >> promien;
  cout << "Obwod: " << 2 * M_PI * promien;
}

Wykonanie instrukcji złożonej polega na sekwencyjnym wykonaniu jej 
instrukcji wewnętrznych. 

Instrukcja złożona tworzy z ciągu instrukcji jedną instrukcję, poprzez ujęcie 
tego ciągu w nawiasy { i }.

Instrukcje wewnętrzne zakończone są znakiem średnika.

Instrukcja złożona ma takie same uprawnienia jak pojedyncza instrukcjaInstrukcja złożona ma takie same uprawnienia jak pojedyncza instrukcja
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Program kontroluje wprowadzany dystans i nie pozwala na wprowadzenie liczby 
ujemnej i zera.
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cout << "Dystans : " << flush;
cin >> dystans;

dystans <= 0

cout << "Prosz ...ę

dystans <= 0
tak

nie

nie

tak



  

  cout << "Dystans: " << flush;
  cin >> dystans; 

  if( dystans <= 0 )
    cout << "Prosze wprowadzic prawidlowy dystans" << endl;
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cout << "Dystans : " << flush;
cin >> dystans;

dystans <= 0

cout << "Prosz ...ę

dystans <= 0
tak

nie

nie

tak



  

do
{
  cout << "Dystans: " << flush;
  cin >> dystans; 

  if( dystans <= 0 )
    cout << "Prosze wprowadzic prawidlowy dystans" << endl;

}
while( dystans <= 0 );  

Wczytywanie dystansu — jak to działa?Wczytywanie dystansu — jak to działa?
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cout << "Dystans : " << flush;
cin >> dystans;

dystans <= 0

cout << "Prosz ...ę

dystans <= 0
tak

nie

nie

tak
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do
  instrukcja
while( wyrażenie );

do
{
  ciąg_instrukcji
}
while( wyrażenie );

Gdy iterowana jest jedna instrukcja:

Gdy iterowany jest ciąg instrukcji:

wyrażeniewyrażenie

instrukcjainstrukcja

prawda fałsz

Instrukcja stanowiąca ciało iteracji do-while wykona się przynajmniej raz.

Wyrażenie występujące w nawiasach określa warunek kontynuacji, zatem 
iteracja kończy się gdy wartość wyrażenia będzie zerowa.

Instrukcja iteracyjna pozwala na wielokrotne wykonywanie pewnego fragmentu 
kodu. Iteracja pozwala na „wracanie się” w trakcie wykonania programu.
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Program losuje liczbę z przedziału od 1 do 100. Zadaniem użytkownika jest 
odgadnięcie wylosowanej liczby — wpisuje swoją propozycję a program stwierdza, 
czy proponowana liczba jest równa, mniejsza lub większa od wylosowanej.

Scenariusz działania programu:

Problem
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Świat użytkownika

Świat programisty

Odczytaj liczbę
 z klawiatury

Odczytaj liczbę
 z klawiatury

Porównaj wartości zmiennych
wczytana i wylosowana

 Wyświetl odpowiedni komunikat

Porównaj wartości zmiennych
wczytana i wylosowana

 Wyświetl odpowiedni komunikat

Wylosuj liczbę
z przedziału 1 .. 100

Wylosuj liczbę
z przedziału 1 .. 100

Zmienna
 wczytana
Zmienna

 wczytana

Zmienna
 wylosowana

Zmienna
 wylosowana

Spróbuję
50
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w wczytana < ylosowana

w != wczytana  ylosowana nie

tak

tak

nie

w wczytana > ylosowana

Stop

Start

Wylosuj liczbę i zapamiętaj

Wczytaj liczbę

Wyświetl, że za dużo

Wyświetl, że za mało Wyświetl, że za to ta liczba

tak n ie

Algorytm ogólnyAlgorytm ogólny
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#include <iostream>
using namespace std;

int main()
{
  int wczytana, wylosowana;

  return EXIT_SUCCESS;
}

W zmiennej wylosowana zapamiętamy liczbę
wylosowaną przez komputer. W zmiennej wczytana

zapamiętamy liczbę wprowadzoną przez gracza.

W zmiennej wylosowana zapamiętamy liczbę
wylosowaną przez komputer. W zmiennej wczytana

zapamiętamy liczbę wprowadzoną przez gracza.

Będziemy korzystać z strumieni wejścia-wyjściaBędziemy korzystać z strumieni wejścia-wyjścia
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#include <iostream>
using namespace std;

int main()
{
  int wczytana, wylosowana;

  cout << endl << "Witaj w grze w \"Za duzo, za malo\"";
  cout << endl << "Odgadnij wylosowana liczbe (1 .. 100)" << endl;

  return EXIT_SUCCESS;
}

Komunikat wstępnyKomunikat wstępny
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#include <iostream>
using namespace std;

int main()
{
  int wczytana, wylosowana;

  cout << endl << "Witaj w grze w \"Za duzo, za malo\"";
  cout << endl << "Odgadnij wylosowana liczbe (1 .. 100)" << endl;

  return EXIT_SUCCESS;
}

Znak ” jest ogranicznikiem napisu.
Aby uzyskać ten znak w napisie, trzeba 

użyć symbolu specjalnego \”

Znak ” jest ogranicznikiem napisu.
Aby uzyskać ten znak w napisie, trzeba 

użyć symbolu specjalnego \”
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#include <iostream>
using namespace std;

int main()
{
  int wczytana, wylosowana;

  cout << endl << "Witaj w grze w \"Za duzo, za malo\"";
  cout << endl << "Odgadnij wylosowana liczbe (1 .. 100)" << endl;

  srand( 1000 ); 

  wylosowana = rand() % 100 + 1;

  return EXIT_SUCCESS;
}

Losowanie zalążka generatora liczb 
pseudolosowych. Stały zalążek nie jest dobry... :-\

Losowanie zalążka generatora liczb 
pseudolosowych. Stały zalążek nie jest dobry... :-\

Losowanie liczby z wykorzystaniem generatora liczb
pseudolosowych.

Losowanie liczby z wykorzystaniem generatora liczb
pseudolosowych.
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srand( 1000 ); 

wylosowana = rand() % 100 + 1;  

Inicjalizacja generatora liczb pseudolosowych (stały zalążek o wartości 1000):

Tak zainicjowany generator będzie działał powtarzalnie. Należy uzmiennić zalążek, 
przykładowo uzależniając go od bieżącego czasu: 

srand( ( unsigned )time( NULL ) );

Funkcja rand() generuje liczby pseudolosowe z przedziału 0..RAND_MAX. My 
potrzebujemy liczby od 1..100. 

Ograniczamy zakres używając operatora modulo (reszta z dzielenia) oznaczonego
w C/C++ symbolem % oraz przesuwamy przedział o jeden w lewo dodając +1.

+1 +1

0 1 2 99 100 101. . . . . . . . .



  

#include <iostream>
#include <ctime>
using namespace std;

int main()
{
  int wczytana, wylosowana;

  cout << endl << "Witaj w grze w \"Za duzo, za malo\"";
  cout << endl << "Odgadnij wylosowana liczbe (1 .. 100)" << endl;

  srand( ( unsigned )time( NULL ) );

  wylosowana = rand() % 100 + 1;
  
  return EXIT_SUCCESS;
}

Pierwsza przymiarka — lepszy dobór zalążka generatora pseudolosowegoPierwsza przymiarka — lepszy dobór zalążka generatora pseudolosowego
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Losowanie zalążka generatora liczb pseudolosowych 
zależnego ob aktualnej wartości timera

Losowanie zalążka generatora liczb pseudolosowych 
zależnego ob aktualnej wartości timera

Plik nagłówkowy zwykle potrzebny dla fun. time Plik nagłówkowy zwykle potrzebny dla fun. time 



  

int main()
{
  . . . 
  wylosowana = rand() % 100 + 1;

  do
  {
    cout << '>' << flush;
    cin >> wczytana;

    if( wczytana > wylosowana )
      cout << "Za duzo" << endl;
    else
      if( wczytana < wylosowana )
        cout << "Za malo" << endl;
      else
        cout << "Brawo, to ta liczba!";
  }
  while( wylosowana != wczytana );
  
  cout << "Nacisnij Enter by zakonczyc";
  cin.ignore();
  cin.get(); 

  return EXIT_SUCCESS;
}

Główna iteracja programuGłówna iteracja programu
Podstawy programowaniaPodstawy programowania
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Wykonuj, dopóki liczba nie jest odgadniętaWykonuj, dopóki liczba nie jest odgadnięta



  

int main()
{
  . . . 
  wylosowana = rand() % 100 + 1;

  do
  {
    cout << '>' << flush;
    cin >> wczytana;

    if( wczytana > wylosowana )
      cout << "Za duzo" << endl;
    else
      if( wczytana < wylosowana )
        cout << "Za malo" << endl;
      else
        cout << "Brawo, to ta liczba!";
  }
  while( wylosowana != wczytana );
  
  cout << "Nacisnij Enter by zakonczyc";
  cin.ignore();
  cin.get(); 

  return EXIT_SUCCESS;
}

Kontakt z graczemKontakt z graczem
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Wczytaj liczbę typowaną przez graczaWczytaj liczbę typowaną przez gracza



  

int main()
{
  . . . 
  wylosowana = rand() % 100 + 1;

  do
  {
    cout << '>' << flush;
    cin >> wczytana;

    if( wczytana > wylosowana )
      cout << "Za duzo" << endl;
    else
      if( wczytana < wylosowana )
        cout << "Za malo" << endl;
      else
        cout << "Brawo, to ta liczba!";
  }
  while( wylosowana != wczytana );
  
  cout << "Nacisnij Enter by zakonczyc";
  cin.ignore();
  cin.get(); 

  return EXIT_SUCCESS;
}

Oceń wprowadzoną liczbęOceń wprowadzoną liczbę
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Porównaj wczytaną liczbę z wylosowaną 
i wyprowadź odpowiedni komunikat

Porównaj wczytaną liczbę z wylosowaną 
i wyprowadź odpowiedni komunikat



  

Od instrukcji warunkowej do instrukcji przełączającejOd instrukcji warunkowej do instrukcji przełączającej
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Problem

Napisać program realizujący funkcje prostego kalkulatora, pozwalającego na 
wykonywanie operacji dodawania, odejmowania, mnożenia i dzielenia na dwóch 
liczbach rzeczywistych. 

Program ma identyfikować sytuację wprowadzenia błędnego symbolu działania 
oraz próbę dzielenia przez zero. 



  

Scenariusz działania programuScenariusz działania programu
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Czego potrzebujemy?Czego potrzebujemy?
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Do realizacji programu potrzebne są:

dwie zmienne numeryczne (zapamiętane liczb-argumentów),

zmienna znakowa (zapamiętanie znaku oznaczającego działanie).

Niech zmienne nazywają się: a — liczba pierwsza, b — liczba druga, d — działanie.

aa 2

dd *

bb 2

Wynik: 4
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Zmienne a i b powinny być jednego z podstawowych typów rzeczywistych:

float — typ rzeczywisty pojedynczej prowizji,

double — typ rzeczywisty podwójnej precyzji,

long double — typ rzeczywisty podwójnej pracyzji o powiększonym zakresie.

double a, b; 

Typ double zapewni odpowiedni zakres dla obliczeń.

Zakres typu float to zwykle od 3.4×1038 do 3.4×10-38  (7 cyfr).

Zakres typu double to zwykle od 1.7×10-308 do 1.7×10308  (15 cyfr).

Zakres typu long double jest czasem identyczny jak typu double, niektóre 
implementacje języka C++ oferują zakres od 3.4×10-4932 do 1.1×104932  (18 cyfr).
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Zmienne d ma przechowywać informacje o wprowadzonym z klawiatury symbolu 
działania arytmetycznego. Symbol ten jest znakiem. Do reprezentacji znaków służy 
typ char (skrót od ang. character).

char — typ znakowy, obejmujący zbiór znaków używanych do komunikacji
 z człowiekiem (monitor, klawiatura, drukarka, tekstowe transfery sieciowe).

0 A a1 . . .. . .
. . . . . . . . .. . .

. . . . . . . . .. . .
. . .

. . .
. . . . . .

B b9 Z z
Cyfry Duże litery Małe litery

0Kod: 48 49 57 65 66 90 97 98 122 255
Znak:

Uporządkowanie liter 
i cyfr w kodzie ASCII

spójne obszary kodowe

Zakres wartości : konkretny wykaz znaków oraz sposób ich uporządkowania 
zależy od języka programowania i specyfiki platformy sprzętowej i systemowej. 

Jednak najpopularniejsze jest kodowanie znaków według ASCII (American 
Standard Code for Information Interchange) — wykorzystywane w C i C++.
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Literał — to dana, której wartość wynika z jej zapisu w kodzie programu.

Literały znakowe:

Literały łańcuchowe:

'a' '1' '%' '&' 'A' '.' '*' ' ' 'R'

"C++" "Liczba" "12345" "programowanie" "program"

Nie można mylić literałów znakowych z literałami łańcuchowymi!

'a' "a"

Literał znakowyLiterał znakowy Literał łańcuchowyLiterał łańcuchowy

To nie jest to samo!To nie jest to samo!
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#include <iostream>
using namespace std;

int main()
{
  double a, b;
  char   d;

  cout << endl << "Wykonuje dzialania na dwoch liczbach.";
  cout << endl << "Wczytam pierwsza liczbe, symbol dzialania";
  cout << endl << "potem druga liczbe i wyswietle wynik.";
  cout << endl << "Dozwolone dzialania: + - * /" << endl;

  cout << "Podaj pierwsza liczbe: "; 
  cin >> a;

  cout << "Podaj dzialanie [* - * /]: "; 
  cin >> d;

  cout << "Podaj druga liczbe: "; 
  cin >> b;

Deklaracje zmiennychDeklaracje zmiennych

1/21/2
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#include <iostream>
using namespace std;

int main()
{
  double a, b;
  char   d;

  cout << endl << "Wykonuje dzialania na dwoch liczbach.";
  cout << endl << "Wczytam pierwsza liczbe, symbol dzialania";
  cout << endl << "potem druga liczbe i wyswietle wynik.";
  cout << endl << "Dozwolone dzialania: + - * /" << endl;

  cout << "Podaj pierwsza liczbe: "; 
  cin >> a;

  cout << "Podaj dzialanie [* - * /]: "; 
  cin >> d;

  cout << "Podaj druga liczbe: "; 
  cin >> b;

Komunikat wstępnyKomunikat wstępny

1/21/2
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#include <iostream>
using namespace std;

int main()
{
  double a, b;
  char   d;

  cout << endl << "Wykonuje dzialania na dwoch liczbach.";
  cout << endl << "Wczytam pierwsza liczbe, symbol dzialania";
  cout << endl << "potem druga liczbe i wyswietle wynik.";
  cout << endl << "Dozwolone dzialania: + - * /" << endl;

  cout << "Podaj pierwsza liczbe: "; 
  cin >> a;

  cout << "Podaj dzialanie [* - * /]: "; 
  cin >> d;

  cout << "Podaj druga liczbe: "; 
  cin >> b;

Wczytanie danychWczytanie danych

1/21/2
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  if( d == '+' || d == '-' || d == '*' || d == '/' )
  {
    if( d == '+' )
      cout << "Wynik: " << a + b << endl; 
    if( d == '-' )
      cout << "Wynik: " << a - b << endl;
    if( d == '*' )
      cout << "Wynik: " << a * b << endl; 
    if( d == '/' )
      if( b != 0 )
        cout << "Wynik: " << a / b << endl;
      else
        cout << "Dzielenie przez zero nie jest dozwolone!" << endl;   
  }
  else
    cout << "Niedozwolone dzialanie!" << endl; 

  cout << endl << "Nacisnij Enter by zakonczyc..." << endl;
  cin.ignore();
  cin.get();

  return EXIT_SUCCESS;
} Czy wprowadzono prawidłowy symbol działania?Czy wprowadzono prawidłowy symbol działania?

2/22/2

Operatory logicze

|| or alternatywa 
&& and koniunkcja
! not negacja

Operatory logicze

|| or alternatywa 
&& and koniunkcja
! not negacja
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  if( d == '+' || d == '-' || d == '*' || d == '/' )
  {
    if( d == '+' )
      cout << "Wynik: " << a + b << endl; 
    if( d == '-' )
      cout << "Wynik: " << a - b << endl;
    if( d == '*' )
      cout << "Wynik: " << a * b << endl; 
    if( d == '/' )
      if( b != 0 )
        cout << "Wynik: " << a / b << endl;
      else
        cout << "Dzielenie przez zero nie jest dozwolone!" << endl;   
  }
  else
    cout << "Niedozwolone dzialanie!" << endl; 

  cout << endl << "Nacisnij Enter by zakonczyc..." << endl;
  cin.ignore();
  cin.get();

  return EXIT_SUCCESS;
}

Identyfikacja działania, wyznaczenie wartości
i wyprowadzenie do strumienia wyjściowego

Identyfikacja działania, wyznaczenie wartości
i wyprowadzenie do strumienia wyjściowego

2/22/2
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  if( d == '+' || d == '-' || d == '*' || d == '/' )
  {
    if( d == '+' )
      cout << "Wynik: " << a + b << endl; 
    if( d == '-' )
      cout << "Wynik: " << a - b << endl;
    if( d == '*' )
      cout << "Wynik: " << a * b << endl; 
    if( d == '/' )
      if( b != 0 )
        cout << "Wynik: " << a / b << endl;
      else
        cout << "Dzielenie przez zero nie jest dozwolone!" << endl;   
  }
  else
    cout << "Niedozwolone dzialanie!" << endl; 

  cout << endl << "Nacisnij Enter by zakonczyc..." << endl;
  cin.ignore();
  cin.get();

  return EXIT_SUCCESS;
} Dzielenie o ile dzielnik jest niezerowy Dzielenie o ile dzielnik jest niezerowy 

2/22/2



  

Kalkulator — wersja pierwsza, wadaKalkulator — wersja pierwsza, wada
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 38Strona :

I n s t rukc je  s te ru j ące  wykonan iem prog ram uIn s t rukc je  s te ru j ące  wykonan iem prog ram u

  
  if( d == '+' || d == '-' || d == '*' || d == '/' )
  {
    if( d == '+' )
      cout << "Wynik: " << a + b << endl; 
    if( d == '-' )
      cout << "Wynik: " << a - b << endl;
    if( d == '*' )
      cout << "Wynik: " << a * b << endl; 
    if( d == '/' )
      if( b != 0 )
        cout << "Wynik: " << a / b << endl;
      else
        cout << "Dzielenie przez zero nie jest dozwolone!" << endl;   
  }
  else
    cout << "Niedozwolone dzialanie!" << endl; 

  cout << endl << "Nacisnij Enter by zakonczyc..." << endl;
  cin.ignore();
  cin.get();

  return EXIT_SUCCESS;
} Dużo instrukcji if i if-elseDużo instrukcji if i if-else

2/22/2
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if( d == '+' )
  cout << "Wynik: " << a + b << endl; 
if( d == '-' )
  cout << "Wynik: " << a - b << endl;
if( d == '*' )
  cout << "Wynik: " << a * b << endl; 
if( d == '/' )
  if( b != 0 )
    cout << "Wynik: " << a / b << endl;
  else
    cout << "Dzielenie przez zero nie jest dozwolone!" << endl;

switch( d )
{
  case '+' : cout << "Wynik: " << a + b << endl; 
             break;  
  case '-' : cout << "Wynik: " << a - b << endl;
             break;        
  case '*' : cout << "Wynik: " << a * b << endl;
             break; 
  case '/' : if( b != 0 )
               cout << "Wynik: " << a / b << endl;
             else
               cout << "Dzielenie przez zero nie jest dozwolone!" << endl;   
             break;  
}
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 switch( d )
 {
   case '+' : cout << "Wynik: " << a + b << endl; 
              break;  

   case '-' : cout << "Wynik: " << a - b << endl;
              break;        

   case '*' : cout << "Wynik: " << a * b << endl;
              break; 

   case '/' : if( b != 0 )
                cout << "Wynik: " << a / b << endl;
              else
                cout << "Dzielenie przez zero nie jest dozwolone!" << endl;  
              break;  
 }

Wyznaczenie selektora — wartości wyrażenia zapisanego 
w nawiasach. W tym przypadku sprawdzenie zawartości zmiennej d 

Wyznaczenie selektora — wartości wyrażenia zapisanego 
w nawiasach. W tym przypadku sprawdzenie zawartości zmiennej d 
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 switch( d )
 {
   case '+' : cout << "Wynik: " << a + b << endl; 
              break;  

   case '-' : cout << "Wynik: " << a - b << endl;
              break;        

   case '*' : cout << "Wynik: " << a * b << endl;
              break; 

   case '/' : if( b != 0 )
                cout << "Wynik: " << a / b << endl;
              else
                cout << "Dzielenie przez zero nie jest dozwolone!" << endl;  
              break;  
 }

Poszukiwanie frazy case po którym występuje literał równy
wartości selektora instrukcji switch

Poszukiwanie frazy case po którym występuje literał równy
wartości selektora instrukcji switch
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 switch( d )
 {
   case '+' : cout << "Wynik: " << a + b << endl; 
              break;  

   case '-' : cout << "Wynik: " << a - b << endl;
              break;        

   case '*' : cout << "Wynik: " << a * b << endl;
              break; 

   case '/' : if( b != 0 )
                cout << "Wynik: " << a / b << endl;
              else
                cout << "Dzielenie przez zero nie jest dozwolone!" << endl;  
              break;  
 }

Załóżmy, że zmienna d == '—'. Instrukcja switch przełącza 
sterowanie do odpowiedniego przypadku. 

Załóżmy, że zmienna d == '—'. Instrukcja switch przełącza 
sterowanie do odpowiedniego przypadku. 
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 switch( d )
 {
   case '+' : cout << "Wynik: " << a + b << endl; 
              break;  

   case '-' : cout << "Wynik: " << a - b << endl;
              break;        

   case '*' : cout << "Wynik: " << a * b << endl;
              break; 

   case '/' : if( b != 0 )
                cout << "Wynik: " << a / b << endl;
              else
                cout << "Dzielenie przez zero nie jest dozwolone!" << endl;  
              break;  
 }

Wykonywane są kolejne instrukcje, począwszy od pierwszej 
instrukcji przypadku zgodnego z selektorem.

Wykonywane są kolejne instrukcje, począwszy od pierwszej 
instrukcji przypadku zgodnego z selektorem.
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 switch( d )
 {
   case '+' : cout << "Wynik: " << a + b << endl; 
              break;  

   case '-' : cout << "Wynik: " << a - b << endl;
              break;        

   case '*' : cout << "Wynik: " << a * b << endl;
              break; 

   case '/' : if( b != 0 )
                cout << "Wynik: " << a / b << endl;
              else
                cout << "Dzielenie przez zero nie jest dozwolone!" << endl;  
              break;  
 }

Instrukcja break powoduje wyjście (zakończenie wykonania)
z najbliższej instrukcji iteracyjnej lub instrukcji switch.

Instrukcja break powoduje wyjście (zakończenie wykonania)
z najbliższej instrukcji iteracyjnej lub instrukcji switch.
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cout << "Wynik: " << a + b << endl; cout << "Wynik: " << a + b << endl; 

cout << "Wynik: " << a - b << endl; cout << "Wynik: " << a - b << endl; 

cout << "Wynik: " << a * b << endl; cout << "Wynik: " << a * b << endl; 

d  ==  ?d  ==  ?

'+'
break;break;

break;break;

break;break;

if( b != 0 )
  cout << "Wynik: " << a / b << endl;
else
  cout << "Dzielenie przez zero ..." << endl;

if( b != 0 )
  cout << "Wynik: " << a / b << endl;
else
  cout << "Dzielenie przez zero ..." << endl;

break;break;

'—'

'*''/'
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cout << "Wynik: " << a + b << endl; cout << "Wynik: " << a + b << endl; 

cout << "Wynik: " << a - b << endl; cout << "Wynik: " << a - b << endl; 

cout << "Wynik: " << a * b << endl; cout << "Wynik: " << a * b << endl; 

d == '—'d == '—'

'+'
break;break;

break;break;

break;break;

if( b != 0 )
  cout << "Wynik: " << a / b << endl;
else
  cout << "Dzielenie przez zero ..." << endl;

if( b != 0 )
  cout << "Wynik: " << a / b << endl;
else
  cout << "Dzielenie przez zero ..." << endl;

break;break;

'—'

'*''/'
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cout << "Wynik: " << a + b << endl; cout << "Wynik: " << a + b << endl; 

cout << "Wynik: " << a - b << endl; cout << "Wynik: " << a - b << endl; 

cout << "Wynik: " << a * b << endl; cout << "Wynik: " << a * b << endl; 

d == '—'d == '—'

'+'

if( b != 0 )
  cout << "Wynik: " << a / b << endl;
else
  cout << "Dzielenie przez zero ..." << endl;

if( b != 0 )
  cout << "Wynik: " << a / b << endl;
else
  cout << "Dzielenie przez zero ..." << endl;

'—'

'*''/'
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 switch( d )
 {
   case '+' : cout << "Wynik: " << a + b << endl; 
              break;  

   case '-' : cout << "Wynik: " << a - b << endl;
              break;        

   case '*' : cout << "Wynik: " << a * b << endl;
              break; 

   case '/' : if( b != 0 )
                cout << "Wynik: " << a / b << endl;
              else
                cout << "Dzielenie przez zero nie jest dozwolone!" << endl;  
              break;  
 }

Załóżmy, że d == '$' — co się wtedy stanie?Załóżmy, że d == '$' — co się wtedy stanie?
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 switch( d )
 {
   case '+' : cout << "Wynik: " << a + b << endl; 
              break;  

   case '-' : cout << "Wynik: " << a - b << endl;
              break;        

   case '*' : cout << "Wynik: " << a * b << endl;
              break; 

   case '/' : if( b != 0 )
                cout << "Wynik: " << a / b << endl;
              else
                cout << "Dzielenie przez zero nie jest dozwolone!" << endl;  
              break;  
 }

Gdy selektor nie pasuje do żadnego przypadków, żadna instrukcja
nie zostanie wykonana.

Gdy selektor nie pasuje do żadnego przypadków, żadna instrukcja
nie zostanie wykonana.
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 switch( d )
 {
   case '+' : cout << "Wynik: " << a + b << endl; 
              break;  

   case '-' : cout << "Wynik: " << a - b << endl;
              break;        

   case '*' : cout << "Wynik: " << a * b << endl;
              break; 

   case '/' : if( b != 0 )
                cout << "Wynik: " << a / b << endl;
              else
                cout << "Dzielenie przez zero nie jest dozwolone!" << endl;  
              break;
   default  : . . . 
 }

Można wprowadzić przypadek domyślny — tutaj zostanie skierowane
sterowanie gdy selektor nie pasuje do żadnego z przypadków

Można wprowadzić przypadek domyślny — tutaj zostanie skierowane
sterowanie gdy selektor nie pasuje do żadnego z przypadków
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 switch( d )
 {
   case '+' : cout << "Wynik: " << a + b << endl; 
              break;  

   case '-' : cout << "Wynik: " << a - b << endl;
              break;        

   case '*' : cout << "Wynik: " << a * b << endl;
              break; 

   case '/' : if( b != 0 )
                cout << "Wynik: " << a / b << endl;
              else
                cout << "Dzielenie przez zero nie jest dozwolone!" << endl;  
              break;
   default  : cout << "Niedozwolone dzialanie!" << endl;
              break;  
 }

Przypadek domyślny można wykorzystać do identyfikacji
niedozwolonego symbolu działania

Przypadek domyślny można wykorzystać do identyfikacji
niedozwolonego symbolu działania
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if( d == '+' || d == '-' || d == '*' || d == '/' )
{
  if( d == '+' )
    cout << "Wynik: " << a + b << endl; 
  if( d == '-' )
    cout << "Wynik: " << a - b << endl;
  if( d == '*' )
    cout << "Wynik: " << a * b << endl; 
  if( d == '/' )
    if( b != 0 )
      cout << "Wynik: " << a / b << endl;
    else
      cout << "Dzielenie przez zero nie jest dozwolone!" << endl;   
}
else
  cout << "Niedozwolone dzialanie!" << endl; 

switch( d )
{
  case '+' : cout << "Wynik: " << a + b << endl; 
             break;  
  case '-' : cout << "Wynik: " << a - b << endl;
             break;        
  case '*' : cout << "Wynik: " << a * b << endl;
             break; 
  case '/' : if( b != 0 )
               cout << "Wynik: " << a / b << endl;
             else
               cout << "Dzielenie przez zero nie jest dozwolone!" << endl; 
  
             break;  
  default  : cout << "Niedozwolone dzialanie!" << endl;
             break;  
}
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Sekwencje specjalne pozwalają na reprezentowanie znaków nie posiadających 
swoich legalnych symboli graficznych. 

Dodatkowo sekwencje specjalne są wykorzystywane do zapisu pewnych 
„niewygodnych” stałych znakowych.

Sekwencja Wartość Znak Znaczenie 
\a 0x07 BEL Audible bell 
\b 0x08 BS Backspace 
\f 0x0C FF Formfeed 
\n 0x0A LF Newline (linefeed) 
\r 0x0D CR Carriage return 
\t 0x09 HT Tab (horizontal) 
\v 0x0B VT Vertical tab 
\\ 0x5c \ Backslash 
\' 0x27 ' Apostrof 
\" 0x22 " Cudzysłów 
\? 0x3F ? Pytajnik 
\O  any O = łańcuch ósemkowych cyfr 
\xH  any H = łańcuch szesnastkowych cyfr 
\XH  any H = łańcuch szesnastkowych cyfr 
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Połączenie instrukcji iteracyjnej do-while oraz instrukcji przełączającej switch 
pozwala na zorganizowanie prostego, ale użytecznego,  menu konsolowego.
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  . . .
  char klawisz;

  do
  {
    cout << "\nFormatowanie dysku, wybierz opcje:\n1. Format";
    cout << "\n2. Szybki format\n3. Diagnostyka\n4. Koniec\n>" << flush;

    cin >> klawisz;  
    switch( klawisz )
    {
       case '1' : cout << "\nWybrales formatowanie\n";
                  . . . tu formatowanie . . .
                  break;
       case '2' : cout << "\nWybrales szybki format\n";
                  . . . tu szybki format . . .
                  break;
       case '3' : cout << "\nWybrales diagnostyke\n";
                  . . . tu diagnostyka . . .

                  break;
    }
  }
  while( klawisz != '4' );
  . . . Główna iteracja sterująca wykonaniem programuGłówna iteracja sterująca wykonaniem programu



  

  . . .
  char klawisz;

  do
  {
    cout << "\nFormatowanie dysku, wybierz opcje:\n1. Format";
    cout << "\n2. Szybki format\n3. Diagnostyka\n4. Koniec\n>" << flush;

    cin >> klawisz;  
    switch( klawisz )
    {
       case '1' : cout << "\nWybrales formatowanie\n";
                  . . . tu formatowanie . . .
                  break;
       case '2' : cout << "\nWybrales szybki format\n";
                  . . . tu szybki format . . .
                  break;
       case '3' : cout << "\nWybrales diagnostyke\n";
                  . . . tu diagnostyka . . .

                  break;
    }
  }
  while( klawisz != '4' );
  . . .

Instrukcja przełączająca switch + iteracja do-while = proste menuInstrukcja przełączająca switch + iteracja do-while = proste menu
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Wczytanie znaku identyfikującego 
wybraną przez użytkownika opcję

Wczytanie znaku identyfikującego 
wybraną przez użytkownika opcję



  

  . . .
  char klawisz;

  do
  {
    cout << "\nFormatowanie dysku, wybierz opcje:\n1. Format";
    cout << "\n2. Szybki format\n3. Diagnostyka\n4. Koniec\n>" << flush;

    cin >> klawisz;  
    switch( klawisz )
    {
       case '1' : cout << "\nWybrales formatowanie\n";
                  . . . tu formatowanie . . .
                  break;
       case '2' : cout << "\nWybrales szybki format\n";
                  . . . tu szybki format . . .
                  break;
       case '3' : cout << "\nWybrales diagnostyke\n";
                  . . . tu diagnostyka . . .

                  break;
    }
  }
  while( klawisz != '4' );
  . . .

Instrukcja przełączająca switch + iteracja do-while = proste menuInstrukcja przełączająca switch + iteracja do-while = proste menu
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Identyfikacja znaku i wykonanie odpowiedniej akcjiIdentyfikacja znaku i wykonanie odpowiedniej akcji



  

Typ zmiennej selektora a typ wartości przypadku Typ zmiennej selektora a typ wartości przypadku 
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char klawisz;
. . .
cin >> klawisz;  
switch( klawisz )
{
   case '1' : cout << "\nWybrales formatowanie\n";
              break;
   case '2' : cout << "\nWybrales szybki format\n";
              break;
   case '3' : cout << "\nWybrales diagnostyke\n";
              break;
}

int klawisz;
. . .
cin >> klawisz;  
switch( klawisz )
{
   case 1 : cout << "\nWybrales formatowanie\n";
            break;
   case 2 : cout << "\nWybrales szybki format\n";
            break;
   case 3 : cout << "\nWybrales diagnostyke\n";
            break;
}
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while( wyra enie )ż
  instrukcja

while( wyra enie )ż
{
  ci g instrukcjią
}

Gdy iterowana jest jedna instrukcja:

Gdy iterowany jest ciąg instrukcji:
wyrażeniewyrażenie

instrukcjainstrukcja

prawda

fałsz

Instrukcja stanowiąca ciało iteracji while może nie wykonać się wcale.

Wyrażenie występujące w nawiasach określa warunek kontynuacji, zatem 
iteracja kończy się gdy wartość wyrażenia będzie zerowa.
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int licznik = 10;

while( licznik > 0 ) 
{
  cout << endl << licznik << "...";
  licznik = licznik - 1;
}
cout << endl << "Nowy Rok!!!" << endl;    

Iteracja wykona się 10 razy, liczbą wykonań steruje zmienna licznik.

W każdym przebiegu wartość zmiennej jest zmniejszana o 1.

licznik:

10-1

10 licznik:

10-1

9

W C/C++ zamiast licznik = licznik – 1 napiszemy  --licznik lub licznik--

Podobnie  zamiast licznik = licznik + 1 napiszemy  ++licznik lub licznik++
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Podatnik osiąga w każdym miesiącu roku podatkowego przychód. Należy napisać 
program wczytujący przychody z kolejnych 12-tu miesięcy i wyznaczający przychód 
sumaryczny oraz średni.

Problem

Scenariusz działania programu
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#include <iostream>
using namespace std;

int main()
{
  double przychod, suma = 0;
  int nr_miesiaca;
  
  cout << "\nObliczam sumaryczny i sredni przychod z 12 miesiecy\n";
  cout << "\nWprowadz przychody z kolejnych miesiecy\n";
  
  

Zmienne robocze programu
Wyzerowanie zmiennej suma jest bardzo ważne

Zmienne robocze programu
Wyzerowanie zmiennej suma jest bardzo ważne

Komunikat wstępnyKomunikat wstępny
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#include <iostream>
using namespace std;

int main()
{
  double przychod, suma = 0;
  int nr_miesiaca;
  
  cout << "\nObliczam sumaryczny i sredni przychod z 12 miesiecy\n";
  cout << "\nWprowadz przychody z kolejnych miesiecy\n";
  
  nr_miesiaca = 1;

     cout << nr_miesiaca << ": ";
     cin >> przychod;
   

Wczytanie przychodu styczniowegoWczytanie przychodu styczniowego
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#include <iostream>
using namespace std;

int main()
{
  double przychod, suma = 0;
  int nr_miesiaca;
  
  cout << "\nObliczam sumaryczny i sredni przychod z 12 miesiecy\n";
  cout << "\nWprowadz przychody z kolejnych miesiecy\n";
  
  nr_miesiaca = 1;

     cout << nr_miesiaca << ": ";
     cin >> przychod;
     suma = suma + przychod;   

Dodanie wczytanego przychodu do sumy przychodówDodanie wczytanego przychodu do sumy przychodów
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#include <iostream>
using namespace std;

int main()
{
  double przychod, suma = 0;
  int nr_miesiaca;
  
  cout << "\nObliczam sumaryczny i sredni przychod z 12 miesiecy\n";
  cout << "\nWprowadz przychody z kolejnych miesiecy\n";
  
  nr_miesiaca = 1;
  while( nr_miesiaca <= 12 )
  {
     cout << nr_miesiaca << ": ";
     cin >> przychod;
     suma = suma + przychod;   
     ++nr_miesiaca;
  }       

Iteracja wczytująca przychody z 12-tu miesięcyIteracja wczytująca przychody z 12-tu miesięcy
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#include <iostream>
using namespace std;

int main()
{
  double przychod, suma = 0;
  int nr_miesiaca;
  
  cout << "\nObliczam sumaryczny i sredni przychod z 12 miesiecy\n";
  cout << "\nWprowadz przychody z kolejnych miesiecy\n";
  
  nr_miesiaca = 1;
  while( nr_miesiaca <= 12 )
  {
     cout << nr_miesiaca << ": ";
     cin >> przychod;
     suma = suma + przychod;   
     ++nr_miesiaca;
  }       
  cout << "\nSuma przychodow: " << suma;
  cout << "\nSredni przychod: " << suma / 12;
 
  cout << endl << "Nacisnij Enter by zakonczyc..." << endl;
  cin.ignore(); cin.get();
  return EXIT_SUCCESS;
}

Wyświetlenie wynikówWyświetlenie wyników
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nr_miesiaca = 1;
while( nr_miesiaca <= 12 )
{
  cout << nr_miesiaca << ": ";
  cin >> przychod;
     
  suma = suma + przychod;   
     
  ++nr_miesiaca;
}       

nr_miesiaca = 1;
do
{
   cout << nr_miesiaca << ": ";
   cin >> przychod;
     
   suma = suma + przychod;   

   ++nr_miesiaca;
} 
while( nr_miesiaca <= 12 );

Zazwyczaj można iteracje while i do-while stosować zamiennie. W tym przypadku 
nie można jednoznacznie wskazać, która wersja jest lepsza.

W C/C++ zamiast   suma = suma + przychod   napiszemy    suma += przychod
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#include <iostream>
using namespace std;

int main()
{
  double przychod, suma = 0;
  int nr_miesiaca;
  
  cout << "\nObliczam sumaryczny i sredni przychod z 12 miesiecy\n";
  cout << "\nWprowadz przychody z kolejnych miesiecy\n";
  
  nr_miesiaca = 1;
  while( nr_miesiaca <= 12 )
  {
     cout << nr_miesiaca << ": ";
     cin >> przychod;
     suma += przychod;   
     ++nr_miesiaca;
  }       
  cout << "\nSuma przychodow: " << suma;
  cout << "\nSredni przychod: " << suma / 12 ;
 
  cout << endl << "Nacisnij Enter by zakonczyc..." << endl;
  cin.ignore(); cin.get();
  return EXIT_SUCCESS;
}

Te wartości warto sparametryzowaćTe wartości warto sparametryzować
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#include <iostream>
using namespace std;

int main()
{
  const int LB_MIESIECY = 12;
  double przychod, suma = 0;
  int nr_miesiaca;
  
  cout << "\nObliczam sumaryczny i sredni przychod z 12 miesiecy\n";
  cout << "\nWprowadz przychody z kolejnych miesiecy\n";
  
  nr_miesiaca = 1;
  while( nr_miesiaca <= LB_MIESIECY )
  {
     cout << nr_miesiaca << ": ";
     cin >> przychod;
     suma += przychod;   
     ++nr_miesiaca;
  }       
  cout << "\nSuma przychodow: " << suma;
  cout << "\nSredni przychod: " << suma / LB_MIESIECY ;
  cout << endl << "Nacisnij Enter by zakonczyc..." << endl;
  cin.ignore(); cin.get();
  return EXIT_SUCCESS;
}

Odwołanie do wartości stałejOdwołanie do wartości stałej

Deklaracja dziwnej zmiennej — zmiennej 
o wartości ustalonej. Możemy powiedzieć,

 że LB_MIESIECY to stała.

Zwyczajowo nazwy stałych zapisuje się
inaczej, aby odróżnić je od zwykłych zmiennych.

Deklaracja dziwnej zmiennej — zmiennej 
o wartości ustalonej. Możemy powiedzieć,

 że LB_MIESIECY to stała.

Zwyczajowo nazwy stałych zapisuje się
inaczej, aby odróżnić je od zwykłych zmiennych.
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#include <iostream>
using namespace std;

int main()
{
  const int LB_MIESIECY = 12;
  double przychod, suma = 0;
  int nr_miesiaca;
  
  cout << "\Oblicza sumaryczny i sredni przychod z 12 miesiecy\n";
  cout << "\nWprowadz przychody z kolejnych miesiecy\n";
  
  nr_miesiaca = 1;
  while( nr_miesiaca <= LB_MIESIECY )
  {
     cout << nr_miesiaca << ": ";
     cin >> przychod;
     suma += przychod;   
     ++nr_miesiaca;
  }       
  cout << "\nSuma przychodow: " << suma;
  cout << "\nSredni przychod: " << suma / LB_MIESIECY ;
  cout << endl << "Nacisnij Enter by zakonczyc..." << endl;
  cin.ignore(); cin.get();
  return EXIT_SUCCESS;
}

Program wyznaczający sumaryczny i średni przychód jest szczególnym przypadkiem
programu typu:

Napisz program wyznaczający sumę i wartość średnią ciągu N liczb, gdzie N jest
pewną stałą o określonej wartości, np. 20.

Program wyznaczający sumaryczny i średni przychód jest szczególnym przypadkiem
programu typu:

Napisz program wyznaczający sumę i wartość średnią ciągu N liczb, gdzie N jest
pewną stałą o określonej wartości, np. 20.
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#include <iostream>
using namespace std;

int main()
{
  const int N = 20;
  double liczba, suma = 0;
  int licznik;
  
  cout << "\nObliczam sume i srednia ciagu N=20 liczb\n";
  cout << "\nWprowadz kolejne liczby\n";
  
  licznik = 1;
  while( licznik <= N )
  {
     cout << licznik << ": ";
     cin >> liczba;
     suma += liczba;   
     ++licznik;
  }       
  cout << "\nSuma liczb: " << suma;
  cout << "\nSrednia : " << suma / N;
  cout << endl << "Nacisnij Enter by zakonczyc..." << endl;
  cin.ignore(); cin.get();
  return EXIT_SUCCESS;
}
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#include <iostream>
using namespace std;

int main()
{
  const int N = 20;
  double liczba, suma = 0;
  int licznik;
  
  cout << "\Oblicza sume i srednia ciagu N=20 liczb\n";
  cout << "\nWprowadz kolejne liczby\n";
  
  licznik = 1;
  while( licznik <= N )
  {
     cout << licznik << ": ";
     cin >> liczba;
     suma += liczba;   
     ++licznik;
  }       
  cout << "\nSuma liczb: " << suma;
  cout << "\nSrednia : " << suma / N;
  cout << endl << "Nacisnij Enter by zakonczyc..." << endl;
  cin.ignore(); cin.get();
  return EXIT_SUCCESS;
}

A gdyby zadanie zostało zmienione:

Napisz program wyznaczający sumę i wartość średnią ciągu N liczb, gdzie N jest
nie jest z góry znane i program powinien je wczytać tuż po uruchomieniu.

A gdyby zadanie zostało zmienione:

Napisz program wyznaczający sumę i wartość średnią ciągu N liczb, gdzie N jest
nie jest z góry znane i program powinien je wczytać tuż po uruchomieniu.
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#include <iostream>
using namespace std;

int main()
{
  const int n = 20;
  double liczba, suma = 0;
  int licznik;
  
  cout << "\nObliczam sume i srednia ciagu N liczb\n";
  cout << "\nWprowadz ile ma byc liczb: ";
  cin >> n;
  
  licznik = 1;
  while( licznik <= n )
  {
     cout << licznik << ": ";
     cin >> liczba;
     suma += liczba;   
     ++licznik;
  }       
  cout << "\nSuma liczb: " << suma;
  cout << "\nSrednia : " << suma / n;
  . . .;
}

Wprowadzenie liczby liczb ;)Wprowadzenie liczby liczb ;)

N powinno być teraz zwykłą zmienną
Można też zmienić jej nazwę, żeby nie

sugerowała, że jest stałą.

N powinno być teraz zwykłą zmienną
Można też zmienić jej nazwę, żeby nie

sugerowała, że jest stałą.

To jest niebezpieczne miejsce!
Dlaczego?

To jest niebezpieczne miejsce!
Dlaczego?
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#include <iostream>
using namespace std;

int main()
{
  int n;
  double liczba, suma = 0;
  int licznik;
  
  cout << "\nObliczam sume i srednia ciagu N liczb\n";
  cout << "\nWprowadz ile ma byc liczb: ";
  cin >> n;
  
  licznik = 1;
  while( licznik <= n )
  {
     cout << licznik << ": ";
     cin >> liczba;
     suma += liczba;   
     ++licznik;
  }       
  cout << "\nSuma liczb: " << suma;
  cout << "\nSrednia : " << suma / n;
  . . .;
}

Użytkownik powinien wprowadzić wartość dodatnią.
Ale może np. wprowadzić 0.

Użytkownik powinien wprowadzić wartość dodatnią.
Ale może np. wprowadzić 0.
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#include <iostream>
using namespace std;

int main()
{
  int n;
  double liczba, suma = 0;
  int licznik;
  
  cout << "\nObliczam sume i srednia ciagu N liczb\n";
  cout << "\nWprowadz ile ma byc liczb: ";
  cin >> n;
  
  licznik = 1;
  while( licznik <= n )
  {
     cout << licznik << ": ";
     cin >> liczba;
     suma += liczba;   
     ++licznik;
  }       
  cout << "\nSuma liczb: " << suma;
  cout << "\nSrednia : " << suma / n;
  . . .;
}

Iteracja while się obroni — ma wartownika, kontrolującego
warunek przed pierwszym wejściem do wnętrza.

Iteracja while się obroni — ma wartownika, kontrolującego
warunek przed pierwszym wejściem do wnętrza.
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#include <iostream>
using namespace std;

int main()
{
  int n;
  double liczba, suma = 0;
  int licznik;
  
  cout << "\nObliczam sume i srednia ciagu N liczb\n";
  cout << "\nWprowadz ile ma byc liczb: ";
  cin >> n;
  
  licznik = 1;
  while( licznik <= n )
  {
     cout << licznik << ": ";
     cin >> liczba;
     suma += liczba;   
     ++licznik;
  }       
  cout << "\nSuma liczb: " << suma;
  cout << "\nSrednia : " << suma / n;
  . . .;
}

 W przypadku n==0 wystąpi błąd dzielenia przez zero W przypadku n==0 wystąpi błąd dzielenia przez zero
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int main()
{
  . . .
  cout << "\nObliczam sume i srednia ciagu N liczb\n";
  cout << "\nWprowadz ile ma byc liczb: ";
  cin >> n;
  
  licznik = 1;
  while( licznik <= n )
  {
     cout << licznik << ": ";
     cin >> liczba;
     suma += liczba;   
     ++licznik;
  }    
  if( n > 0 )
  {   
    cout << "\nSuma liczb: " << suma;
    cout << "\nSrednia : " << suma / n;
  }
  else
    cout << "\nNie wprowadzono danych";
  . . .
}

Instrukcja alternatywy chroni przed dzielenie przez zeroInstrukcja alternatywy chroni przed dzielenie przez zero
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int main()
{
  . . .
  cout << "\nObliczam sume i srednia ciagu N liczb\n";
  cout << "\nWprowadz ile ma byc liczb: ";
  cin >> n;
  
  licznik = 1;
  while( licznik <= n )
  {
     cout << licznik << ": ";
     cin >> liczba;
     suma += liczba;   
     ++licznik;
  }    
  if( n > 0 )
  {   
    cout << "\nSuma liczb: " << suma;
    cout << "\nSrednia : " << suma / n;
  }
  else
    cout << "\nNie wprowadzono danych";
  . . .
}

Program broni się przed błędem, będącym wynikiem wprowadzenia
nieprawidłowych danych

A może nie pozwolimy na wprowadzenie nieprawidłowych danych? 

Program broni się przed błędem, będącym wynikiem wprowadzenia
nieprawidłowych danych

A może nie pozwolimy na wprowadzenie nieprawidłowych danych? 
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int main()
{
  . . .
  cout << "\nObliczam sume i srednia ciagu N liczb\n";
  
  do
  {
    cout << "\nWprowadz ile ma byc liczb: ";
    cin >> n;
    if( n <= 0 )
      cout << "\nWartosc powinna byc dodatnia!";
  }
  while( n <= 0 );

  licznik = 1;
  while( licznik <= n )
  {
     cout << licznik << ": ";
     cin >> liczba;
     suma += liczba;   
     ++licznik;
  }    
  cout << "\nSuma liczb: " << suma;
  cout << "\nSrednia : " << suma / n;
  . . .
}

Ta iteracja nie pozwala na wprowadzenie
nieprawidłowej wartości dla n. 

Nie trzeba zatem
bronić się przed dzieleniem przez 0.

Ta iteracja nie pozwala na wprowadzenie
nieprawidłowej wartości dla n. 

Nie trzeba zatem
bronić się przed dzieleniem przez 0.
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Rowerzysta notuje dystanse przejechane w ramach każdego wypadu rowerowego. 
Po zakończeniu sezonu chce obliczyć, ile w sumie przejechał kilometrów oraz jaki 
był średni dystans wycieczki. Liczba dystansów nie jest z góry ustalona, 
wprowadzenie zerowej wartości dystansu kończy wczytywanie danych.

Problem

Scenariusz działania programu
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Analiza

Program powinien wczytać kolejno przejechane dystanse, na bieżąco dodawać 
je do dystansu sumarycznego. 

Ponieważ nie wiadomo ile będzie dystansów, zakładamy, że wprowadzenie 
dystansu zerowego jest sygnałem końca wprowadzania danych. 

Po tym następuje wyświetlenie dystansu sumarycznego i średniego.

Wprowadzenie wartości ujemnej zostanie potraktowane jako mimowolny błąd, 
znak zostanie zignorowany.
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#include <iostream>
#include <cmath>
using namespace std;

int main()
{
  double dystans, suma;
  int licznik;
  
  cout << "\nObliczam sumaryczny i sredni dystans.";
  cout << "\nPodaj kolejne dystanse, 0 konczy wprowadzanie:\n";
  
  suma = 0;
  licznik = 0;

  cout << '>';
  cin >> dystans;
  while( dystans != 0 )
  {
    suma += fabs( dystans );
    ++licznik;
     
    cout << '>';
    cin >> dystans;
  } 1/21/2

Wyzerowanie zmiennej suma i licznika — to jest bardzo ważne!Wyzerowanie zmiennej suma i licznika — to jest bardzo ważne!
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#include <iostream>
#include <cmath>
using namespace std;

int main()
{
  double dystans, suma;
  int licznik;
  
  cout << "\nObliczam sumaryczny i sredni dystans.";
  cout << "\nPodaj kolejne dystanse, 0 konczy wprowadzanie:\n";
  
  suma = 0;
  licznik = 0;

  cout << '>';
  cin >> dystans;
  while( dystans != 0 )
  {
    suma += fabs( dystans );
    ++licznik;
     
    cout << '>';
    cin >> dystans;
  } 1/21/2

Wczytanie pierwszego dystansuWczytanie pierwszego dystansu
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#include <iostream>
#include <cmath>
using namespace std;

int main()
{
  double dystans, suma;
  int licznik;
  
  cout << "\nObliczam sumaryczny i sredni dystans.";
  cout << "\nPodaj kolejne dystanse, 0 konczy wprowadzanie:\n";
  
  suma = 0;
  licznik = 0;

  cout << '>';
  cin >> dystans;
  while( dystans != 0 )
  {
    suma += fabs( dystans );
    ++licznik;
     
    cout << '>';
    cin >> dystans;
  } 1/21/2

Sprawdzenie czy czasem nie jest zerowySprawdzenie czy czasem nie jest zerowy
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#include <iostream>
#include <cmath>
using namespace std;

int main()
{
  double dystans, suma;
  int licznik;
  
  cout << "\nObliczam sumaryczny i sredni dystans.";
  cout << "\nPodaj kolejne dystanse, 0 konczy wprowadzanie:\n";
  
  suma = 0;
  licznik = 0;

  cout << '>';
  cin >> dystans;
  while( dystans != 0 )
  {
    suma += fabs( dystans );
    ++licznik;
     
    cout << '>';
    cin >> dystans;
  } 1/21/2

Dodanie dystansu do sumy, zwiększenie licznika dystansówDodanie dystansu do sumy, zwiększenie licznika dystansów
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#include <iostream>
#include <cmath>
using namespace std;

int main()
{
  double dystans, suma;
  int licznik;
  
  cout << "\nObliczam sumaryczny i sredni dystans.";
  cout << "\nPodaj kolejne dystanse, 0 konczy wprowadzanie:\n";
  
  suma = 0;
  licznik = 0;

  cout << '>';
  cin >> dystans;
  while( dystans != 0 )
  {
    suma += fabs( dystans );
    ++licznik;
     
    cout << '>';
    cin >> dystans;
  } 1/21/2

Wczytanie kolejnego dystansuWczytanie kolejnego dystansu
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  if( licznik > 0  )
  {
    cout << "\nSuma: " << suma;
    cout << "\nSrednia: " << suma / licznik;
  }
  else
    cout << "\nNie mam nic do roboty";
  
  cout << endl << "Nacisnij Enter by zakonczyc..." << endl;
  cin.ignore();
  cin.get();

  return EXIT_SUCCESS;
} 2/22/2

Wyprowadzenie wyników gdy wczytano przynajmniej jeden dystansWyprowadzenie wyników gdy wczytano przynajmniej jeden dystans
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#include <iostream>
#include <cmath>
using namespace std;

int main()
{
  double dystans, suma;
  int licznik;
  
  cout << "\nObliczam sumaryczny i sredni dystans.";
  cout << "\nPodaj kolejne dystanse, 0 konczy wprowadzanie:\n";
  
  suma = 0;
  licznik = 0;

  do
  {
    cout << '>';
    cin >> dystans;
    if( dystans != 0 )
    {
      suma += fabs( dystans );
      ++licznik;
    } 
  } 
  while( dystans != 0 ); 

1/21/2

Kontrola wprowadzonego dystansuKontrola wprowadzonego dystansu
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  if( licznik > 0  )
  {
    cout << "\nSuma: " << suma;
    cout << "\nSrednia: " << suma / licznik;
  }
  else
    cout << "\nNie mam nic do roboty";
  
  cout << endl << "Nacisnij Enter by zakonczyc..." << endl;
  cin.ignore();
  cin.get();

  return EXIT_SUCCESS;
} 2/22/2

Wyprowadzenie wyników gdy wczytano przynajmniej jeden dystansWyprowadzenie wyników gdy wczytano przynajmniej jeden dystans
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  suma = 0;
  licznik = 0;

  cout << '>';
  cin >> dystans;
  while( dystans != 0 )
  {
    suma += fabs( dystans );
    ++licznik;
     
    cout << '>';
    cin >> dystans;
  }

  suma = 0;
  licznik = 0;

  do
  {
    cout << '>';
    cin >> dystans;
    if( dystans != 0 )
    {
      suma += fabs( dystans );
      ++licznik;
    } 
  } 
  while( dystans != 0 );
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 int licznik;

 while(              ) 
 {
                                     ;

             ;
 }

licznik = 10;

licznik > 0

--licznik

cout << endl << licznik << "..."

Inicjalizacja

Warunek

Ciało iteracji

Modyfikacja

 int licznik;

 for(               ;              ;           ) licznik = 10 licznik > 0 --licznik

cout << endl << licznik << "..."

Inicjalizacja Warunek Modyfikacja

Ciało iteracji

Iteracja for w C/C++ nie ma nic wspólnego — poza nazwą — z instrukcją 
iteracyjną for z języka Pascal.

Instrukcja for w języku C/C++  stanowi uogólnienie schematu iteracji while.
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inicjalizacja;
while( warunek )
{
  ciało_iteracji
  modyfikacja
}

for( inicjalizacja; warunek; modyfikacja )
  ciało_iteracji
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Problem 1

Napisać program wyznaczający średni, dobowy kurs waluty EURO na podstawie 
kursów notowanych na początku każdej godziny. 

Pod koniec doby analityk wprowadza zanotowane liczby — program ma 
wyznaczyć na tej podstawie średnie kurs dobowy. 

Liczba wprowadzanych kursów jest znana, jest to zawsze 24.



  

Iteracyjne przetwarzanie ciągów liczbowychIteracyjne przetwarzanie ciągów liczbowych
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 94Strona :

I n s t rukc je  s te ru j ące  wykonan iem prog ram uIn s t rukc je  s te ru j ące  wykonan iem prog ram u

#include <cstdlib>
#include <iostream>
using namespace std;

int main()
{
  const int MAKS_LB_KURSOW = 24;
  float kurs, sumaryczny;
  int lb_kursow;

  cout << "\nWyznaczam dobowy sredn kurs waluty EURO.";
  cout << "\nWprowadz 24 dodatnie liczby -- kursy EURO";
  cout << "\nzanotowane na poczatku kazdej godziny.\n" << flush;

  for( sumaryczny = 0, lb_kursow = 1 ; lb_kursow <= MAKS_LB_KURSOW; lb_kursow++ )
  {
    cout << '>';
    cin >> kurs;

    sumaryczny += kurs;
  }//for

  cout << "\nKurs sredni: " << sumaryczny / MAX_LB_KURSOW;

  cout << endl << "Nacisnij Enter by zakonczyc...";
  cin.ignore(); cin.get();
  return EXIT_SUCCESS;
}

W części inicjalizacyjnej może być więcej instrukcji rozdzielonych
przecinkami. 

W części inicjalizacyjnej może być więcej instrukcji rozdzielonych
przecinkami. 
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Problem 2

Uzupełnić poprzedni program o wyznaczanie kursu minimalnego i maksy-
malnego.

Wyznaczanie minimum i maksimum

Jeżeli wczytany kurs jest mniejszy od minimalnego, to niech on się stanie 
minimalnym. Jeżeli wczytany kurs jest większy od maksymalnego, to niech on 
się stanie maksymalnym. Jak ustawić wartość startową minimum i maksimum?

3.50 3.52 3.48 • • • 3.47

1 2 3 24

3.50 3.52 3.48 • • • 3.47

1 2 3 24

Ten element potraktujemy 
osobno — on będzie startową 
wartością minimalną, 
maksymalną i sumaryczną.

Ten element potraktujemy 
osobno — on będzie startową 
wartością minimalną, 
maksymalną i sumaryczną.

Te elementy obsłużymy 
iteracyjnie, począwszy od 
drugiego, porównując z 
minimum, maksimum i 
doliczając do sumy. 

Te elementy obsłużymy 
iteracyjnie, począwszy od 
drugiego, porównując z 
minimum, maksimum i 
doliczając do sumy. 



  

Iteracyjne przetwarzanie ciągów liczbowychIteracyjne przetwarzanie ciągów liczbowych
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 96Strona :

I n s t rukc je  s te ru j ące  wykonan iem prog ram uIn s t rukc je  s te ru j ące  wykonan iem prog ram u

#include <cstdlib>
#include <iostream>
using namespace std;

const int MAKS_LB_KURSOW = 24;

int main()
{
  float kurs, sumaryczny, maksymalny, minimalny;
  int lb_kursow;

  cout << "\nWyznaczam dobowy, sredni, minimalny i maksymalny kurs";
  cout << "\nwaluty EURO. Wprowadz 24 dodatnie liczby -- kursy EURO";
  cout << "\nzanotowane na poczatku kazdej godziny.\n>" << flush;
  
  // Wczytanie pierwszego kursu
  cin >> kurs;

  // Pierwszy i jedyny na razie kurs to kurs minimalny, maksymalny i sumaryczny
  maksymalny = minimalny = sumaryczny = kurs;
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  for( lb_kursow = 2; lb_kursow <= MAKS_LB_KURSOW; lb_kursow++ )
  {

    cout << '>' << flush;
    cin >> kurs;

    sumaryczny = sumaryczny + kurs;

    if( kurs < minimalny )
        minimalny = kurs;

    if( kurs > maksymalny )
        maksymalny = kurs;
  }

  cout << "\nKurs najwyzszy: " << maksymalny;
  cout << "\nKurs najnizszy: " << minimalny;
  cout << "\nKurs sredni: " << sumaryczny / MAKS_LB_KURSOW;

  cout << endl << "Nacisnij Enter by zakonczyc...";
  cin.ignore();
  cin.get();

  return EXIT_SUCCESS;
}
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