

Podstawy Podstawy
programowaniaprogramowania

Instrukcje sterujące wykonaniem
programu

Część trzecia

Niniejsze opracowanie zawiera skrót treści wykładu, lektura tych materiałów nie zastąpi uważnego w nim uczestnictwa.
Opracowanie to jest chronione prawem autorskim. Wykorzystywanie jakiegokolwiek fragmentu w celach innych niż nauka własna jest nielegalne.

Dystrybuowanie tego opracowania lub jakiejkolwiek jego części oraz wykorzystywanie zarobkowe bez zgody autora jest zabronione.

Roman Simiński

roman.siminski@us.edu.pl
www.programowanie.siminskionline.pl

Autor

Kontakt

Średnie spalanie — krótkie przypomnienieŚrednie spalanie — krótkie przypomnienie
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 2Strona :

I n s t rukc je s te ru j ące wykonan iem prog ram uIn s t rukc je s te ru j ące wykonan iem prog ram u

#include <iostream>
#include <cmath>
using namespace std;

int main()
{
 float dystans, paliwo;

 cout << endl << "Obliczam ile Twoj pojazd spala paliwa na 100 km" << endl;

 cout << "Dystans: " << flush;
 cin >> dystans;
 dystans = fabs(dystans);

 cout << "Paliwo: " << flush;
 cin >> paliwo;
 paliwo = fabs(paliwo);

 if(dystans == 0)
 cout << "Nie dokonam obliczen dla zerowego dystansu" << endl;
 else
 cout << "Spalanie " << (paliwo*100)/dystans << "l na 100 km" << endl;

 cout << "Nacisnij Enter by zakonczyc program..." << endl;
 cin.ignore();
 cin.get();

 return EXIT_SUCCESS;
}

start

stop

1

2 3

4

1

4

2

3

Instrukcja warunkowa i alternatywyInstrukcja warunkowa i alternatywy
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 3Strona :

I n s t rukc je s te ru j ące wykonan iem prog ram uIn s t rukc je s te ru j ące wykonan iem prog ram u

if(W)
 I

if(W)
 I1
else
 I2

Instrukcja warunkowa Instrukcja alternatywy

II

WW
tak

nie I1I1

WW
taknie

I2I2

Instrukcja alternatywy i warunkowa należą go grupy instrukcji sterujących
wykonaniem programu. Wspólnie są nazywane instrukcjami warunkowymi.

Instrukcja if oraz if-else obejmują swoim zasięgiem jedną instrukcję zapisaną
dalej! Aby obejmowały większą liczbę instrukcji, trzeba je połączyć w instrukcję

grupującą, tworzącą blok instrukcji.

Instrukcja if oraz if-else obejmują swoim zasięgiem jedną instrukcję zapisaną
dalej! Aby obejmowały większą liczbę instrukcji, trzeba je połączyć w instrukcję

grupującą, tworzącą blok instrukcji.

Instrukcja alternatywy a instrukcje warunkoweInstrukcja alternatywy a instrukcje warunkowe
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 4Strona :

I n s t rukc je s te ru j ące wykonan iem prog ram uIn s t rukc je s te ru j ące wykonan iem prog ram u

if(delta < 0)
 cout << "Brak pierwiastków rzeczywistych" << endl;

if(delta == 0)
 cout << "Jeden pierwiastek rzeczywisty" << endl;

if(delta > 0)
 cout << "Dwa pierwiastki rzeczywiste" << endl;

if(delta < 0)
 cout << "Brak pierwiastków rzeczywistych" << endl;
else
 if(delta == 0)
 cout << "Jeden pierwiastek rzeczywisty" << endl;
 else
 cout << "Dwa pierwiastki rzeczywiste" << endl;

Złożenie instrukcji alternatywy:

Kolejne instrukcje warunkowe:

1

32
1

2

3

1

2

3

1

2

3

> większy >= większy lub równy
< mniejszy <= mniejszy lub równyOperatory relacji:

Uwaga na zagnieżdżone instrukcje warunkowe!Uwaga na zagnieżdżone instrukcje warunkowe!
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 5Strona :

I n s t rukc je s te ru j ące wykonan iem prog ram uIn s t rukc je s te ru j ące wykonan iem prog ram u

. . .
double kwota;

cout << "Podaj przychod: ";
cin >> kwota;

if(kwota >= 0)
 if(kwota > 0)
 cout << "Dochod";
else
 cout << "Strata";

cout << "Koniec”;
. . .

Podaj przyc
hod: -100

???

. . .
double kwota;

cout << "Podaj przychod: ";
cin >> kwota;

if(kwota >= 0)
 if(kwota > 0)
 cout << "Dochod";
else
 cout << "Strata";

cout << "Koniec”;
. . .

Uwaga na zagnieżdżone instrukcje warunkowe!Uwaga na zagnieżdżone instrukcje warunkowe!
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 6Strona :

I n s t rukc je s te ru j ące wykonan iem prog ram uIn s t rukc je s te ru j ące wykonan iem prog ram u

Podaj przyc
hod: -100

Koniec

Dlaczego?

Uwaga na zagnieżdżone instrukcje warunkowe!Uwaga na zagnieżdżone instrukcje warunkowe!
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 7Strona :

I n s t rukc je s te ru j ące wykonan iem prog ram uIn s t rukc je s te ru j ące wykonan iem prog ram u

„Ify” z pułapką, wydaje się, że jest tak
jak sugerują wcięcia:

if(kwota >= 0)
 if(kwota > 0)
 cout << "Dochod";
else
 cout << "Strata";

A jest tak:

if(kwota >= 0)
 if(kwota > 0)
 cout << "Dochod";
 else
 cout << "Strata";

Trzeba użyć instrukcji złożonej lub „sparować” if z else:

if(kwota >= 0)
{
 if(kwota > 0)
 cout << "Dochod";
}
else
 cout << "Strata";

if(kwota >= 0)
 if(kwota > 0)
 cout << "Dochod";
 else
 cout << "Zero!";
else
 cout << "Strata";

Instrukcja grupująca (złożona)Instrukcja grupująca (złożona)
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 8Strona :

I n s t rukc je s te ru j ące wykonan iem prog ram uIn s t rukc je s te ru j ące wykonan iem prog ram u

{
 cout << "Podaj promien kola: ";
 cin >> promien;
 cout << "Obwod: " << 2 * M_PI * promien;
}

Wykonanie instrukcji złożonej polega na sekwencyjnym wykonaniu jej
instrukcji wewnętrznych.

Instrukcja złożona tworzy z ciągu instrukcji jedną instrukcję, poprzez ujęcie
tego ciągu w nawiasy { i }.

Instrukcje wewnętrzne zakończone są znakiem średnika.

Instrukcja złożona ma takie same uprawnienia jak pojedyncza instrukcjaInstrukcja złożona ma takie same uprawnienia jak pojedyncza instrukcja

Średnie spalanie — nie pozwól na wprowadzenie błędnego dystansuŚrednie spalanie — nie pozwól na wprowadzenie błędnego dystansu
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 9Strona :

I n s t rukc je s te ru j ące wykonan iem prog ram uIn s t rukc je s te ru j ące wykonan iem prog ram u

Program kontroluje wprowadzany dystans i nie pozwala na wprowadzenie liczby
ujemnej i zera.

Wczytywanie dystansu — algorytmWczytywanie dystansu — algorytm
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 10Strona :

I n s t rukc je s te ru j ące wykonan iem prog ram uIn s t rukc je s te ru j ące wykonan iem prog ram u

cout << "Dystans : " << flush;
cin >> dystans;

dystans <= 0

cout << "Prosz ...ę

dystans <= 0
tak

nie

nie

tak

 cout << "Dystans: " << flush;
 cin >> dystans;

 if(dystans <= 0)
 cout << "Prosze wprowadzic prawidlowy dystans" << endl;

Wczytywanie dystansu — jak to działa?Wczytywanie dystansu — jak to działa?
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 11Strona :

I n s t rukc je s te ru j ące wykonan iem prog ram uIn s t rukc je s te ru j ące wykonan iem prog ram u

cout << "Dystans : " << flush;
cin >> dystans;

dystans <= 0

cout << "Prosz ...ę

dystans <= 0
tak

nie

nie

tak

do
{
 cout << "Dystans: " << flush;
 cin >> dystans;

 if(dystans <= 0)
 cout << "Prosze wprowadzic prawidlowy dystans" << endl;

}
while(dystans <= 0);

Wczytywanie dystansu — jak to działa?Wczytywanie dystansu — jak to działa?
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 12Strona :

I n s t rukc je s te ru j ące wykonan iem prog ram uIn s t rukc je s te ru j ące wykonan iem prog ram u

cout << "Dystans : " << flush;
cin >> dystans;

dystans <= 0

cout << "Prosz ...ę

dystans <= 0
tak

nie

nie

tak

Instrukcja iteracyjna do-whileInstrukcja iteracyjna do-while
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 13Strona :

I n s t rukc je s te ru j ące wykonan iem prog ram uIn s t rukc je s te ru j ące wykonan iem prog ram u

do
 instrukcja
while(wyrażenie);

do
{
 ciąg_instrukcji
}
while(wyrażenie);

Gdy iterowana jest jedna instrukcja:

Gdy iterowany jest ciąg instrukcji:

wyrażeniewyrażenie

instrukcjainstrukcja

prawda fałsz

Instrukcja stanowiąca ciało iteracji do-while wykona się przynajmniej raz.

Wyrażenie występujące w nawiasach określa warunek kontynuacji, zatem
iteracja kończy się gdy wartość wyrażenia będzie zerowa.

Instrukcja iteracyjna pozwala na wielokrotne wykonywanie pewnego fragmentu
kodu. Iteracja pozwala na „wracanie się” w trakcie wykonania programu.

Zastosowanie instrukcji — gra w „za dużo, za mało”Zastosowanie instrukcji — gra w „za dużo, za mało”
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 14Strona :

I n s t rukc je s te ru j ące wykonan iem prog ram uIn s t rukc je s te ru j ące wykonan iem prog ram u

Program losuje liczbę z przedziału od 1 do 100. Zadaniem użytkownika jest
odgadnięcie wylosowanej liczby — wpisuje swoją propozycję a program stwierdza,
czy proponowana liczba jest równa, mniejsza lub większa od wylosowanej.

Scenariusz działania programu:

Problem

Zastosowanie instrukcji — gra w „za dużo, za mało”Zastosowanie instrukcji — gra w „za dużo, za mało”
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 15Strona :

I n s t rukc je s te ru j ące wykonan iem prog ram uIn s t rukc je s te ru j ące wykonan iem prog ram u

Świat użytkownika

Świat programisty

Odczytaj liczbę
 z klawiatury

Odczytaj liczbę
 z klawiatury

Porównaj wartości zmiennych
wczytana i wylosowana

 Wyświetl odpowiedni komunikat

Porównaj wartości zmiennych
wczytana i wylosowana

 Wyświetl odpowiedni komunikat

Wylosuj liczbę
z przedziału 1 .. 100

Wylosuj liczbę
z przedziału 1 .. 100

Zmienna
 wczytana
Zmienna

 wczytana

Zmienna
 wylosowana

Zmienna
 wylosowana

Spróbuję
50

Zastosowanie instrukcji — gra w „za dużo, za mało”Zastosowanie instrukcji — gra w „za dużo, za mało”
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 16Strona :

I n s t rukc je s te ru j ące wykonan iem prog ram uIn s t rukc je s te ru j ące wykonan iem prog ram u

w wczytana < ylosowana

w != wczytana ylosowana nie

tak

tak

nie

w wczytana > ylosowana

Stop

Start

Wylosuj liczbę i zapamiętaj

Wczytaj liczbę

Wyświetl, że za dużo

Wyświetl, że za mało Wyświetl, że za to ta liczba

tak n ie

Algorytm ogólnyAlgorytm ogólny

Pierwsza przymiarka — funkcja main i deklaracja zmiennychPierwsza przymiarka — funkcja main i deklaracja zmiennych
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 17Strona :

I n s t rukc je s te ru j ące wykonan iem prog ram uIn s t rukc je s te ru j ące wykonan iem prog ram u

#include <iostream>
using namespace std;

int main()
{
 int wczytana, wylosowana;

 return EXIT_SUCCESS;
}

W zmiennej wylosowana zapamiętamy liczbę
wylosowaną przez komputer. W zmiennej wczytana

zapamiętamy liczbę wprowadzoną przez gracza.

W zmiennej wylosowana zapamiętamy liczbę
wylosowaną przez komputer. W zmiennej wczytana

zapamiętamy liczbę wprowadzoną przez gracza.

Będziemy korzystać z strumieni wejścia-wyjściaBędziemy korzystać z strumieni wejścia-wyjścia

Pierwsza przymiarka — komunikat wstępnyPierwsza przymiarka — komunikat wstępny
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 18Strona :

I n s t rukc je s te ru j ące wykonan iem prog ram uIn s t rukc je s te ru j ące wykonan iem prog ram u

#include <iostream>
using namespace std;

int main()
{
 int wczytana, wylosowana;

 cout << endl << "Witaj w grze w \"Za duzo, za malo\"";
 cout << endl << "Odgadnij wylosowana liczbe (1 .. 100)" << endl;

 return EXIT_SUCCESS;
}

Komunikat wstępnyKomunikat wstępny

Pierwsza przymiarka — komunikat wstępnyPierwsza przymiarka — komunikat wstępny
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 19Strona :

I n s t rukc je s te ru j ące wykonan iem prog ram uIn s t rukc je s te ru j ące wykonan iem prog ram u

#include <iostream>
using namespace std;

int main()
{
 int wczytana, wylosowana;

 cout << endl << "Witaj w grze w \"Za duzo, za malo\"";
 cout << endl << "Odgadnij wylosowana liczbe (1 .. 100)" << endl;

 return EXIT_SUCCESS;
}

Znak ” jest ogranicznikiem napisu.
Aby uzyskać ten znak w napisie, trzeba

użyć symbolu specjalnego \”

Znak ” jest ogranicznikiem napisu.
Aby uzyskać ten znak w napisie, trzeba

użyć symbolu specjalnego \”

Pierwsza przymiarka — losowanie liczbyPierwsza przymiarka — losowanie liczby
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 20Strona :

I n s t rukc je s te ru j ące wykonan iem prog ram uIn s t rukc je s te ru j ące wykonan iem prog ram u

#include <iostream>
using namespace std;

int main()
{
 int wczytana, wylosowana;

 cout << endl << "Witaj w grze w \"Za duzo, za malo\"";
 cout << endl << "Odgadnij wylosowana liczbe (1 .. 100)" << endl;

 srand(1000);

 wylosowana = rand() % 100 + 1;

 return EXIT_SUCCESS;
}

Losowanie zalążka generatora liczb
pseudolosowych. Stały zalążek nie jest dobry... :-\

Losowanie zalążka generatora liczb
pseudolosowych. Stały zalążek nie jest dobry... :-\

Losowanie liczby z wykorzystaniem generatora liczb
pseudolosowych.

Losowanie liczby z wykorzystaniem generatora liczb
pseudolosowych.

Pierwsza przymiarka — losowanie liczby, komentarzPierwsza przymiarka — losowanie liczby, komentarz
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 21Strona :

I n s t rukc je s te ru j ące wykonan iem prog ram uIn s t rukc je s te ru j ące wykonan iem prog ram u

srand(1000);

wylosowana = rand() % 100 + 1;

Inicjalizacja generatora liczb pseudolosowych (stały zalążek o wartości 1000):

Tak zainicjowany generator będzie działał powtarzalnie. Należy uzmiennić zalążek,
przykładowo uzależniając go od bieżącego czasu:

srand((unsigned)time(NULL));

Funkcja rand() generuje liczby pseudolosowe z przedziału 0..RAND_MAX. My
potrzebujemy liczby od 1..100.

Ograniczamy zakres używając operatora modulo (reszta z dzielenia) oznaczonego
w C/C++ symbolem % oraz przesuwamy przedział o jeden w lewo dodając +1.

+1 +1

0 1 2 99 100 101.

#include <iostream>
#include <ctime>
using namespace std;

int main()
{
 int wczytana, wylosowana;

 cout << endl << "Witaj w grze w \"Za duzo, za malo\"";
 cout << endl << "Odgadnij wylosowana liczbe (1 .. 100)" << endl;

 srand((unsigned)time(NULL));

 wylosowana = rand() % 100 + 1;

 return EXIT_SUCCESS;
}

Pierwsza przymiarka — lepszy dobór zalążka generatora pseudolosowegoPierwsza przymiarka — lepszy dobór zalążka generatora pseudolosowego
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 22Strona :

I n s t rukc je s te ru j ące wykonan iem prog ram uIn s t rukc je s te ru j ące wykonan iem prog ram u

Losowanie zalążka generatora liczb pseudolosowych
zależnego ob aktualnej wartości timera

Losowanie zalążka generatora liczb pseudolosowych
zależnego ob aktualnej wartości timera

Plik nagłówkowy zwykle potrzebny dla fun. time Plik nagłówkowy zwykle potrzebny dla fun. time

int main()
{
 . . .
 wylosowana = rand() % 100 + 1;

 do
 {
 cout << '>' << flush;
 cin >> wczytana;

 if(wczytana > wylosowana)
 cout << "Za duzo" << endl;
 else
 if(wczytana < wylosowana)
 cout << "Za malo" << endl;
 else
 cout << "Brawo, to ta liczba!";
 }
 while(wylosowana != wczytana);

 cout << "Nacisnij Enter by zakonczyc";
 cin.ignore();
 cin.get();

 return EXIT_SUCCESS;
}

Główna iteracja programuGłówna iteracja programu
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 23Strona :

I n s t rukc je s te ru j ące wykonan iem prog ram uIn s t rukc je s te ru j ące wykonan iem prog ram u

Wykonuj, dopóki liczba nie jest odgadniętaWykonuj, dopóki liczba nie jest odgadnięta

int main()
{
 . . .
 wylosowana = rand() % 100 + 1;

 do
 {
 cout << '>' << flush;
 cin >> wczytana;

 if(wczytana > wylosowana)
 cout << "Za duzo" << endl;
 else
 if(wczytana < wylosowana)
 cout << "Za malo" << endl;
 else
 cout << "Brawo, to ta liczba!";
 }
 while(wylosowana != wczytana);

 cout << "Nacisnij Enter by zakonczyc";
 cin.ignore();
 cin.get();

 return EXIT_SUCCESS;
}

Kontakt z graczemKontakt z graczem
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 24Strona :

I n s t rukc je s te ru j ące wykonan iem prog ram uIn s t rukc je s te ru j ące wykonan iem prog ram u

Wczytaj liczbę typowaną przez graczaWczytaj liczbę typowaną przez gracza

int main()
{
 . . .
 wylosowana = rand() % 100 + 1;

 do
 {
 cout << '>' << flush;
 cin >> wczytana;

 if(wczytana > wylosowana)
 cout << "Za duzo" << endl;
 else
 if(wczytana < wylosowana)
 cout << "Za malo" << endl;
 else
 cout << "Brawo, to ta liczba!";
 }
 while(wylosowana != wczytana);

 cout << "Nacisnij Enter by zakonczyc";
 cin.ignore();
 cin.get();

 return EXIT_SUCCESS;
}

Oceń wprowadzoną liczbęOceń wprowadzoną liczbę
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 25Strona :

I n s t rukc je s te ru j ące wykonan iem prog ram uIn s t rukc je s te ru j ące wykonan iem prog ram u

Porównaj wczytaną liczbę z wylosowaną
i wyprowadź odpowiedni komunikat

Porównaj wczytaną liczbę z wylosowaną
i wyprowadź odpowiedni komunikat

Od instrukcji warunkowej do instrukcji przełączającejOd instrukcji warunkowej do instrukcji przełączającej
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 26Strona :

I n s t rukc je s te ru j ące wykonan iem prog ram uIn s t rukc je s te ru j ące wykonan iem prog ram u

Problem

Napisać program realizujący funkcje prostego kalkulatora, pozwalającego na
wykonywanie operacji dodawania, odejmowania, mnożenia i dzielenia na dwóch
liczbach rzeczywistych.

Program ma identyfikować sytuację wprowadzenia błędnego symbolu działania
oraz próbę dzielenia przez zero.

Scenariusz działania programuScenariusz działania programu
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 27Strona :

I n s t rukc je s te ru j ące wykonan iem prog ram uIn s t rukc je s te ru j ące wykonan iem prog ram u

Czego potrzebujemy?Czego potrzebujemy?
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 28Strona :

I n s t rukc je s te ru j ące wykonan iem prog ram uIn s t rukc je s te ru j ące wykonan iem prog ram u

Do realizacji programu potrzebne są:

dwie zmienne numeryczne (zapamiętane liczb-argumentów),

zmienna znakowa (zapamiętanie znaku oznaczającego działanie).

Niech zmienne nazywają się: a — liczba pierwsza, b — liczba druga, d — działanie.

aa 2

dd *

bb 2

Wynik: 4

Dobór typów dla zmiennych a i bDobór typów dla zmiennych a i b
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 29Strona :

I n s t rukc je s te ru j ące wykonan iem prog ram uIn s t rukc je s te ru j ące wykonan iem prog ram u

Zmienne a i b powinny być jednego z podstawowych typów rzeczywistych:

float — typ rzeczywisty pojedynczej prowizji,

double — typ rzeczywisty podwójnej precyzji,

long double — typ rzeczywisty podwójnej pracyzji o powiększonym zakresie.

double a, b;

Typ double zapewni odpowiedni zakres dla obliczeń.

Zakres typu float to zwykle od 3.4×1038 do 3.4×10-38 (7 cyfr).

Zakres typu double to zwykle od 1.7×10-308 do 1.7×10308 (15 cyfr).

Zakres typu long double jest czasem identyczny jak typu double, niektóre
implementacje języka C++ oferują zakres od 3.4×10-4932 do 1.1×104932 (18 cyfr).

Dobór typów dla zmiennej dDobór typów dla zmiennej d
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 30Strona :

I n s t rukc je s te ru j ące wykonan iem prog ram uIn s t rukc je s te ru j ące wykonan iem prog ram u

Zmienne d ma przechowywać informacje o wprowadzonym z klawiatury symbolu
działania arytmetycznego. Symbol ten jest znakiem. Do reprezentacji znaków służy
typ char (skrót od ang. character).

char — typ znakowy, obejmujący zbiór znaków używanych do komunikacji
 z człowiekiem (monitor, klawiatura, drukarka, tekstowe transfery sieciowe).

0 A a1
.

.
. . .

. . .
.

B b9 Z z
Cyfry Duże litery Małe litery

0Kod: 48 49 57 65 66 90 97 98 122 255
Znak:

Uporządkowanie liter
i cyfr w kodzie ASCII

spójne obszary kodowe

Zakres wartości : konkretny wykaz znaków oraz sposób ich uporządkowania
zależy od języka programowania i specyfiki platformy sprzętowej i systemowej.

Jednak najpopularniejsze jest kodowanie znaków według ASCII (American
Standard Code for Information Interchange) — wykorzystywane w C i C++.

Literały znakowe a literały łańcuchoweLiterały znakowe a literały łańcuchowe
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 31Strona :

I n s t rukc je s te ru j ące wykonan iem prog ram uIn s t rukc je s te ru j ące wykonan iem prog ram u

Literał — to dana, której wartość wynika z jej zapisu w kodzie programu.

Literały znakowe:

Literały łańcuchowe:

'a' '1' '%' '&' 'A' '.' '*' ' ' 'R'

"C++" "Liczba" "12345" "programowanie" "program"

Nie można mylić literałów znakowych z literałami łańcuchowymi!

'a' "a"

Literał znakowyLiterał znakowy Literał łańcuchowyLiterał łańcuchowy

To nie jest to samo!To nie jest to samo!

Kalkulator — wersja pierwszaKalkulator — wersja pierwsza
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 32Strona :

I n s t rukc je s te ru j ące wykonan iem prog ram uIn s t rukc je s te ru j ące wykonan iem prog ram u

#include <iostream>
using namespace std;

int main()
{
 double a, b;
 char d;

 cout << endl << "Wykonuje dzialania na dwoch liczbach.";
 cout << endl << "Wczytam pierwsza liczbe, symbol dzialania";
 cout << endl << "potem druga liczbe i wyswietle wynik.";
 cout << endl << "Dozwolone dzialania: + - * /" << endl;

 cout << "Podaj pierwsza liczbe: ";
 cin >> a;

 cout << "Podaj dzialanie [* - * /]: ";
 cin >> d;

 cout << "Podaj druga liczbe: ";
 cin >> b;

Deklaracje zmiennychDeklaracje zmiennych

1/21/2

Kalkulator — wersja pierwszaKalkulator — wersja pierwsza
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 33Strona :

I n s t rukc je s te ru j ące wykonan iem prog ram uIn s t rukc je s te ru j ące wykonan iem prog ram u

#include <iostream>
using namespace std;

int main()
{
 double a, b;
 char d;

 cout << endl << "Wykonuje dzialania na dwoch liczbach.";
 cout << endl << "Wczytam pierwsza liczbe, symbol dzialania";
 cout << endl << "potem druga liczbe i wyswietle wynik.";
 cout << endl << "Dozwolone dzialania: + - * /" << endl;

 cout << "Podaj pierwsza liczbe: ";
 cin >> a;

 cout << "Podaj dzialanie [* - * /]: ";
 cin >> d;

 cout << "Podaj druga liczbe: ";
 cin >> b;

Komunikat wstępnyKomunikat wstępny

1/21/2

Kalkulator — wersja pierwszaKalkulator — wersja pierwsza
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 34Strona :

I n s t rukc je s te ru j ące wykonan iem prog ram uIn s t rukc je s te ru j ące wykonan iem prog ram u

#include <iostream>
using namespace std;

int main()
{
 double a, b;
 char d;

 cout << endl << "Wykonuje dzialania na dwoch liczbach.";
 cout << endl << "Wczytam pierwsza liczbe, symbol dzialania";
 cout << endl << "potem druga liczbe i wyswietle wynik.";
 cout << endl << "Dozwolone dzialania: + - * /" << endl;

 cout << "Podaj pierwsza liczbe: ";
 cin >> a;

 cout << "Podaj dzialanie [* - * /]: ";
 cin >> d;

 cout << "Podaj druga liczbe: ";
 cin >> b;

Wczytanie danychWczytanie danych

1/21/2

Kalkulator — wersja pierwszaKalkulator — wersja pierwsza
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 35Strona :

I n s t rukc je s te ru j ące wykonan iem prog ram uIn s t rukc je s te ru j ące wykonan iem prog ram u

 if(d == '+' || d == '-' || d == '*' || d == '/')
 {
 if(d == '+')
 cout << "Wynik: " << a + b << endl;
 if(d == '-')
 cout << "Wynik: " << a - b << endl;
 if(d == '*')
 cout << "Wynik: " << a * b << endl;
 if(d == '/')
 if(b != 0)
 cout << "Wynik: " << a / b << endl;
 else
 cout << "Dzielenie przez zero nie jest dozwolone!" << endl;
 }
 else
 cout << "Niedozwolone dzialanie!" << endl;

 cout << endl << "Nacisnij Enter by zakonczyc..." << endl;
 cin.ignore();
 cin.get();

 return EXIT_SUCCESS;
} Czy wprowadzono prawidłowy symbol działania?Czy wprowadzono prawidłowy symbol działania?

2/22/2

Operatory logicze

|| or alternatywa
&& and koniunkcja
! not negacja

Operatory logicze

|| or alternatywa
&& and koniunkcja
! not negacja

Kalkulator — wersja pierwszaKalkulator — wersja pierwsza
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 36Strona :

I n s t rukc je s te ru j ące wykonan iem prog ram uIn s t rukc je s te ru j ące wykonan iem prog ram u

 if(d == '+' || d == '-' || d == '*' || d == '/')
 {
 if(d == '+')
 cout << "Wynik: " << a + b << endl;
 if(d == '-')
 cout << "Wynik: " << a - b << endl;
 if(d == '*')
 cout << "Wynik: " << a * b << endl;
 if(d == '/')
 if(b != 0)
 cout << "Wynik: " << a / b << endl;
 else
 cout << "Dzielenie przez zero nie jest dozwolone!" << endl;
 }
 else
 cout << "Niedozwolone dzialanie!" << endl;

 cout << endl << "Nacisnij Enter by zakonczyc..." << endl;
 cin.ignore();
 cin.get();

 return EXIT_SUCCESS;
}

Identyfikacja działania, wyznaczenie wartości
i wyprowadzenie do strumienia wyjściowego

Identyfikacja działania, wyznaczenie wartości
i wyprowadzenie do strumienia wyjściowego

2/22/2

Kalkulator — wersja pierwszaKalkulator — wersja pierwsza
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 37Strona :

I n s t rukc je s te ru j ące wykonan iem prog ram uIn s t rukc je s te ru j ące wykonan iem prog ram u

 if(d == '+' || d == '-' || d == '*' || d == '/')
 {
 if(d == '+')
 cout << "Wynik: " << a + b << endl;
 if(d == '-')
 cout << "Wynik: " << a - b << endl;
 if(d == '*')
 cout << "Wynik: " << a * b << endl;
 if(d == '/')
 if(b != 0)
 cout << "Wynik: " << a / b << endl;
 else
 cout << "Dzielenie przez zero nie jest dozwolone!" << endl;
 }
 else
 cout << "Niedozwolone dzialanie!" << endl;

 cout << endl << "Nacisnij Enter by zakonczyc..." << endl;
 cin.ignore();
 cin.get();

 return EXIT_SUCCESS;
} Dzielenie o ile dzielnik jest niezerowy Dzielenie o ile dzielnik jest niezerowy

2/22/2

Kalkulator — wersja pierwsza, wadaKalkulator — wersja pierwsza, wada
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 38Strona :

I n s t rukc je s te ru j ące wykonan iem prog ram uIn s t rukc je s te ru j ące wykonan iem prog ram u

 if(d == '+' || d == '-' || d == '*' || d == '/')
 {
 if(d == '+')
 cout << "Wynik: " << a + b << endl;
 if(d == '-')
 cout << "Wynik: " << a - b << endl;
 if(d == '*')
 cout << "Wynik: " << a * b << endl;
 if(d == '/')
 if(b != 0)
 cout << "Wynik: " << a / b << endl;
 else
 cout << "Dzielenie przez zero nie jest dozwolone!" << endl;
 }
 else
 cout << "Niedozwolone dzialanie!" << endl;

 cout << endl << "Nacisnij Enter by zakonczyc..." << endl;
 cin.ignore();
 cin.get();

 return EXIT_SUCCESS;
} Dużo instrukcji if i if-elseDużo instrukcji if i if-else

2/22/2

Wprowadzamy instrukcję przełączającąWprowadzamy instrukcję przełączającą
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 39Strona :

I n s t rukc je s te ru j ące wykonan iem prog ram uIn s t rukc je s te ru j ące wykonan iem prog ram u

if(d == '+')
 cout << "Wynik: " << a + b << endl;
if(d == '-')
 cout << "Wynik: " << a - b << endl;
if(d == '*')
 cout << "Wynik: " << a * b << endl;
if(d == '/')
 if(b != 0)
 cout << "Wynik: " << a / b << endl;
 else
 cout << "Dzielenie przez zero nie jest dozwolone!" << endl;

switch(d)
{
 case '+' : cout << "Wynik: " << a + b << endl;
 break;
 case '-' : cout << "Wynik: " << a - b << endl;
 break;
 case '*' : cout << "Wynik: " << a * b << endl;
 break;
 case '/' : if(b != 0)
 cout << "Wynik: " << a / b << endl;
 else
 cout << "Dzielenie przez zero nie jest dozwolone!" << endl;
 break;
}

Jak działa instrukcja przełączającaJak działa instrukcja przełączająca
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 40Strona :

I n s t rukc je s te ru j ące wykonan iem prog ram uIn s t rukc je s te ru j ące wykonan iem prog ram u

 switch(d)
 {
 case '+' : cout << "Wynik: " << a + b << endl;
 break;

 case '-' : cout << "Wynik: " << a - b << endl;
 break;

 case '*' : cout << "Wynik: " << a * b << endl;
 break;

 case '/' : if(b != 0)
 cout << "Wynik: " << a / b << endl;
 else
 cout << "Dzielenie przez zero nie jest dozwolone!" << endl;
 break;
 }

Wyznaczenie selektora — wartości wyrażenia zapisanego
w nawiasach. W tym przypadku sprawdzenie zawartości zmiennej d

Wyznaczenie selektora — wartości wyrażenia zapisanego
w nawiasach. W tym przypadku sprawdzenie zawartości zmiennej d

Jak działa instrukcja przełączającaJak działa instrukcja przełączająca
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 41Strona :

I n s t rukc je s te ru j ące wykonan iem prog ram uIn s t rukc je s te ru j ące wykonan iem prog ram u

 switch(d)
 {
 case '+' : cout << "Wynik: " << a + b << endl;
 break;

 case '-' : cout << "Wynik: " << a - b << endl;
 break;

 case '*' : cout << "Wynik: " << a * b << endl;
 break;

 case '/' : if(b != 0)
 cout << "Wynik: " << a / b << endl;
 else
 cout << "Dzielenie przez zero nie jest dozwolone!" << endl;
 break;
 }

Poszukiwanie frazy case po którym występuje literał równy
wartości selektora instrukcji switch

Poszukiwanie frazy case po którym występuje literał równy
wartości selektora instrukcji switch

Jak działa instrukcja przełączającaJak działa instrukcja przełączająca
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 42Strona :

I n s t rukc je s te ru j ące wykonan iem prog ram uIn s t rukc je s te ru j ące wykonan iem prog ram u

 switch(d)
 {
 case '+' : cout << "Wynik: " << a + b << endl;
 break;

 case '-' : cout << "Wynik: " << a - b << endl;
 break;

 case '*' : cout << "Wynik: " << a * b << endl;
 break;

 case '/' : if(b != 0)
 cout << "Wynik: " << a / b << endl;
 else
 cout << "Dzielenie przez zero nie jest dozwolone!" << endl;
 break;
 }

Załóżmy, że zmienna d == '—'. Instrukcja switch przełącza
sterowanie do odpowiedniego przypadku.

Załóżmy, że zmienna d == '—'. Instrukcja switch przełącza
sterowanie do odpowiedniego przypadku.

Jak działa instrukcja przełączającaJak działa instrukcja przełączająca
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 43Strona :

I n s t rukc je s te ru j ące wykonan iem prog ram uIn s t rukc je s te ru j ące wykonan iem prog ram u

 switch(d)
 {
 case '+' : cout << "Wynik: " << a + b << endl;
 break;

 case '-' : cout << "Wynik: " << a - b << endl;
 break;

 case '*' : cout << "Wynik: " << a * b << endl;
 break;

 case '/' : if(b != 0)
 cout << "Wynik: " << a / b << endl;
 else
 cout << "Dzielenie przez zero nie jest dozwolone!" << endl;
 break;
 }

Wykonywane są kolejne instrukcje, począwszy od pierwszej
instrukcji przypadku zgodnego z selektorem.

Wykonywane są kolejne instrukcje, począwszy od pierwszej
instrukcji przypadku zgodnego z selektorem.

Jak działa instrukcja przełączającaJak działa instrukcja przełączająca
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 44Strona :

I n s t rukc je s te ru j ące wykonan iem prog ram uIn s t rukc je s te ru j ące wykonan iem prog ram u

 switch(d)
 {
 case '+' : cout << "Wynik: " << a + b << endl;
 break;

 case '-' : cout << "Wynik: " << a - b << endl;
 break;

 case '*' : cout << "Wynik: " << a * b << endl;
 break;

 case '/' : if(b != 0)
 cout << "Wynik: " << a / b << endl;
 else
 cout << "Dzielenie przez zero nie jest dozwolone!" << endl;
 break;
 }

Instrukcja break powoduje wyjście (zakończenie wykonania)
z najbliższej instrukcji iteracyjnej lub instrukcji switch.

Instrukcja break powoduje wyjście (zakończenie wykonania)
z najbliższej instrukcji iteracyjnej lub instrukcji switch.

Jak działa instrukcja przełączającaJak działa instrukcja przełączająca
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 45Strona :

I n s t rukc je s te ru j ące wykonan iem prog ram uIn s t rukc je s te ru j ące wykonan iem prog ram u

cout << "Wynik: " << a + b << endl; cout << "Wynik: " << a + b << endl;

cout << "Wynik: " << a - b << endl; cout << "Wynik: " << a - b << endl;

cout << "Wynik: " << a * b << endl; cout << "Wynik: " << a * b << endl;

d == ?d == ?

'+'
break;break;

break;break;

break;break;

if(b != 0)
 cout << "Wynik: " << a / b << endl;
else
 cout << "Dzielenie przez zero ..." << endl;

if(b != 0)
 cout << "Wynik: " << a / b << endl;
else
 cout << "Dzielenie przez zero ..." << endl;

break;break;

'—'

'*''/'

Jak działa instrukcja przełączającaJak działa instrukcja przełączająca
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 46Strona :

I n s t rukc je s te ru j ące wykonan iem prog ram uIn s t rukc je s te ru j ące wykonan iem prog ram u

cout << "Wynik: " << a + b << endl; cout << "Wynik: " << a + b << endl;

cout << "Wynik: " << a - b << endl; cout << "Wynik: " << a - b << endl;

cout << "Wynik: " << a * b << endl; cout << "Wynik: " << a * b << endl;

d == '—'d == '—'

'+'
break;break;

break;break;

break;break;

if(b != 0)
 cout << "Wynik: " << a / b << endl;
else
 cout << "Dzielenie przez zero ..." << endl;

if(b != 0)
 cout << "Wynik: " << a / b << endl;
else
 cout << "Dzielenie przez zero ..." << endl;

break;break;

'—'

'*''/'

Gdyby nie było instrukcji breakGdyby nie było instrukcji break
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 47Strona :

I n s t rukc je s te ru j ące wykonan iem prog ram uIn s t rukc je s te ru j ące wykonan iem prog ram u

cout << "Wynik: " << a + b << endl; cout << "Wynik: " << a + b << endl;

cout << "Wynik: " << a - b << endl; cout << "Wynik: " << a - b << endl;

cout << "Wynik: " << a * b << endl; cout << "Wynik: " << a * b << endl;

d == '—'d == '—'

'+'

if(b != 0)
 cout << "Wynik: " << a / b << endl;
else
 cout << "Dzielenie przez zero ..." << endl;

if(b != 0)
 cout << "Wynik: " << a / b << endl;
else
 cout << "Dzielenie przez zero ..." << endl;

'—'

'*''/'

Co się stanie gdy selektor nie pasuje do żadnego z przypadków?Co się stanie gdy selektor nie pasuje do żadnego z przypadków?
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 48Strona :

I n s t rukc je s te ru j ące wykonan iem prog ram uIn s t rukc je s te ru j ące wykonan iem prog ram u

 switch(d)
 {
 case '+' : cout << "Wynik: " << a + b << endl;
 break;

 case '-' : cout << "Wynik: " << a - b << endl;
 break;

 case '*' : cout << "Wynik: " << a * b << endl;
 break;

 case '/' : if(b != 0)
 cout << "Wynik: " << a / b << endl;
 else
 cout << "Dzielenie przez zero nie jest dozwolone!" << endl;
 break;
 }

Załóżmy, że d == '$' — co się wtedy stanie?Załóżmy, że d == '$' — co się wtedy stanie?

Co się stanie gdy selektor nie pasuje do żadnego z przypadków?Co się stanie gdy selektor nie pasuje do żadnego z przypadków?
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 49Strona :

I n s t rukc je s te ru j ące wykonan iem prog ram uIn s t rukc je s te ru j ące wykonan iem prog ram u

 switch(d)
 {
 case '+' : cout << "Wynik: " << a + b << endl;
 break;

 case '-' : cout << "Wynik: " << a - b << endl;
 break;

 case '*' : cout << "Wynik: " << a * b << endl;
 break;

 case '/' : if(b != 0)
 cout << "Wynik: " << a / b << endl;
 else
 cout << "Dzielenie przez zero nie jest dozwolone!" << endl;
 break;
 }

Gdy selektor nie pasuje do żadnego przypadków, żadna instrukcja
nie zostanie wykonana.

Gdy selektor nie pasuje do żadnego przypadków, żadna instrukcja
nie zostanie wykonana.

Co się stanie gdy selektor nie pasuje do żadnego z przypadków?Co się stanie gdy selektor nie pasuje do żadnego z przypadków?
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 50Strona :

I n s t rukc je s te ru j ące wykonan iem prog ram uIn s t rukc je s te ru j ące wykonan iem prog ram u

 switch(d)
 {
 case '+' : cout << "Wynik: " << a + b << endl;
 break;

 case '-' : cout << "Wynik: " << a - b << endl;
 break;

 case '*' : cout << "Wynik: " << a * b << endl;
 break;

 case '/' : if(b != 0)
 cout << "Wynik: " << a / b << endl;
 else
 cout << "Dzielenie przez zero nie jest dozwolone!" << endl;
 break;
 default : . . .
 }

Można wprowadzić przypadek domyślny — tutaj zostanie skierowane
sterowanie gdy selektor nie pasuje do żadnego z przypadków

Można wprowadzić przypadek domyślny — tutaj zostanie skierowane
sterowanie gdy selektor nie pasuje do żadnego z przypadków

Wykorzystanie przypadku domyślnegoWykorzystanie przypadku domyślnego
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 51Strona :

I n s t rukc je s te ru j ące wykonan iem prog ram uIn s t rukc je s te ru j ące wykonan iem prog ram u

 switch(d)
 {
 case '+' : cout << "Wynik: " << a + b << endl;
 break;

 case '-' : cout << "Wynik: " << a - b << endl;
 break;

 case '*' : cout << "Wynik: " << a * b << endl;
 break;

 case '/' : if(b != 0)
 cout << "Wynik: " << a / b << endl;
 else
 cout << "Dzielenie przez zero nie jest dozwolone!" << endl;
 break;
 default : cout << "Niedozwolone dzialanie!" << endl;
 break;
 }

Przypadek domyślny można wykorzystać do identyfikacji
niedozwolonego symbolu działania

Przypadek domyślny można wykorzystać do identyfikacji
niedozwolonego symbolu działania

Instrukcja switch może zastąpić wiele instrukcji warunkowychInstrukcja switch może zastąpić wiele instrukcji warunkowych
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 52Strona :

I n s t rukc je s te ru j ące wykonan iem prog ram uIn s t rukc je s te ru j ące wykonan iem prog ram u

if(d == '+' || d == '-' || d == '*' || d == '/')
{
 if(d == '+')
 cout << "Wynik: " << a + b << endl;
 if(d == '-')
 cout << "Wynik: " << a - b << endl;
 if(d == '*')
 cout << "Wynik: " << a * b << endl;
 if(d == '/')
 if(b != 0)
 cout << "Wynik: " << a / b << endl;
 else
 cout << "Dzielenie przez zero nie jest dozwolone!" << endl;
}
else
 cout << "Niedozwolone dzialanie!" << endl;

switch(d)
{
 case '+' : cout << "Wynik: " << a + b << endl;
 break;
 case '-' : cout << "Wynik: " << a - b << endl;
 break;
 case '*' : cout << "Wynik: " << a * b << endl;
 break;
 case '/' : if(b != 0)
 cout << "Wynik: " << a / b << endl;
 else
 cout << "Dzielenie przez zero nie jest dozwolone!" << endl;

 break;
 default : cout << "Niedozwolone dzialanie!" << endl;
 break;
}

Suplement — znaki specjalneSuplement — znaki specjalne
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 53Strona :

I n s t rukc je s te ru j ące wykonan iem prog ram uIn s t rukc je s te ru j ące wykonan iem prog ram u

Sekwencje specjalne pozwalają na reprezentowanie znaków nie posiadających
swoich legalnych symboli graficznych.

Dodatkowo sekwencje specjalne są wykorzystywane do zapisu pewnych
„niewygodnych” stałych znakowych.

Sekwencja Wartość Znak Znaczenie
\a 0x07 BEL Audible bell
\b 0x08 BS Backspace
\f 0x0C FF Formfeed
\n 0x0A LF Newline (linefeed)
\r 0x0D CR Carriage return
\t 0x09 HT Tab (horizontal)
\v 0x0B VT Vertical tab
\\ 0x5c \ Backslash
\' 0x27 ' Apostrof
\" 0x22 " Cudzysłów
\? 0x3F ? Pytajnik
\O any O = łańcuch ósemkowych cyfr
\xH any H = łańcuch szesnastkowych cyfr
\XH any H = łańcuch szesnastkowych cyfr

Instrukcja przełączająca switch + iteracja do-while = proste menuInstrukcja przełączająca switch + iteracja do-while = proste menu
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 54Strona :

I n s t rukc je s te ru j ące wykonan iem prog ram uIn s t rukc je s te ru j ące wykonan iem prog ram u

Połączenie instrukcji iteracyjnej do-while oraz instrukcji przełączającej switch
pozwala na zorganizowanie prostego, ale użytecznego, menu konsolowego.

Instrukcja przełączająca switch + iteracja do-while = proste menuInstrukcja przełączająca switch + iteracja do-while = proste menu
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 55Strona :

I n s t rukc je s te ru j ące wykonan iem prog ram uIn s t rukc je s te ru j ące wykonan iem prog ram u

 . . .
 char klawisz;

 do
 {
 cout << "\nFormatowanie dysku, wybierz opcje:\n1. Format";
 cout << "\n2. Szybki format\n3. Diagnostyka\n4. Koniec\n>" << flush;

 cin >> klawisz;
 switch(klawisz)
 {
 case '1' : cout << "\nWybrales formatowanie\n";
 . . . tu formatowanie . . .
 break;
 case '2' : cout << "\nWybrales szybki format\n";
 . . . tu szybki format . . .
 break;
 case '3' : cout << "\nWybrales diagnostyke\n";
 . . . tu diagnostyka . . .

 break;
 }
 }
 while(klawisz != '4');
 . . . Główna iteracja sterująca wykonaniem programuGłówna iteracja sterująca wykonaniem programu

 . . .
 char klawisz;

 do
 {
 cout << "\nFormatowanie dysku, wybierz opcje:\n1. Format";
 cout << "\n2. Szybki format\n3. Diagnostyka\n4. Koniec\n>" << flush;

 cin >> klawisz;
 switch(klawisz)
 {
 case '1' : cout << "\nWybrales formatowanie\n";
 . . . tu formatowanie . . .
 break;
 case '2' : cout << "\nWybrales szybki format\n";
 . . . tu szybki format . . .
 break;
 case '3' : cout << "\nWybrales diagnostyke\n";
 . . . tu diagnostyka . . .

 break;
 }
 }
 while(klawisz != '4');
 . . .

Instrukcja przełączająca switch + iteracja do-while = proste menuInstrukcja przełączająca switch + iteracja do-while = proste menu
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 56Strona :

I n s t rukc je s te ru j ące wykonan iem prog ram uIn s t rukc je s te ru j ące wykonan iem prog ram u

Wczytanie znaku identyfikującego
wybraną przez użytkownika opcję

Wczytanie znaku identyfikującego
wybraną przez użytkownika opcję

 . . .
 char klawisz;

 do
 {
 cout << "\nFormatowanie dysku, wybierz opcje:\n1. Format";
 cout << "\n2. Szybki format\n3. Diagnostyka\n4. Koniec\n>" << flush;

 cin >> klawisz;
 switch(klawisz)
 {
 case '1' : cout << "\nWybrales formatowanie\n";
 . . . tu formatowanie . . .
 break;
 case '2' : cout << "\nWybrales szybki format\n";
 . . . tu szybki format . . .
 break;
 case '3' : cout << "\nWybrales diagnostyke\n";
 . . . tu diagnostyka . . .

 break;
 }
 }
 while(klawisz != '4');
 . . .

Instrukcja przełączająca switch + iteracja do-while = proste menuInstrukcja przełączająca switch + iteracja do-while = proste menu
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 57Strona :

I n s t rukc je s te ru j ące wykonan iem prog ram uIn s t rukc je s te ru j ące wykonan iem prog ram u

Identyfikacja znaku i wykonanie odpowiedniej akcjiIdentyfikacja znaku i wykonanie odpowiedniej akcji

Typ zmiennej selektora a typ wartości przypadku Typ zmiennej selektora a typ wartości przypadku
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 58Strona :

I n s t rukc je s te ru j ące wykonan iem prog ram uIn s t rukc je s te ru j ące wykonan iem prog ram u

char klawisz;
. . .
cin >> klawisz;
switch(klawisz)
{
 case '1' : cout << "\nWybrales formatowanie\n";
 break;
 case '2' : cout << "\nWybrales szybki format\n";
 break;
 case '3' : cout << "\nWybrales diagnostyke\n";
 break;
}

int klawisz;
. . .
cin >> klawisz;
switch(klawisz)
{
 case 1 : cout << "\nWybrales formatowanie\n";
 break;
 case 2 : cout << "\nWybrales szybki format\n";
 break;
 case 3 : cout << "\nWybrales diagnostyke\n";
 break;
}

Instrukcja iteracyjna whileInstrukcja iteracyjna while
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 59Strona :

I n s t rukc je s te ru j ące wykonan iem prog ram uIn s t rukc je s te ru j ące wykonan iem prog ram u

while(wyra enie)ż
 instrukcja

while(wyra enie)ż
{
 ci g instrukcjią
}

Gdy iterowana jest jedna instrukcja:

Gdy iterowany jest ciąg instrukcji:
wyrażeniewyrażenie

instrukcjainstrukcja

prawda

fałsz

Instrukcja stanowiąca ciało iteracji while może nie wykonać się wcale.

Wyrażenie występujące w nawiasach określa warunek kontynuacji, zatem
iteracja kończy się gdy wartość wyrażenia będzie zerowa.

Instrukcja iteracyjna while — przykład IInstrukcja iteracyjna while — przykład I
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 60Strona :

I n s t rukc je s te ru j ące wykonan iem prog ram uIn s t rukc je s te ru j ące wykonan iem prog ram u

int licznik = 10;

while(licznik > 0)
{
 cout << endl << licznik << "...";
 licznik = licznik - 1;
}
cout << endl << "Nowy Rok!!!" << endl;

Iteracja wykona się 10 razy, liczbą wykonań steruje zmienna licznik.

W każdym przebiegu wartość zmiennej jest zmniejszana o 1.

licznik:

10-1

10 licznik:

10-1

9

W C/C++ zamiast licznik = licznik – 1 napiszemy --licznik lub licznik--

Podobnie zamiast licznik = licznik + 1 napiszemy ++licznik lub licznik++

Instrukcja iteracyjna while — przykład IIInstrukcja iteracyjna while — przykład II
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 61Strona :

I n s t rukc je s te ru j ące wykonan iem prog ram uIn s t rukc je s te ru j ące wykonan iem prog ram u

Podatnik osiąga w każdym miesiącu roku podatkowego przychód. Należy napisać
program wczytujący przychody z kolejnych 12-tu miesięcy i wyznaczający przychód
sumaryczny oraz średni.

Problem

Scenariusz działania programu

Instrukcja iteracyjna while — przykład IIInstrukcja iteracyjna while — przykład II
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 62Strona :

I n s t rukc je s te ru j ące wykonan iem prog ram uIn s t rukc je s te ru j ące wykonan iem prog ram u

#include <iostream>
using namespace std;

int main()
{
 double przychod, suma = 0;
 int nr_miesiaca;

 cout << "\nObliczam sumaryczny i sredni przychod z 12 miesiecy\n";
 cout << "\nWprowadz przychody z kolejnych miesiecy\n";

Zmienne robocze programu
Wyzerowanie zmiennej suma jest bardzo ważne

Zmienne robocze programu
Wyzerowanie zmiennej suma jest bardzo ważne

Komunikat wstępnyKomunikat wstępny

Instrukcja iteracyjna while — przykład IIInstrukcja iteracyjna while — przykład II
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 63Strona :

I n s t rukc je s te ru j ące wykonan iem prog ram uIn s t rukc je s te ru j ące wykonan iem prog ram u

#include <iostream>
using namespace std;

int main()
{
 double przychod, suma = 0;
 int nr_miesiaca;

 cout << "\nObliczam sumaryczny i sredni przychod z 12 miesiecy\n";
 cout << "\nWprowadz przychody z kolejnych miesiecy\n";

 nr_miesiaca = 1;

 cout << nr_miesiaca << ": ";
 cin >> przychod;

Wczytanie przychodu styczniowegoWczytanie przychodu styczniowego

Instrukcja iteracyjna while — przykład IIInstrukcja iteracyjna while — przykład II
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 64Strona :

I n s t rukc je s te ru j ące wykonan iem prog ram uIn s t rukc je s te ru j ące wykonan iem prog ram u

#include <iostream>
using namespace std;

int main()
{
 double przychod, suma = 0;
 int nr_miesiaca;

 cout << "\nObliczam sumaryczny i sredni przychod z 12 miesiecy\n";
 cout << "\nWprowadz przychody z kolejnych miesiecy\n";

 nr_miesiaca = 1;

 cout << nr_miesiaca << ": ";
 cin >> przychod;
 suma = suma + przychod;

Dodanie wczytanego przychodu do sumy przychodówDodanie wczytanego przychodu do sumy przychodów

Instrukcja iteracyjna while — przykład IIInstrukcja iteracyjna while — przykład II
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 65Strona :

I n s t rukc je s te ru j ące wykonan iem prog ram uIn s t rukc je s te ru j ące wykonan iem prog ram u

#include <iostream>
using namespace std;

int main()
{
 double przychod, suma = 0;
 int nr_miesiaca;

 cout << "\nObliczam sumaryczny i sredni przychod z 12 miesiecy\n";
 cout << "\nWprowadz przychody z kolejnych miesiecy\n";

 nr_miesiaca = 1;
 while(nr_miesiaca <= 12)
 {
 cout << nr_miesiaca << ": ";
 cin >> przychod;
 suma = suma + przychod;
 ++nr_miesiaca;
 }

Iteracja wczytująca przychody z 12-tu miesięcyIteracja wczytująca przychody z 12-tu miesięcy

Instrukcja iteracyjna while — przykład IIInstrukcja iteracyjna while — przykład II
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 66Strona :

I n s t rukc je s te ru j ące wykonan iem prog ram uIn s t rukc je s te ru j ące wykonan iem prog ram u

#include <iostream>
using namespace std;

int main()
{
 double przychod, suma = 0;
 int nr_miesiaca;

 cout << "\nObliczam sumaryczny i sredni przychod z 12 miesiecy\n";
 cout << "\nWprowadz przychody z kolejnych miesiecy\n";

 nr_miesiaca = 1;
 while(nr_miesiaca <= 12)
 {
 cout << nr_miesiaca << ": ";
 cin >> przychod;
 suma = suma + przychod;
 ++nr_miesiaca;
 }
 cout << "\nSuma przychodow: " << suma;
 cout << "\nSredni przychod: " << suma / 12;

 cout << endl << "Nacisnij Enter by zakonczyc..." << endl;
 cin.ignore(); cin.get();
 return EXIT_SUCCESS;
}

Wyświetlenie wynikówWyświetlenie wyników

Instrukcja while a do-whileInstrukcja while a do-while
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 67Strona :

I n s t rukc je s te ru j ące wykonan iem prog ram uIn s t rukc je s te ru j ące wykonan iem prog ram u

nr_miesiaca = 1;
while(nr_miesiaca <= 12)
{
 cout << nr_miesiaca << ": ";
 cin >> przychod;

 suma = suma + przychod;

 ++nr_miesiaca;
}

nr_miesiaca = 1;
do
{
 cout << nr_miesiaca << ": ";
 cin >> przychod;

 suma = suma + przychod;

 ++nr_miesiaca;
}
while(nr_miesiaca <= 12);

Zazwyczaj można iteracje while i do-while stosować zamiennie. W tym przypadku
nie można jednoznacznie wskazać, która wersja jest lepsza.

W C/C++ zamiast suma = suma + przychod napiszemy suma += przychod

Warto pewne wartości parametryzowaćWarto pewne wartości parametryzować
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 68Strona :

I n s t rukc je s te ru j ące wykonan iem prog ram uIn s t rukc je s te ru j ące wykonan iem prog ram u

#include <iostream>
using namespace std;

int main()
{
 double przychod, suma = 0;
 int nr_miesiaca;

 cout << "\nObliczam sumaryczny i sredni przychod z 12 miesiecy\n";
 cout << "\nWprowadz przychody z kolejnych miesiecy\n";

 nr_miesiaca = 1;
 while(nr_miesiaca <= 12)
 {
 cout << nr_miesiaca << ": ";
 cin >> przychod;
 suma += przychod;
 ++nr_miesiaca;
 }
 cout << "\nSuma przychodow: " << suma;
 cout << "\nSredni przychod: " << suma / 12 ;

 cout << endl << "Nacisnij Enter by zakonczyc..." << endl;
 cin.ignore(); cin.get();
 return EXIT_SUCCESS;
}

Te wartości warto sparametryzowaćTe wartości warto sparametryzować

Warto pewne wartości parametryzowaćWarto pewne wartości parametryzować
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 69Strona :

I n s t rukc je s te ru j ące wykonan iem prog ram uIn s t rukc je s te ru j ące wykonan iem prog ram u

#include <iostream>
using namespace std;

int main()
{
 const int LB_MIESIECY = 12;
 double przychod, suma = 0;
 int nr_miesiaca;

 cout << "\nObliczam sumaryczny i sredni przychod z 12 miesiecy\n";
 cout << "\nWprowadz przychody z kolejnych miesiecy\n";

 nr_miesiaca = 1;
 while(nr_miesiaca <= LB_MIESIECY)
 {
 cout << nr_miesiaca << ": ";
 cin >> przychod;
 suma += przychod;
 ++nr_miesiaca;
 }
 cout << "\nSuma przychodow: " << suma;
 cout << "\nSredni przychod: " << suma / LB_MIESIECY ;
 cout << endl << "Nacisnij Enter by zakonczyc..." << endl;
 cin.ignore(); cin.get();
 return EXIT_SUCCESS;
}

Odwołanie do wartości stałejOdwołanie do wartości stałej

Deklaracja dziwnej zmiennej — zmiennej
o wartości ustalonej. Możemy powiedzieć,

 że LB_MIESIECY to stała.

Zwyczajowo nazwy stałych zapisuje się
inaczej, aby odróżnić je od zwykłych zmiennych.

Deklaracja dziwnej zmiennej — zmiennej
o wartości ustalonej. Możemy powiedzieć,

 że LB_MIESIECY to stała.

Zwyczajowo nazwy stałych zapisuje się
inaczej, aby odróżnić je od zwykłych zmiennych.

Od szczegółu do ogółuOd szczegółu do ogółu
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 70Strona :

I n s t rukc je s te ru j ące wykonan iem prog ram uIn s t rukc je s te ru j ące wykonan iem prog ram u

#include <iostream>
using namespace std;

int main()
{
 const int LB_MIESIECY = 12;
 double przychod, suma = 0;
 int nr_miesiaca;

 cout << "\Oblicza sumaryczny i sredni przychod z 12 miesiecy\n";
 cout << "\nWprowadz przychody z kolejnych miesiecy\n";

 nr_miesiaca = 1;
 while(nr_miesiaca <= LB_MIESIECY)
 {
 cout << nr_miesiaca << ": ";
 cin >> przychod;
 suma += przychod;
 ++nr_miesiaca;
 }
 cout << "\nSuma przychodow: " << suma;
 cout << "\nSredni przychod: " << suma / LB_MIESIECY ;
 cout << endl << "Nacisnij Enter by zakonczyc..." << endl;
 cin.ignore(); cin.get();
 return EXIT_SUCCESS;
}

Program wyznaczający sumaryczny i średni przychód jest szczególnym przypadkiem
programu typu:

Napisz program wyznaczający sumę i wartość średnią ciągu N liczb, gdzie N jest
pewną stałą o określonej wartości, np. 20.

Program wyznaczający sumaryczny i średni przychód jest szczególnym przypadkiem
programu typu:

Napisz program wyznaczający sumę i wartość średnią ciągu N liczb, gdzie N jest
pewną stałą o określonej wartości, np. 20.

Od szczegółu do ogółuOd szczegółu do ogółu
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 71Strona :

I n s t rukc je s te ru j ące wykonan iem prog ram uIn s t rukc je s te ru j ące wykonan iem prog ram u

#include <iostream>
using namespace std;

int main()
{
 const int N = 20;
 double liczba, suma = 0;
 int licznik;

 cout << "\nObliczam sume i srednia ciagu N=20 liczb\n";
 cout << "\nWprowadz kolejne liczby\n";

 licznik = 1;
 while(licznik <= N)
 {
 cout << licznik << ": ";
 cin >> liczba;
 suma += liczba;
 ++licznik;
 }
 cout << "\nSuma liczb: " << suma;
 cout << "\nSrednia : " << suma / N;
 cout << endl << "Nacisnij Enter by zakonczyc..." << endl;
 cin.ignore(); cin.get();
 return EXIT_SUCCESS;
}

Od szczegółu do ogółuOd szczegółu do ogółu
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 72Strona :

I n s t rukc je s te ru j ące wykonan iem prog ram uIn s t rukc je s te ru j ące wykonan iem prog ram u

#include <iostream>
using namespace std;

int main()
{
 const int N = 20;
 double liczba, suma = 0;
 int licznik;

 cout << "\Oblicza sume i srednia ciagu N=20 liczb\n";
 cout << "\nWprowadz kolejne liczby\n";

 licznik = 1;
 while(licznik <= N)
 {
 cout << licznik << ": ";
 cin >> liczba;
 suma += liczba;
 ++licznik;
 }
 cout << "\nSuma liczb: " << suma;
 cout << "\nSrednia : " << suma / N;
 cout << endl << "Nacisnij Enter by zakonczyc..." << endl;
 cin.ignore(); cin.get();
 return EXIT_SUCCESS;
}

A gdyby zadanie zostało zmienione:

Napisz program wyznaczający sumę i wartość średnią ciągu N liczb, gdzie N jest
nie jest z góry znane i program powinien je wczytać tuż po uruchomieniu.

A gdyby zadanie zostało zmienione:

Napisz program wyznaczający sumę i wartość średnią ciągu N liczb, gdzie N jest
nie jest z góry znane i program powinien je wczytać tuż po uruchomieniu.

Od szczegółu do ogółuOd szczegółu do ogółu
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 73Strona :

I n s t rukc je s te ru j ące wykonan iem prog ram uIn s t rukc je s te ru j ące wykonan iem prog ram u

#include <iostream>
using namespace std;

int main()
{
 const int n = 20;
 double liczba, suma = 0;
 int licznik;

 cout << "\nObliczam sume i srednia ciagu N liczb\n";
 cout << "\nWprowadz ile ma byc liczb: ";
 cin >> n;

 licznik = 1;
 while(licznik <= n)
 {
 cout << licznik << ": ";
 cin >> liczba;
 suma += liczba;
 ++licznik;
 }
 cout << "\nSuma liczb: " << suma;
 cout << "\nSrednia : " << suma / n;
 . . .;
}

Wprowadzenie liczby liczb ;)Wprowadzenie liczby liczb ;)

N powinno być teraz zwykłą zmienną
Można też zmienić jej nazwę, żeby nie

sugerowała, że jest stałą.

N powinno być teraz zwykłą zmienną
Można też zmienić jej nazwę, żeby nie

sugerowała, że jest stałą.

To jest niebezpieczne miejsce!
Dlaczego?

To jest niebezpieczne miejsce!
Dlaczego?

Uwaga na pozornie proste zmiany w programie!Uwaga na pozornie proste zmiany w programie!
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 74Strona :

I n s t rukc je s te ru j ące wykonan iem prog ram uIn s t rukc je s te ru j ące wykonan iem prog ram u

#include <iostream>
using namespace std;

int main()
{
 int n;
 double liczba, suma = 0;
 int licznik;

 cout << "\nObliczam sume i srednia ciagu N liczb\n";
 cout << "\nWprowadz ile ma byc liczb: ";
 cin >> n;

 licznik = 1;
 while(licznik <= n)
 {
 cout << licznik << ": ";
 cin >> liczba;
 suma += liczba;
 ++licznik;
 }
 cout << "\nSuma liczb: " << suma;
 cout << "\nSrednia : " << suma / n;
 . . .;
}

Użytkownik powinien wprowadzić wartość dodatnią.
Ale może np. wprowadzić 0.

Użytkownik powinien wprowadzić wartość dodatnią.
Ale może np. wprowadzić 0.

Uwaga na pozornie proste zmiany w programie!Uwaga na pozornie proste zmiany w programie!
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 75Strona :

I n s t rukc je s te ru j ące wykonan iem prog ram uIn s t rukc je s te ru j ące wykonan iem prog ram u

#include <iostream>
using namespace std;

int main()
{
 int n;
 double liczba, suma = 0;
 int licznik;

 cout << "\nObliczam sume i srednia ciagu N liczb\n";
 cout << "\nWprowadz ile ma byc liczb: ";
 cin >> n;

 licznik = 1;
 while(licznik <= n)
 {
 cout << licznik << ": ";
 cin >> liczba;
 suma += liczba;
 ++licznik;
 }
 cout << "\nSuma liczb: " << suma;
 cout << "\nSrednia : " << suma / n;
 . . .;
}

Iteracja while się obroni — ma wartownika, kontrolującego
warunek przed pierwszym wejściem do wnętrza.

Iteracja while się obroni — ma wartownika, kontrolującego
warunek przed pierwszym wejściem do wnętrza.

Uwaga na pozornie proste zmiany w programie!Uwaga na pozornie proste zmiany w programie!
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 76Strona :

I n s t rukc je s te ru j ące wykonan iem prog ram uIn s t rukc je s te ru j ące wykonan iem prog ram u

#include <iostream>
using namespace std;

int main()
{
 int n;
 double liczba, suma = 0;
 int licznik;

 cout << "\nObliczam sume i srednia ciagu N liczb\n";
 cout << "\nWprowadz ile ma byc liczb: ";
 cin >> n;

 licznik = 1;
 while(licznik <= n)
 {
 cout << licznik << ": ";
 cin >> liczba;
 suma += liczba;
 ++licznik;
 }
 cout << "\nSuma liczb: " << suma;
 cout << "\nSrednia : " << suma / n;
 . . .;
}

 W przypadku n==0 wystąpi błąd dzielenia przez zero W przypadku n==0 wystąpi błąd dzielenia przez zero

Obrona przed nieprawidłowymi danymiObrona przed nieprawidłowymi danymi
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 77Strona :

I n s t rukc je s te ru j ące wykonan iem prog ram uIn s t rukc je s te ru j ące wykonan iem prog ram u

int main()
{
 . . .
 cout << "\nObliczam sume i srednia ciagu N liczb\n";
 cout << "\nWprowadz ile ma byc liczb: ";
 cin >> n;

 licznik = 1;
 while(licznik <= n)
 {
 cout << licznik << ": ";
 cin >> liczba;
 suma += liczba;
 ++licznik;
 }
 if(n > 0)
 {
 cout << "\nSuma liczb: " << suma;
 cout << "\nSrednia : " << suma / n;
 }
 else
 cout << "\nNie wprowadzono danych";
 . . .
}

Instrukcja alternatywy chroni przed dzielenie przez zeroInstrukcja alternatywy chroni przed dzielenie przez zero

Obrona przed nieprawidłowymi danymiObrona przed nieprawidłowymi danymi
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 78Strona :

I n s t rukc je s te ru j ące wykonan iem prog ram uIn s t rukc je s te ru j ące wykonan iem prog ram u

int main()
{
 . . .
 cout << "\nObliczam sume i srednia ciagu N liczb\n";
 cout << "\nWprowadz ile ma byc liczb: ";
 cin >> n;

 licznik = 1;
 while(licznik <= n)
 {
 cout << licznik << ": ";
 cin >> liczba;
 suma += liczba;
 ++licznik;
 }
 if(n > 0)
 {
 cout << "\nSuma liczb: " << suma;
 cout << "\nSrednia : " << suma / n;
 }
 else
 cout << "\nNie wprowadzono danych";
 . . .
}

Program broni się przed błędem, będącym wynikiem wprowadzenia
nieprawidłowych danych

A może nie pozwolimy na wprowadzenie nieprawidłowych danych?

Program broni się przed błędem, będącym wynikiem wprowadzenia
nieprawidłowych danych

A może nie pozwolimy na wprowadzenie nieprawidłowych danych?

Obrona przed nieprawidłowymi danymiObrona przed nieprawidłowymi danymi
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 79Strona :

I n s t rukc je s te ru j ące wykonan iem prog ram uIn s t rukc je s te ru j ące wykonan iem prog ram u

int main()
{
 . . .
 cout << "\nObliczam sume i srednia ciagu N liczb\n";

 do
 {
 cout << "\nWprowadz ile ma byc liczb: ";
 cin >> n;
 if(n <= 0)
 cout << "\nWartosc powinna byc dodatnia!";
 }
 while(n <= 0);

 licznik = 1;
 while(licznik <= n)
 {
 cout << licznik << ": ";
 cin >> liczba;
 suma += liczba;
 ++licznik;
 }
 cout << "\nSuma liczb: " << suma;
 cout << "\nSrednia : " << suma / n;
 . . .
}

Ta iteracja nie pozwala na wprowadzenie
nieprawidłowej wartości dla n.

Nie trzeba zatem
bronić się przed dzieleniem przez 0.

Ta iteracja nie pozwala na wprowadzenie
nieprawidłowej wartości dla n.

Nie trzeba zatem
bronić się przed dzieleniem przez 0.

Instrukcja iteracyjna while — przykład IIIInstrukcja iteracyjna while — przykład III
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 80Strona :

I n s t rukc je s te ru j ące wykonan iem prog ram uIn s t rukc je s te ru j ące wykonan iem prog ram u

Rowerzysta notuje dystanse przejechane w ramach każdego wypadu rowerowego.
Po zakończeniu sezonu chce obliczyć, ile w sumie przejechał kilometrów oraz jaki
był średni dystans wycieczki. Liczba dystansów nie jest z góry ustalona,
wprowadzenie zerowej wartości dystansu kończy wczytywanie danych.

Problem

Scenariusz działania programu

Instrukcja iteracyjna while — przykład IIIInstrukcja iteracyjna while — przykład III
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 81Strona :

I n s t rukc je s te ru j ące wykonan iem prog ram uIn s t rukc je s te ru j ące wykonan iem prog ram u

Analiza

Program powinien wczytać kolejno przejechane dystanse, na bieżąco dodawać
je do dystansu sumarycznego.

Ponieważ nie wiadomo ile będzie dystansów, zakładamy, że wprowadzenie
dystansu zerowego jest sygnałem końca wprowadzania danych.

Po tym następuje wyświetlenie dystansu sumarycznego i średniego.

Wprowadzenie wartości ujemnej zostanie potraktowane jako mimowolny błąd,
znak zostanie zignorowany.

Instrukcja iteracyjna while — przykład IIIInstrukcja iteracyjna while — przykład III
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 82Strona :

I n s t rukc je s te ru j ące wykonan iem prog ram uIn s t rukc je s te ru j ące wykonan iem prog ram u

#include <iostream>
#include <cmath>
using namespace std;

int main()
{
 double dystans, suma;
 int licznik;

 cout << "\nObliczam sumaryczny i sredni dystans.";
 cout << "\nPodaj kolejne dystanse, 0 konczy wprowadzanie:\n";

 suma = 0;
 licznik = 0;

 cout << '>';
 cin >> dystans;
 while(dystans != 0)
 {
 suma += fabs(dystans);
 ++licznik;

 cout << '>';
 cin >> dystans;
 } 1/21/2

Wyzerowanie zmiennej suma i licznika — to jest bardzo ważne!Wyzerowanie zmiennej suma i licznika — to jest bardzo ważne!

Instrukcja iteracyjna while — przykład IIIInstrukcja iteracyjna while — przykład III
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 83Strona :

I n s t rukc je s te ru j ące wykonan iem prog ram uIn s t rukc je s te ru j ące wykonan iem prog ram u

#include <iostream>
#include <cmath>
using namespace std;

int main()
{
 double dystans, suma;
 int licznik;

 cout << "\nObliczam sumaryczny i sredni dystans.";
 cout << "\nPodaj kolejne dystanse, 0 konczy wprowadzanie:\n";

 suma = 0;
 licznik = 0;

 cout << '>';
 cin >> dystans;
 while(dystans != 0)
 {
 suma += fabs(dystans);
 ++licznik;

 cout << '>';
 cin >> dystans;
 } 1/21/2

Wczytanie pierwszego dystansuWczytanie pierwszego dystansu

Instrukcja iteracyjna while — przykład IIIInstrukcja iteracyjna while — przykład III
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 84Strona :

I n s t rukc je s te ru j ące wykonan iem prog ram uIn s t rukc je s te ru j ące wykonan iem prog ram u

#include <iostream>
#include <cmath>
using namespace std;

int main()
{
 double dystans, suma;
 int licznik;

 cout << "\nObliczam sumaryczny i sredni dystans.";
 cout << "\nPodaj kolejne dystanse, 0 konczy wprowadzanie:\n";

 suma = 0;
 licznik = 0;

 cout << '>';
 cin >> dystans;
 while(dystans != 0)
 {
 suma += fabs(dystans);
 ++licznik;

 cout << '>';
 cin >> dystans;
 } 1/21/2

Sprawdzenie czy czasem nie jest zerowySprawdzenie czy czasem nie jest zerowy

Instrukcja iteracyjna while — przykład IIIInstrukcja iteracyjna while — przykład III
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 85Strona :

I n s t rukc je s te ru j ące wykonan iem prog ram uIn s t rukc je s te ru j ące wykonan iem prog ram u

#include <iostream>
#include <cmath>
using namespace std;

int main()
{
 double dystans, suma;
 int licznik;

 cout << "\nObliczam sumaryczny i sredni dystans.";
 cout << "\nPodaj kolejne dystanse, 0 konczy wprowadzanie:\n";

 suma = 0;
 licznik = 0;

 cout << '>';
 cin >> dystans;
 while(dystans != 0)
 {
 suma += fabs(dystans);
 ++licznik;

 cout << '>';
 cin >> dystans;
 } 1/21/2

Dodanie dystansu do sumy, zwiększenie licznika dystansówDodanie dystansu do sumy, zwiększenie licznika dystansów

Instrukcja iteracyjna while — przykład IIIInstrukcja iteracyjna while — przykład III
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 86Strona :

I n s t rukc je s te ru j ące wykonan iem prog ram uIn s t rukc je s te ru j ące wykonan iem prog ram u

#include <iostream>
#include <cmath>
using namespace std;

int main()
{
 double dystans, suma;
 int licznik;

 cout << "\nObliczam sumaryczny i sredni dystans.";
 cout << "\nPodaj kolejne dystanse, 0 konczy wprowadzanie:\n";

 suma = 0;
 licznik = 0;

 cout << '>';
 cin >> dystans;
 while(dystans != 0)
 {
 suma += fabs(dystans);
 ++licznik;

 cout << '>';
 cin >> dystans;
 } 1/21/2

Wczytanie kolejnego dystansuWczytanie kolejnego dystansu

Instrukcja iteracyjna while — przykład IIIInstrukcja iteracyjna while — przykład III
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 87Strona :

I n s t rukc je s te ru j ące wykonan iem prog ram uIn s t rukc je s te ru j ące wykonan iem prog ram u

 if(licznik > 0)
 {
 cout << "\nSuma: " << suma;
 cout << "\nSrednia: " << suma / licznik;
 }
 else
 cout << "\nNie mam nic do roboty";

 cout << endl << "Nacisnij Enter by zakonczyc..." << endl;
 cin.ignore();
 cin.get();

 return EXIT_SUCCESS;
} 2/22/2

Wyprowadzenie wyników gdy wczytano przynajmniej jeden dystansWyprowadzenie wyników gdy wczytano przynajmniej jeden dystans

Przykład III a iteracja do-whilePrzykład III a iteracja do-while
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 88Strona :

I n s t rukc je s te ru j ące wykonan iem prog ram uIn s t rukc je s te ru j ące wykonan iem prog ram u

#include <iostream>
#include <cmath>
using namespace std;

int main()
{
 double dystans, suma;
 int licznik;

 cout << "\nObliczam sumaryczny i sredni dystans.";
 cout << "\nPodaj kolejne dystanse, 0 konczy wprowadzanie:\n";

 suma = 0;
 licznik = 0;

 do
 {
 cout << '>';
 cin >> dystans;
 if(dystans != 0)
 {
 suma += fabs(dystans);
 ++licznik;
 }
 }
 while(dystans != 0);

1/21/2

Kontrola wprowadzonego dystansuKontrola wprowadzonego dystansu

Przykład III a iteracja do-whilePrzykład III a iteracja do-while
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 89Strona :

I n s t rukc je s te ru j ące wykonan iem prog ram uIn s t rukc je s te ru j ące wykonan iem prog ram u

 if(licznik > 0)
 {
 cout << "\nSuma: " << suma;
 cout << "\nSrednia: " << suma / licznik;
 }
 else
 cout << "\nNie mam nic do roboty";

 cout << endl << "Nacisnij Enter by zakonczyc..." << endl;
 cin.ignore();
 cin.get();

 return EXIT_SUCCESS;
} 2/22/2

Wyprowadzenie wyników gdy wczytano przynajmniej jeden dystansWyprowadzenie wyników gdy wczytano przynajmniej jeden dystans

Przykład III — Iteracja while a iteracja do-whilePrzykład III — Iteracja while a iteracja do-while
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 90Strona :

I n s t rukc je s te ru j ące wykonan iem prog ram uIn s t rukc je s te ru j ące wykonan iem prog ram u

 suma = 0;
 licznik = 0;

 cout << '>';
 cin >> dystans;
 while(dystans != 0)
 {
 suma += fabs(dystans);
 ++licznik;

 cout << '>';
 cin >> dystans;
 }

 suma = 0;
 licznik = 0;

 do
 {
 cout << '>';
 cin >> dystans;
 if(dystans != 0)
 {
 suma += fabs(dystans);
 ++licznik;
 }
 }
 while(dystans != 0);

Od instrukcji while do instrukcji forOd instrukcji while do instrukcji for
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 91Strona :

I n s t rukc je s te ru j ące wykonan iem prog ram uIn s t rukc je s te ru j ące wykonan iem prog ram u

 int licznik;

 while()
 {
 ;

 ;
 }

licznik = 10;

licznik > 0

--licznik

cout << endl << licznik << "..."

Inicjalizacja

Warunek

Ciało iteracji

Modyfikacja

 int licznik;

 for(; ;) licznik = 10 licznik > 0 --licznik

cout << endl << licznik << "..."

Inicjalizacja Warunek Modyfikacja

Ciało iteracji

Iteracja for w C/C++ nie ma nic wspólnego — poza nazwą — z instrukcją
iteracyjną for z języka Pascal.

Instrukcja for w języku C/C++ stanowi uogólnienie schematu iteracji while.

Instrukcja iteracyjna for — ogólny schematInstrukcja iteracyjna for — ogólny schemat
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 92Strona :

I n s t rukc je s te ru j ące wykonan iem prog ram uIn s t rukc je s te ru j ące wykonan iem prog ram u

inicjalizacja;
while(warunek)
{
 ciało_iteracji
 modyfikacja
}

for(inicjalizacja; warunek; modyfikacja)
 ciało_iteracji

Przykład wykorzystania iteracji forPrzykład wykorzystania iteracji for
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 93Strona :

I n s t rukc je s te ru j ące wykonan iem prog ram uIn s t rukc je s te ru j ące wykonan iem prog ram u

Problem 1

Napisać program wyznaczający średni, dobowy kurs waluty EURO na podstawie
kursów notowanych na początku każdej godziny.

Pod koniec doby analityk wprowadza zanotowane liczby — program ma
wyznaczyć na tej podstawie średnie kurs dobowy.

Liczba wprowadzanych kursów jest znana, jest to zawsze 24.

Iteracyjne przetwarzanie ciągów liczbowychIteracyjne przetwarzanie ciągów liczbowych
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 94Strona :

I n s t rukc je s te ru j ące wykonan iem prog ram uIn s t rukc je s te ru j ące wykonan iem prog ram u

#include <cstdlib>
#include <iostream>
using namespace std;

int main()
{
 const int MAKS_LB_KURSOW = 24;
 float kurs, sumaryczny;
 int lb_kursow;

 cout << "\nWyznaczam dobowy sredn kurs waluty EURO.";
 cout << "\nWprowadz 24 dodatnie liczby -- kursy EURO";
 cout << "\nzanotowane na poczatku kazdej godziny.\n" << flush;

 for(sumaryczny = 0, lb_kursow = 1 ; lb_kursow <= MAKS_LB_KURSOW; lb_kursow++)
 {
 cout << '>';
 cin >> kurs;

 sumaryczny += kurs;
 }//for

 cout << "\nKurs sredni: " << sumaryczny / MAX_LB_KURSOW;

 cout << endl << "Nacisnij Enter by zakonczyc...";
 cin.ignore(); cin.get();
 return EXIT_SUCCESS;
}

W części inicjalizacyjnej może być więcej instrukcji rozdzielonych
przecinkami.

W części inicjalizacyjnej może być więcej instrukcji rozdzielonych
przecinkami.

Iteracyjne przetwarzanie ciągów liczbowychIteracyjne przetwarzanie ciągów liczbowych
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 95Strona :

I n s t rukc je s te ru j ące wykonan iem prog ram uIn s t rukc je s te ru j ące wykonan iem prog ram u

Problem 2

Uzupełnić poprzedni program o wyznaczanie kursu minimalnego i maksy-
malnego.

Wyznaczanie minimum i maksimum

Jeżeli wczytany kurs jest mniejszy od minimalnego, to niech on się stanie
minimalnym. Jeżeli wczytany kurs jest większy od maksymalnego, to niech on
się stanie maksymalnym. Jak ustawić wartość startową minimum i maksimum?

3.50 3.52 3.48 • • • 3.47

1 2 3 24

3.50 3.52 3.48 • • • 3.47

1 2 3 24

Ten element potraktujemy
osobno — on będzie startową
wartością minimalną,
maksymalną i sumaryczną.

Ten element potraktujemy
osobno — on będzie startową
wartością minimalną,
maksymalną i sumaryczną.

Te elementy obsłużymy
iteracyjnie, począwszy od
drugiego, porównując z
minimum, maksimum i
doliczając do sumy.

Te elementy obsłużymy
iteracyjnie, począwszy od
drugiego, porównując z
minimum, maksimum i
doliczając do sumy.

Iteracyjne przetwarzanie ciągów liczbowychIteracyjne przetwarzanie ciągów liczbowych
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 96Strona :

I n s t rukc je s te ru j ące wykonan iem prog ram uIn s t rukc je s te ru j ące wykonan iem prog ram u

#include <cstdlib>
#include <iostream>
using namespace std;

const int MAKS_LB_KURSOW = 24;

int main()
{
 float kurs, sumaryczny, maksymalny, minimalny;
 int lb_kursow;

 cout << "\nWyznaczam dobowy, sredni, minimalny i maksymalny kurs";
 cout << "\nwaluty EURO. Wprowadz 24 dodatnie liczby -- kursy EURO";
 cout << "\nzanotowane na poczatku kazdej godziny.\n>" << flush;

 // Wczytanie pierwszego kursu
 cin >> kurs;

 // Pierwszy i jedyny na razie kurs to kurs minimalny, maksymalny i sumaryczny
 maksymalny = minimalny = sumaryczny = kurs;

1/21/2

Iteracyjne przetwarzanie ciągów liczbowychIteracyjne przetwarzanie ciągów liczbowych
Podstawy programowaniaPodstawy programowania

Copyright © Roman Simiński 97Strona :

I n s t rukc je s te ru j ące wykonan iem prog ram uIn s t rukc je s te ru j ące wykonan iem prog ram u

 for(lb_kursow = 2; lb_kursow <= MAKS_LB_KURSOW; lb_kursow++)
 {

 cout << '>' << flush;
 cin >> kurs;

 sumaryczny = sumaryczny + kurs;

 if(kurs < minimalny)
 minimalny = kurs;

 if(kurs > maksymalny)
 maksymalny = kurs;
 }

 cout << "\nKurs najwyzszy: " << maksymalny;
 cout << "\nKurs najnizszy: " << minimalny;
 cout << "\nKurs sredni: " << sumaryczny / MAKS_LB_KURSOW;

 cout << endl << "Nacisnij Enter by zakonczyc...";
 cin.ignore();
 cin.get();

 return EXIT_SUCCESS;
}

2/22/2

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21
	Slajd 22
	Slajd 23
	Slajd 24
	Slajd 25
	Slajd 26
	Slajd 27
	Slajd 28
	Slajd 29
	Slajd 30
	Slajd 31
	Slajd 32
	Slajd 33
	Slajd 34
	Slajd 35
	Slajd 36
	Slajd 37
	Slajd 38
	Slajd 39
	Slajd 40
	Slajd 41
	Slajd 42
	Slajd 43
	Slajd 44
	Slajd 45
	Slajd 46
	Slajd 47
	Slajd 48
	Slajd 49
	Slajd 50
	Slajd 51
	Slajd 52
	Slajd 53
	Slajd 54
	Slajd 55
	Slajd 56
	Slajd 57
	Slajd 58
	Slajd 59
	Slajd 60
	Slajd 61
	Slajd 62
	Slajd 63
	Slajd 64
	Slajd 65
	Slajd 66
	Slajd 67
	Slajd 68
	Slajd 69
	Slajd 70
	Slajd 71
	Slajd 72
	Slajd 73
	Slajd 74
	Slajd 75
	Slajd 76
	Slajd 77
	Slajd 78
	Slajd 79
	Slajd 80
	Slajd 81
	Slajd 82
	Slajd 83
	Slajd 84
	Slajd 85
	Slajd 86
	Slajd 87
	Slajd 88
	Slajd 89
	Slajd 90
	Slajd 91
	Slajd 92
	Slajd 93
	Slajd 94
	Slajd 95
	Slajd 96
	Slajd 97

