Introduction to

Raphael Amiard
Gustavo A. Hoffmann

"

A&

ADACORE.COM

Introduction to Ada
Release 2025-01

Raphael Amiard
and Gustavo A. Hoffmann

Jan 31, 2025

CONTENTS:

Introduction 3
1.1 History e 3
1.2 Adatoday e e 3
1.3 Philosophy e e e e e 4
1.4 SPARK . . . o e e e e e e 4
Imperative language 5
2.1 Helloworld o e e e e e e e e 5
2.2 Imperative language - If/Then/Else, 6
2.3 Imperative language - LOOPS e e 9
2.3.1 Forloops e e 9
2.3.2 Bareloops e 10
2.3.3 Whileloops e e 11
2.4 Imperative language - Case statement, 12
2.5 Imperative language - Declarativeregions 14
2.6 Imperative language - conditional expressions 16
2.6.1 Ifexpressions i e e e 16
2.6.2 Case expresSiONS . . . v v v v i i e e e e e e e e e e e e e 17
Subprograms 19
3.1 SUbPrograms e e e e e e e 19
3.1.1 Subprogramcalls. e 20
3.1.2 Nested subprograms e e 21
3.1.3 Functioncalls e 22
3.2 Parameter modes e e e e e 24
3.3 Subprogramcalls e 24
3.3.1 Inparameterso e e e e e e e e 24
3.3.2 Inout parameters e 25
3.3.3 Outparameters. e 26
3.3.4 Forward declaration of subprograms 27
3.4 RENAMING o o e e e e e 27
Modular programming 31
4.1 Packages e 31
4.2 Usingapackage i i e e e e 33
4.3 Package body e e e 33
4.4 Child packages e e e e e 35
4.4.1 Childofachildpackage. 37
4.4.2 Multiple children 38
4.4.3 Visibility e e e 39
4.5 RENAMING . . . o o i s e e e e e e e e e e e 41
Strongly typed language 43
5.1 Whatisatype? e 43
5.2 Integers e e e e e e e 43

5.2.1 Operational semantics e 45

5.3 Unsigned types o e e e e e e e 46
5.4 Enumerations e e e e e e 47
5.5 Floating-pointtypes e 48
5.5.1 Basicproperties e e e 48

5.5.2 Precision of floating-pointtypes 0., 49

5.5.3 Range of floating-pointtypes 50

5.6 Strong typing e e 52
5.7 Derived types e e e e e 54
5.8 Subtypes e e e 56
5.8.1 Subtypesastypealiases 58

6 Records 61
6.1 Record typedeclaration 61
6.2 Aggregates e e e e e e e 62
6.3 Componentselection. 62
6.4 REeNamMINg o i e e e e e e e 63

7 Arrays 67
7.1 Array typedeclaration 67
7.2 Indexing e e e e e e e 70
7.3 Simpler array declarations L o 71
7.4 Range attribute e 72
7.5 Unconstrained arrays i i e e e e e e 74
7.6 Predefined array type: String 75
7.7 Restrictions e e e e e e 77
7.8 Returning unconstrained arrayso e e 78
7.9 Declaring arrays (2) o e e e e e e 79
7.10 Array slices e e e e e e 80
7.11 Renaming o it e e e e e e e e e e 81

8 More about types 85
8.1 Aggregates: Aprimer e e e e 85
8.2 Overloading and qualified expressions e 86
8.3 Charactertypes e e 89

9 Access types (pointers) 91
0.1 OVEIVIEW . . . ot o e e e e e e e e e e e e 91
9.2 Allocation (by type) e 93
9.3 DereferenCing o e e e e 94
9.4 Otherfeatures. e e 94
9.5 Mutually recursive types e e 95
10 More about records 97
10.1 Dynamically sized record types i e 97
10.2 Records with discriminant e 98
10.3 Variant records o . e e e e e e 100
11Fixed-point types 103
11.1 Decimal fixed-pointtypes e e 103
11.2 Ordinary fixed-point types i i e 105
12 Privacy 109
12.1 Basic encapsulation e e 109
12.2 Abstract data types 110
12.3 Limited types e e e e 112
12.4 Child packages & privacy o i i e e 113
13 Generics 119

13.1 Introduction e e e
13.2 Formal type declaration e
13.3 Formal object declaration e
13.4 Generic body definition
13.5 Genericinstantiation L L
13.6 Generic packages i e e e e e e e e
13.7 Formal subprograms o e e e e e e e e e e e e
13.8 Example: l/Oinstances e e e
13.9 Example: ADTS e e e
13. 1EXample: SWap o e e e e e e e e e e e e
13. 1 Example: Reversing o i i e e e e e e e e e e e
13.1ZExample: Test application e

14 Exceptions
14.1 Exception declaration e
14.2 Raising an exceplion L e e e e e e e
14.3 Handling an exception e
14.4 Predefined exceptions e e

15Tasking
15,1 Tasks . . . o e e e e e e e e e e e
15.1.1 Simpletask e
15.1.2 Simple synchronization 0o
15.1.3 Delay e e e e e e e
15.1.4 Synchronization: rendezvous e
15.1.5Selectloop o o e e
15.1.6 Cycling tasks e
15.2 Protected objects e e
15.2.1 Simple object e
15.2.2 Entries o e e e e e
15.3 Task and protected types e
15.3. 1 Task types o o e e e
15.3.2 Protected types e e e

16 Design by contracts
16.1 Pre- and postconditions
16.2 Predicates e e
16.3 Typeinvariants e e e e e e e e e

17 Interfacing with C
17.1 Multi-language project e e e e e
17.2 Type convention o i i e e e e e e e e e e
17.3 Foreign subprograms o i e e e e e e e e e e e e e e e
17.3.1 Calling C subprogramsinAda
17.3.2 Calling Ada subprogramsin C
17.4 Foreign variables
17.4.1 Using C global variablesinAda
17.4.2 Using Ada variablesin C
17.5 Generating bindings L e e
17.5.1 Adapting bindings

18 Object-oriented programming
18.1 Derived types o e e e
18.2 Tagged types e e e e
18.3 Classwide types i i e e e e e e e
18.4 Dispatching operations e
18.5 Dot notation L e e e
18.6 Private & Limited e
18.7 Classwide access types o i i i i e e e e

19Standard library: Containers
19.1 Vectors
19.1.1 Instantiation

19.1.2 Initialization

19.1.3 Appending and prepending

19.1.4 Accessing first and last elements

19.1.5 lterating

19.1.6 Finding and changing elements

19.1.7 Inserting elements
19.1.8 Removing elements
19.1.9 Other Operations
19.2 Sets
19.2.1 Initialization and iteration .
19.2.2 Operations on elements
19.2.3 Other Operations
19.3 Indefinite maps
19.3.1 Hashed maps
19.3.2 Ordered maps
19.3.3 Complexity

20Standard library: Dates & Times
20.1 Date and time handling
20.1.1 Delaying using date

20.2 Real-time
20.2.1 Benchmarking

21Standard library: Strings
21.1 String operations
21.2 Limitation of fixed-length strings .
21.3 Bounded strings
21.4 Unbounded strings

22Standard library: Files and streams
22.1 Text I/O
22.2 Sequential 1/0
22.3 Direct 1/O
22.4 Stream 1/O

23 Standard library: Numerics
23.1 Elementary Functions
23.2 Random Number Generation
23.3 Complex Types
23.4 Vector and Matrix Manipulation .

24 Appendices
24.1 Appendix A: Generic Formal Types
24.1.1 Indefinite version

24.2 Appendix B: Containers

elements.

Introduction to Ada

Copyright © 2018 - 2024, AdaCore

This book is published under a CC BY-SA license, which means that you can copy, redis-
tribute, remix, transform, and build upon the content for any purpose, even commercially,
as long as you give appropriate credit, provide a link to the license, and indicate if changes
were made. If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original. You can find license details on this

pagel

This course will teach you the basics of the Ada programming language and is intended for
those who already have a basic understanding of programming techniques. You will learn
how to apply those techniques to programming in Ada.

This document was written by Raphaél Amiard and Gustavo A. Hoffmann, with review from
Richard Kenner.

O Note

The code examples in this course use a 50-column limit, which greatly improves the
readability of the code on devices with a small screen size. This constraint, however,
leads to an unusual coding style. For instance, instead of calling Put Line in a single
line, we have this:

Put Line
(" is in the northeast quadrant");
or this:

Put Line (" (X =>"
& Integer'Image (P.X)
& ")");

Note that typical Ada code uses a limit of at least 79 columns. Therefore, please don't
take the coding style from this course as a reference!

© Note

Each code example from this book has an associated "code block metadata", which
contains the name of the "project" and an MD5 hash value. This information is used to
identify a single code example.

You can find all code examples in a zip file, which you can download from the learn
website?. The directory structure in the zip file is based on the code block metadata.
For example, if you're searching for a code example with this metadata:

* Project: Courses.Intro_To Ada.lImperative_Language.Greet
e MD5: cba89a34b87c9dfa71533d982d05e6ab
you will find it in this directory:

L http://creativecommons.org/licenses/by-sa/4.0

CONTENTS: 1

http://creativecommons.org/licenses/by-sa/4.0
http://creativecommons.org/licenses/by-sa/4.0
https://learn.adacore.com/zip/learning-ada_code.zip
https://learn.adacore.com/zip/learning-ada_code.zip

Introduction to Ada

projects/Courses/Intro To Ada/Imperative Language/Greet/
cbaB89a34b87c9dfa71533d982d05e6ab/

In order to use this code example, just follow these steps:
1. Unpack the zip file;

Go to target directory;

Start GNAT Studio on this directory;

Build (or compile) the project;

Ao BN

Run the application (if a main procedure is available in the project).

2 https://learn.adacore.com/zip/learning-ada_code.zip

2 CONTENTS:

CHAPTER
ONE

INTRODUCTION

1.1 History

In the 1970s the United States Department of Defense (DOD) suffered from an explosion
of the number of programming languages, with different projects using different and non-
standard dialects or language subsets / supersets. The DOD decided to solve this problem
by issuing a request for proposals for a common, modern programming language. The
winning proposal was one submitted by Jean Ichbiah from Cll Honeywell-Bull.

The first Ada standard was issued in 1983; it was subsequently revised and enhanced in
1995, 2005 and 2012, with each revision bringing useful new features.

This tutorial will focus on Ada 2012 as a whole, rather than teaching different versions of
the language.

1.2 Ada today

Today, Ada is heavily used in embedded real-time systems, many of which are safety critical.
While Ada is and can be used as a general-purpose language, it will really shine in low-level
applications:

* Embedded systems with low memory requirements (no garbage collector allowed).
» Direct interfacing with hardware.

* Soft or hard real-time systems.

* Low-level systems programming.

Specific domains seeing Ada usage include Aerospace & Defense, civil aviation, rail, and
many others. These applications require a high degree of safety: a software defect is not
just an annoyance, but may have severe consequences. Ada provides safety features that
detect defects at an early stage — usually at compilation time or using static analysis tools.
Ada can also be used to create applications in a variety of other areas, such as:

 Video game programming?

¢ Real-time audio*

» Kernel modules?

This is a non-comprehensive list that hopefully sheds light on which kind of programming
Ada is good at.

3 https://github.com/AdaDoom3/AdaDoom3
4 http://www.electronicdesign.com/embedded-revolution/assessing-ada-language-audio-applications
5 http://www.nihamkin.com/tag/kernel.htm|

https://github.com/AdaDoom3/AdaDoom3
http://www.electronicdesign.com/embedded-revolution/assessing-ada-language-audio-applications
http://www.nihamkin.com/tag/kernel.html

Introduction to Ada

In terms of modern languages, the closest in terms of targets and level of abstraction are
probably C++°% and Rust’.

1.3 Philosophy

Ada's philosophy is different from most other languages. Underlying Ada's design are prin-
ciples that include the following:

* Readability is more important than conciseness. Syntactically this shows through the
fact that keywords are preferred to symbols, that no keyword is an abbreviation, etc.

* Very strong typing. It is very easy to introduce new types in Ada, with the benefit of
preventing data usage errors.

- Itiis similar to many functional languages in that regard, except that the program-
mer has to be much more explicit about typing in Ada, because there is almost no
type inference.

« Explicit is better than implicit. Although this is a Python® commandment, Ada takes it
way further than any language we know of:

- There is mostly no structural typing, and most types need to be explicitly named
by the programmer.

- As previously said, there is mostly no type inference.

- Semantics are very well defined, and undefined behavior is limited to an absolute
minimum.

- The programmer can generally give a /ot of information about what their program
means to the compiler (and other programmers). This allows the compiler to be
extremely helpful (read: strict) with the programmer.

During this course, we will explain the individual language features that are building blocks
for that philosophy.

1.4 SPARK

While this class is solely about the Ada language, it is worth mentioning that another lan-
guage, extremely close to and interoperable with Ada, exists: the SPARK language.

SPARK is a subset of Ada, designed so that the code written in SPARK is amenable to auto-
matic proof. This provides a level of assurance with regard to the correctness of your code
that is much higher than with a regular programming language.

There is a dedicated course for the SPARK language but keep in mind that every time we
speak about the specification power of Ada during this course, it is power that you can lever-
age in SPARK to help proving the correctness of program properties ranging from absence
of run-time errors to compliance with formally specified functional requirements.

6 https://en.wikipedia.org/wiki/C%2B%2B
7 https://www.rust-lang.org/en-US/
8 https://www.python.org

4 Chapter 1. Introduction

https://en.wikipedia.org/wiki/C%2B%2B
https://www.rust-lang.org/en-US/
https://www.python.org

N o U A W N &

CHAPTER
TWO

IMPERATIVE LANGUAGE

Ada is a multi-paradigm language with support for object orientation and some elements of
functional programming, but its core is a simple, coherent procedural/imperative language
akin to C or Pascal.

© In other languages

One important distinction between Ada and a language like C is that statements and
expressions are very clearly distinguished. In Ada, if you try to use an expression where
a statement is required then your program will fail to compile. This rule supports a useful
stylistic principle: expressions are intended to deliver values, not to have side effects.
It can also prevent some programming errors, such as mistakenly using the equality
operator = instead of the assignment operation :=in an assignment statement.

2.1 Hello worid

Here's a very simple imperative Ada program:

Listing 1: greet.adb
with Ada.Text I0;

procedure Greet is
begin
-- Print "Hello, World!" to the screen
Ada.Text IO.Put Line ("Hello, World!");
end Greet;

Code block metadata

Project: Courses.Intro To Ada.Imperative Language.Greet
MD5: cba89a34b87c9dfa71533d982d05e6ab

Runtime output

Hello, World!

which we'll assume is in the source file greet.adb.
There are several noteworthy things in the above program:

e A subprogram in Ada can be either a procedure or a function. A procedure, as illus-
trated above, does not return a value when called.

» with is used to reference external modules that are needed in the procedure. This is
similar to import in various languages or roughly similar to #include in C and C++.
We'll see later how they work in detail. Here, we are requesting a standard library

N o U A W N e

Introduction to Ada

module, the Ada.Text I0 package, which contains a procedure to print text on the
screen: Put_Line.

* Greet is a procedure, and the main entry point for our first program. Unlike in C
or C++, it can be named anything you prefer. The builder will determine the entry
point. In our simple example, gprbuild, GNAT's builder, will use the file you passed
as parameter.

* Put Line is a procedure, just like Greet, except it is declared in the Ada.Text IO
module. It is the Ada equivalent of C's printf.

« Comments start with - - and go to the end of the line. There is no multi-line comment
syntax, that is, it is not possible to start a comment in one line and continue it in the
next line. The only way to create multiple lines of comments in Ada is by using - - on
each line. For example:

-- We start a comment in this line...
-- and we continue on the second line...

© In other languages

Procedures are similar to functions in C or C++ that return void. We'll see later how to
declare functions in Ada.

Here is a minor variant of the "Hello, World" example:

Listing 2: greet.adb
with Ada.Text I0; use Ada.Text IO;

procedure Greet is

begin
-- Print "Hello, World!" to the screen
Put Line ("Hello, World!");

end Greet;

Code block metadata

Project: Courses.Intro To Ada.Imperative Language.Greet 2
MD5: a58al193207df44aabedaadfelcl4280

Runtime output

Hello, World!

This version utilizes an Ada feature known as a use clause, which has the form use package-
name. As illustrated by the call on Put Line, the effect is that entities from the named
package can be referenced directly, without the package-name. prefix.

2.2 Imperative language - If/Then/Else

This section describes Ada's if statement and introduces several other fundamental lan-
guage facilities including integer I/O, data declarations, and subprogram parameter modes.

Ada's if statement is pretty unsurprising in form and function:

6 Chapter 2. Imperative language

W @ N U A W N e

T e e i
©® N o U A W N B O

© N U A W N e

e i <
U A W N B O

Introduction to Ada

Listing 3: check_positive.adb

with Ada.Text I0; use Ada.Text I0;
with Ada.Integer Text IO0; use Ada.Integer Text IO;

procedure Check Positive is
N : Integer;
begin
-- Put a String
Put ("Enter an integer value: ");

-- Read in an integer value
Get (N);

if N > 0 then
-- Put an Integer
Put (N);
Put Line (" is a positive number");
end if;
end Check Positive;

Code block metadata

Project: Courses.Intro To Ada.Imperative Language.Check Positive
MD5: 2e8b4b2f3f258fd9e02c2d65846af101

The if statement minimally consists of the reserved word if, a condition (which must be
a Boolean value), the reserved word then and a non-empty sequence of statements (the
then part) which is executed if the condition evaluates to True, and a terminating end if.

This example declares an integer variable N, prompts the user for an integer, checks if the
value is positive and, if so, displays the integer's value followed by the string " is a positive
number". If the value is not positive, the procedure does not display any output.

The type Integer is a predefined signed type, and its range depends on the computer ar-
chitecture. On typical current processors Integer is 32-bit signed.

The example illustrates some of the basic functionality for integer input-output. The rel-
evant subprograms are in the predefined package Ada.Integer Text IO and include the
Get procedure (which reads in a number from the keyboard) and the Put procedure (which
displays an integer value).

Here's a slight variation on the example, which illustrates an if statement with an else
part:

Listing 4: check positive.adb

with Ada.Text I0; use Ada.Text IO;
with Ada.Integer Text IO; use Ada.Integer Text IO;

procedure Check Positive is
N : Integer;
begin
-- Put a String
Put ("Enter an integer value: ");

-- Reads in an integer value
Get (N);

-- Put an Integer
Put (N);

(continues on next page)

2.2. Imperative language - If/Then/Else 7

W @ N U A W N e

WONON NN NNNNNNR B B 2 BB H e e e
S © ® N o U B W N B O L ® N O U A~ W N B O

Introduction to Ada

(continued from previous page)

if N > 0 then
Put Line (" is a positive number");
else
Put Line (" is not a positive number");
end if;
end Check Positive;

Code block metadata

Project: Courses.Intro To Ada.Imperative Language.Check Positive 2
MD5: 28fca0d7840d06d478e5933e8182d1db

In this example, if the input value is not positive then the program displays the value fol-
lowed by the String " is not a positive number".

Our final variation illustrates an if statement with elsif sections:

Listing 5: check direction.adb

with Ada.Text I0; use Ada.Text IO;
with Ada.Integer Text IO; use Ada.Integer Text IO;

procedure Check Direction is
N : Integer;
begin
Put ("Enter an integer value: ");
Get (N);
Put (N);

if N =0 or N = 360 then

Put_Line (" is due north");
elsif N in 1 .. 89 then

Put Line (" is in the northeast quadrant");
elsif N = 90 then

Put Line (" is due east");
elsif N in 91 .. 179 then

Put_Line (" is in the southeast quadrant");
elsif N = 180 then

Put Line (" is due south");
elsif N in 181 .. 269 then

Put Line (" is in the southwest quadrant");
elsif N = 270 then

Put Line (" is due west");
elsif N in 271 .. 359 then

Put Line (" is in the northwest quadrant");
else

Put Line (" is not in the range 0..360");
end if;

end Check Direction;

Code block metadata

Project: Courses.Intro To Ada.Imperative Language.Check Direction
MD5: 7759d30c9bbObfb88efdf1212819c382

This example expects the user to input an integer between 0 and 360 inclusive, and displays
which quadrant or axis the value corresponds to. The in operator in Ada tests whether a
scalar value is within a specified range and returns a Boolean result. The effect of the
program should be self-explanatory; later we'll see an alternative and more efficient style
to accomplish the same effect, through a case statement.

Ada's elsif keyword differs from C or C++, where nested else .. if blocks would be

8 Chapter 2. Imperative language

©W N U A W N e

=
= o

Introduction to Ada

used instead. And another difference is the presence of the end if in Ada, which avoids
the problem known as the "dangling else".

2.3 Imperative language - Loops

Ada has three ways of specifying loops. They differ from the C / Java / Javascript for-loop,
however, with simpler syntax and semantics in line with Ada's philosophy.

2.3.1 For loops

The first kind of loop is the for loop, which allows iteration through a discrete range.

Listing 6: greet_5a.adb
with Ada.Text IO0; use Ada.Text IO;

procedure Greet 5a is
begin
for I in 1 .. 5 loop
-- Put Line is a procedure call
Put_Line ("Hello, World!"
& Integer'Image (I));
-- ~ Procedure parameter
end loop;
end Greet 5a;

Code block metadata

Project: Courses.Intro To Ada.Imperative Language.Greet 5a
MD5: 7f588b67947126f789333adfaaflb638

Runtime output

Hello, World!
Hello, World!
Hello, World!
Hello, World!
Hello, World!

U WNR

A few things to note:
e 1 .. 5isadiscrete range, from 1 to 5 inclusive.

* The loop parameter I (the name is arbitrary) in the body of the loop has a value within
this range.

* I islocal to the loop, so you cannot refer to I outside the loop.

* Although the value of I is incremented at each iteration, from the program's perspec-
tive it is constant. An attempt to modify its value is illegal; the compiler would reject
the program.

» Integer'Image is a function that takes an Integer and converts it to a String. It is
an example of a language construct known as an attribute, indicated by the ' syntax,
which will be covered in more detail later.

* The & symbol is the concatenation operator for String values
* The end loop marks the end of the loop

The "step" of the loop is limited to 1 (forward direction) and -1 (backward). To iterate
backwards over a range, use the reverse keyword:

2.3. Imperative language - Loops 9

W @ N U A W N e

© N o U A W N e

Introduction to Ada

Listing 7: greet_5a_reverse.adb
with Ada.Text IO0; use Ada.Text IO;

procedure Greet 5a Reverse is

begin
for I in reverse 1 .. 5 loop
Put _Line ("Hello, World!"
& Integer'Image (I));
end loop;

end Greet 5a Reverse;

Code block metadata

Project: Courses.Intro To Ada.Imperative Language.Greet 5a Reverse
MD5: a0d5dcfc471fblal®7477c934fa527c2

Runtime output

Hello, World!
Hello, World!
Hello, World!
Hello, World!
Hello, World!

PNWRAROG

The bounds of a for loop may be computed at run-time; they are evaluated once, before
the loop body is executed. If the value of the upper bound is less than the value of the
lower bound, then the loop is not executed at all. This is the case also for reverse loops.
Thus no output is produced in the following example:

Listing 8: greet no _op.adb
with Ada.Text IO0; use Ada.Text IO;

procedure Greet No Op is

begin
for I in reverse 5 .. 1 loop
Put_Line ("Hello, World!"
& Integer'Image (I));
end loop;

end Greet No Op;

Code block metadata

Project: Courses.Intro To Ada.Imperative Language.Greet No Op
MD5: 5070693fb0324d3e4e43a8c8c4f046el

Build output

greet no op.adb:5:23: warning: loop range is null, loop will not execute [enabled,
~by default]

The for loop is more general than what we illustrated here; more on that later.

2.3.2 Bare loops

The simplest loop in Ada is the bare loop, which forms the foundation of the other kinds of
Ada loops.

10 Chapter 2. Imperative language

W @ N U A W N e

N NN B R R R R B E e B e
N B O © ® N o U A~ W N B O

Introduction to Ada

Listing 9: greet_5b.adb
with Ada.Text IO0; use Ada.Text IO;

procedure Greet 5b is

-- Variable declaration:

I : Integer := 1;

-- " Type

-- ~ Initial value
begin

loop

Put Line ("Hello, World!"
& Integer'Image (I));

-- Exit statement:
exit when I = 5;
> ~ Boolean condition

-- Assignment:
I =1+ 1;
-- There is no I++ short form to
-- Increment a variable
end loop;
end Greet 5b;

Code block metadata

Project: Courses.Intro To Ada.Imperative Language.Greet 5b
MD5: 5b218a64a07f64bd97774b574883c44a

Runtime output

Hello, World!
Hello, World!
Hello, World!
Hello, World!
Hello, World!

U WNR

This example has the same effect as Greet 5a shown earlier.
It illustrates several concepts:

* We have declared a variable named I between the is and the begin. This constitutes
a declarative region. Ada clearly separates the declarative region from the statement
part of a subprogram. A declaration can appear in a declarative region but is not
allowed as a statement.

* The bare loop statement is introduced by the keyword loop on its own and, like every
kind of loop statement, is terminated by the combination of keywords end loop. On
its own, it is an infinite loop. You can break out of it with an exit statement.

* The syntax for assignment is :=, and the one for equality is =. There is no way to
confuse them, because as previously noted, in Ada, statements and expressions are
distinct, and expressions are not valid statements.

2.3.3 While loops

The last kind of loop in Ada is the while loop.

2.3. Imperative language - Loops 11

W @ N U A W N e

e e
U A W N B O

o U A W N -

Introduction to Ada

Listing 10: greet 5c.adb
with Ada.Text IO0; use Ada.Text IO;

procedure Greet 5c is
I : Integer := 1;
begin
-- Condition must be a Boolean value
-- (no Integers).
-- Operator "<=" returns a Boolean
while I <= 5 loop
Put Line ("Hello, World!"
& Integer'Image (I));

I =1+ 1;
end loop;
end Greet 5c¢;

Code block metadata

Project: Courses.Intro To Ada.Imperative Language.Greet 5c¢
MD5: 5d1d099477795b226db43736c2810274

Runtime output

Hello, World!
Hello, World!
Hello, World!
Hello, World!
Hello, World!

U WNR

The condition is evaluated before each iteration. If the result is false, then the loop is
terminated.

This program has the same effect as the previous examples.

© In other languages

Note that Ada has different semantics than C-based languages with respect to the con-
dition in a while loop. In Ada the condition has to be a Boolean value or the compiler
will reject the program; the condition is not an integer that is treated as either True or
False depending on whether it is non-zero or zero.

2.4 Imperative language - Case statement

Ada's case statement is similar to the C and C++ switch statement, but with some impor-
tant differences.

Here's an example, a variation of a program that was shown earlier with an if statement:

Listing 11: check_direction.adb

with Ada.Text I0; use Ada.Text IO0;
with Ada.Integer Text IO0; use Ada.Integer Text IO;

procedure Check Direction is
N : Integer;
begin
(continues on next page)

12 Chapter 2. Imperative language

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

43

Introduction to Ada

loop
Put ("Enter an integer value:
Get (N);
Put (N);
case N is
when 0 | 360 =>
Put Line

(" is due north");
when 1 .. 89 =>
Put Line

(" is in the northeast quadrant");

when 90 =>
Put_Line
(" is due east");
when 91 .. 179 =>
Put_Line

(" is in the southeast quadrant");

when 180 =>
Put_Line
(" is due south");
when 181 .. 269 =>
Put Line

(" is in the southwest quadrant");

when 270 =>
Put Line
(" is due west");
when 271 .. 359 =>
Put Line

(" is in the northwest quadrant");

when others =>

Put Line
(" Au revoir");
exit;
end case;

end loop;
end Check Direction;

Code block metadata

");

(continued from previous page)

Project: Courses.Intro To Ada.Imperative Language.Check Direction_ 2
MD5: 1c758b76a2c3991cb4e2alcf5el72ac3

This program repeatedly prompts for an integer value and then, if the value is in the range
0 .. 360, displays the associated quadrant or axis. If the value is an Integer outside this
range, the loop (and the program) terminate after outputting a farewell message.

The effect of the case statement is similar to the if statement in an earlier example, but the
case statement can be more efficient because it does not involve multiple range tests.

Notable points about Ada's case statement:

* The case expression (here the variable N) must be of a discrete type, i.e. either an
integer type or an enumeration type. Discrete types will be covered in more detail

later discrete types (page 43).

* Every possible value for the case expression needs to be covered by a unique branch

of the case statement. This will be checked at compile time.

* A branch can specify a single value, such as 0; a range of values, such as 1
any combination of the two (separated by a |).

89; or

* As a special case, an optional final branch can specify others, which covers all values

2.4. Imperative language - Case statement

13

W L N U A W N R

e i < e
U A W N B O

R W N e

Introduction to Ada

not included in the earlier branches.

* Execution consists of the evaluation of the case expression and then a transfer of
control to the statement sequence in the unique branch that covers that value.

* When execution of the statements in the selected branch has completed, control re-
sumes after the end case. Unlike C, execution does not fall through to the next branch.
So Ada doesn't need (and doesn't have) a break statement.

2.5 Imperative language - Declarative regions

As mentioned earlier, Ada draws a clear syntactic separation between declarations, which
introduce names for entities that will be used in the program, and statements, which per-
form the processing. The areas in the program where declarations may appear are known
as declarative regions.

In any subprogram, the section between the is and the begin is a declarative region. You
can have variables, constants, types, inner subprograms, and other entities there.

We've briefly mentioned variable declarations in previous subsection. Let's look at a simple
example, where we declare an integer variable X in the declarative region and perform an
initialization and an addition on it:

Listing 12: main.adb
with Ada.Text IO; use Ada.Text IO;

procedure Main is

X : Integer;
begin
X :=0;

Put Line ("The initial value of X is
& Integer'Image (X));

Put Line ("Performing operation on X...");

X =X+ 1;

Put Line ("The value of X now is
& Integer'Image (X));
end Main;

Code block metadata

Project: Courses.Intro To Ada.Imperative Language.Variable Declaration
MD5: cbb08d5e382fbfcc28e986bea80cd253

Runtime output

The initial value of X is 0
Performing operation on X...
The value of X now is 1

Let's look at an example of a nested procedure:

Listing 13: main.adb
with Ada.Text IO; use Ada.Text IO;

procedure Main is
procedure Nested is
begin
(continues on next page)

14 Chapter 2. Imperative language

© © N o

10
11

© @ N o U A W N R

I I N T s T e O < =
P O © ® N o U & W N ~ O

Introduction to Ada

(continued from previous page)

Put Line ("Hello World");
end Nested;
begin
Nested;
-- (Call to Nested
end Main;

Code block metadata

Project: Courses.Intro To Ada.Imperative Language.Nested Procedure
MD5: 2e7fb267e31232196065febd5e35e6ef

Runtime output

Hello World

A declaration cannot appear as a statement. If you need to declare a local variable amidst
the statements, you can introduce a new declarative region with a block statement:

Listing 14: greet.adb
with Ada.Text IO; use Ada.Text IO;

procedure Greet is

begin
loop
Put Line ("Please enter your name: ");
declare
Name : String := Get Line;
-- ~ Call to the
X Get Line function
begin

exit when Name = g
Put Line ("Hi " & Name & "!");
end;

-- Name is undefined here
end loop;

Put Line ("Bye!");
end Greet;

Code block metadata

Project: Courses.Intro To Ada.Imperative Language.Greet 6
MD5: a9cOcl4alb3e2ebe07cd88f442787e3a

A Attention

The Get Line function allows you to receive input from the user, and get the result as
a string. It is more or less equivalent to the scanf C function.

It returns a String, which, as we will see later, is an Unconstrained array type (page 74).
For now we simply note that, if you wish to declare a String variable and do not know
its size in advance, then you need to initialize the variable during its declaration.

2.5. Imperative language - Declarative regions 15

© ©® N o U A W N R

e e e i <
© ® N o U A W N B O

N o U A W N &

Introduction to Ada

2.6 Imperative language - conditional expressions

Ada 2012 introduced an expression analog for conditional statements (if and case).

2.6.1 If expressions

Here's an alternative version of an example we saw earlier; the if statement has been

replaced by an if expression:

Listing 15: check_positive.adb

with Ada.Text I0; use Ada.Text IO;
with Ada.Integer Text IO; use Ada.Integer Text IO;

procedure Check Positive is

N : Integer;
begin
Put ("Enter an integer value: ");
Get (N);
Put (N);
declare
: constant String :=
(if N> 0

then " is a positive number"
else " is not a positive number");
begin
Put Line (S);
end;
end Check Positive;

Code block metadata

Project: Courses.Intro_To Ada.Imperative Language.Check Positive
MD5: 01f23463b14774f750dbb21f6c65e€a09

The if expression evaluates to one of the two Strings depending on N, and assigns that

value to the local variable S.

Ada's if expressions are similar to if statements. However, there are a few differences

that stem from the fact that it is an expression:

* All branches' expressions must be of the same type

* It must be surrounded by parentheses if the surrounding expression does not already

contain them

* An else branch is mandatory unless the expression following then has a Boolean
value. In that case an else branch is optional and, if not present, defaults to else

True.

Here's another example:

Listing 16: main.adb
with Ada.Text IO0; use Ada.Text IO;

procedure Main is
begin
for I in 1 .. 10 loop
Put Line (if I mod 2 = 0
then "Even"

(continues on next page)

16 Chapter 2. Imperative language

8
9
10

© ©® N o U A W N R

o
= o

Introduction to Ada

else "0dd");
end loop;
end Main;

Code block metadata

Project: Courses.Intro To Ada.Imperative Language.Even_ 0dd

MD5: ¢89c3233ab8822c828f7a7bba8fd3flc

Runtime output

0dd
Even
0dd
Even
0dd
Even
0dd
Even
0dd
Even

(continued from previous page)

This program produces 10 lines of output, alternating between "Odd" and "Even".

2.6.2 Case expressions

Analogous to if expressions, Ada also has case expressions. They work just as you would

expect.

Listing 17: main.adb

with Ada.Text IO; use Ada.Text IO;

procedure Main is

begin
for I in 1 .. 10 loop
Put Line
(case I is
when 1 | 3 | 5] 7]9 =>"0dd",
when 2 | 4 | 6 | 8 | 10 => "Even");
end loop;
end Main;

Code block metadata

Project: Courses.Intro To Ada.Imperative Language.Case Expression

MD5: 6ce40efc987c2665960b1f08d30d780d

Runtime output

0dd
Even
0dd
Even
0dd
Even
0dd
Even
0dd
Even

2.6. Imperative language - conditional expressions

17

Introduction to Ada

This program has the same effect as the preceding example.

The syntax differs from case statements, with branches separated by commas.

18 Chapter 2. Imperative language

® N o U A W N e

A W N =

CHAPTER
THREE

SUBPROGRAMS

3.1 Subprograms

So far, we have used procedures, mostly to have a main body of code to execute. Proce-
dures are one kind of subprogram.

There are two kinds of subprograms in Ada, functions and procedures. The distinction
between the two is that a function returns a value, and a procedure does not.

This example shows the declaration and definition of a function:

Listing 1: increment.ads

function Increment (I : Integer) return Integer;

Listing 2: increment.adb

-- We declare (but don't define) a function with
-- one parameter, returning an integer value

function Increment (I : Integer) return Integer is
-- We define the Increment function

begin
return I + 1;

end Increment;

Code block metadata

Project: Courses.Intro_To Ada.Subprograms.Increment
MD5: 582fe283730al30cec071c455a0ce3d4

Subprograms in Ada can, of course, have parameters. One syntactically important note is
that a subprogram which has no parameters does not have a parameter section at all, for
example:

procedure Proc;

function Func return Integer;
Here's another variation on the previous example:

Listing 3: increment_by.ads

function Increment By
(I : Integer := 0;
Incr : Integer := 1) return Integer;
-- ~ Default value for parameters

Code block metadata

19

o U A W N =

N o U A W N &

Introduction to Ada

Project: Courses.Intro To Ada.Subprograms.Increment By
MD5: 5728b915789beeeOb5546ea7b36alcc?2

In this example, we see that parameters can have default values. When calling the subpro-
gram, you can then omit parameters if they have a default value. Unlike C/C++, a call to a
subprogram without parameters does not include parentheses.

This is the implementation of the function above:

Listing 4: increment_by.adb

function Increment By

(I : Integer := 0;
Incr : Integer := 1) return Integer is
begin

return I + Incr;
end Increment By;

Code block metadata

Project: Courses.Intro To Ada.Subprograms.Increment By
MD5: 07c85e5c1272ea396bf4dbcOcefcdce?

©® In the GNAT toolchain

The Ada standard doesn't mandate in which file the specification or the implementation
of a subprogram must be stored. In other words, the standard doesn't require a specific
file structure or specific file name extensions. For example, we could save both the
specification and the implementation of the Increment function above in a file called
increment. txt. (We could even store the entire source code of a system in a single
file.) From the standard's perspective, this would be completely acceptable.

The GNAT toolchain, however, requires the following file naming scheme:
« files with the .ads extension contain the specification, while
« files with the .adb extension contain the implementation.

Therefore, in the GNAT toolchain, the specification of the Increment function must
be stored in the increment.ads file, while its implementation must be stored in the
increment.adb file. This rule always applies to packages, which we discuss later
(page 31). (Note, however, that it's possible to circumvent this rule.) For more de-
tails, you may refer to the Introduction to GNAT Toolchain course or the GPRbuild User’s
Guide®.

3.1.1 Subprogram calls

We can then call our subprogram this way:

Listing 5: show_increment.adb

with Ada.Text IO; use Ada.Text IO;
with Increment By;

procedure Show Increment is
A, B, C : Integer;
begin
C := Increment By;
(continues on next page)

9 https://docs.adacore.com/gprbuild-docs/html/gprbuild_ug.html

20 Chapter 3. Subprograms

https://docs.adacore.com/gprbuild-docs/html/gprbuild_ug.html
https://docs.adacore.com/gprbuild-docs/html/gprbuild_ug.html

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

Introduction to Ada

(continued from previous page)

. ~ Parameterless call,
. value of I is 0
. and Incr is 1

Put _Line ("Using defaults for Increment By is "
& Integer'Image (C));

10;

3;

Increment By (A, B);

- ~ Regular parameter passing

O m >

Put Line ("Increment of "
& Integer'Image (A)

& " with "
& Integer'Image (B)
& n iS n

& Integer'Image (C));

20;
5;
Increment By (I = A,
Incr => B);
-- ~ Named parameter passing

nwm>
W

Put Line ("Increment of "
& Integer'Image (A)

& " with "
& Integer'Image (B)
& n is n

& Integer'Image (C));
end Show Increment;

Code block metadata

Project: Courses.Intro To Ada.Subprograms.Increment By
MD5: dcb501c8c6815b03c6841fc8b80d6911

Runtime output

Using defaults for Increment By is 1
Increment of 10 with 3 is 13
Increment of 20 with 5 is 25

Ada allows you to name the parameters when you pass them, whether they have a default
or not. There are some rules:

* Positional parameters come first.

* A positional parameter cannot follow a named parameter.

As a convention, people usually name parameters at the call site if the function's corre-
sponding parameters has a default value. However, it is also perfectly acceptable to name
every parameter if it makes the code clearer.

3.1.2 Nested subprograms

As briefly mentioned earlier, Ada allows you to declare one subprogram inside another.

This is useful for two reasons:

3.1. Subprograms 21

© ® N o U A W N R

NONONONNNN B B H B R el el
o U0 B W N B O © ® N O 0 A W N B O

Introduction to Ada

* |t lets you organize your programs in a cleaner fashion. If you need a subprogram only
as a "helper" for another subprogram, then the principle of localization indicates that
the helper subprogram should be declared nested.

* It allows you to share state easily in a controlled fashion, because the nested subpro-
grams have access to the parameters, as well as any local variables, declared in the
outer scope.

For the previous example, we can move the duplicated code (call to Put_Line) to a separate
procedure. This is a shortened version with the nested Display Result procedure.

Listing 6: show_increment.adb

with Ada.Text IO0; use Ada.Text IO;
with Increment By;

procedure Show Increment is
A, B, C : Integer;

procedure Display Result is
begin
Put Line ("Increment of "
& Integer'Image (A)

& " with "
& Integer'Image (B)
& n iS n

& Integer'Image (C));
end Display Result;

begin
A := 10;
B := 3;

C := Increment By (A, B);
Display Result;

A = 20;
B :=5;
C := Increment By (A, B);

Display Result;
end Show Increment;

Code block metadata

Project: Courses.Intro To Ada.Subprograms.Increment By
MD5: 23ecB8ae3080c042123a9e82eebb3d9e3

Runtime output

Increment of 10 with 3 is 13
Increment of 20 with 5 is 25

3.1.3 Function calls

An important feature of function calls in Ada is that the return value at a call cannot be
ignored; that is, a function call cannot be used as a statement.

If you want to call a function and do not need its result, you will still need to explicitly store
it in a local variable.

Listing 7: quadruple.adb

function Quadruple (I : Integer)
return Integer is
(continues on next page)

22 Chapter 3. Subprograms

© © N o u &~ W

10
11
12
13
14
15
16
17
18
19

Introduction to Ada

function Double (I : Integer)
return Integer is
begin
return I * 2;
end Double;

Res : Integer := Double (Double (I));
-- ~ Calling the Double

- - function

begin
Double (I);
-- ERROR: cannot use call to function
-- "Double" as a statement
return Res;

end Quadruple;

Code block metadata

Project: Courses.Intro To Ada.Subprograms.Quadruple
MD5: 44326f12a9d797eal3ffe52ead48fc36f

Build output

(continued from previous page)

quadruple.adb:14:04: error: cannot use call to function "Double" as a statement
quadruple.adb:14:04: error: return value of a function call cannot be ignored

gprbuild: *** compilation phase failed

© In the GNAT toolchain

In GNAT, with all warnings activated, it becomes even harder to ignore the result of a
function, because unused variables will be flagged. For example, this code would not be

valid:

function Read Int
(Stream : Network Stream;
Result : out Integer) return Boolean;

procedure Main is
Stream : Network Stream := Get Stream;
My Int : Integer;

-- Warning: in the line below, B 1is
-- never read.
B : Boolean := Read Int (Stream, My Int);
begin
null;
end Main;

You then have two solutions to silence this warning:

e Either annotate the variable with pragma Unreferenced, e.g.:

B : Boolean := Read Int (Stream, My Int);
pragma Unreferenced (B);

» Or give the variable a name that contains any of the strings discard dummy ignore

junk unused (case insensitive)

3.1. Subprograms

23

© ©® N o U A W N K

e
w N~ O

Introduction to Ada

3.2 Parameter modes

So far we have seen that Ada is a safety-focused language. There are many ways this is
realized, but two important points are:

* Ada makes the user specify as much as possible about the behavior expected for the
program, so that the compiler can warn or reject if there is an inconsistency.

* Ada provides a variety of techniques for achieving the generality and flexibility of point-
ers and dynamic memory management, but without the latter's drawbacks (such as
memory leakage and dangling references).

Parameter modes are a feature that helps achieve the two design goals above. A subpro-
gram parameter can be specified with a mode, which is one of the following:

in Parameter can only be read, not written
out Parameter can be written to, then read
in out Parameter can be both read and written

The default mode for parameters is in; so far, most of the examples have been using in
parameters.

© Historically

Functions and procedures were originally more different in philosophy. Before Ada 2012,
functions could only take in parameters.

3.3 Subprogram calls

3.3.1 In parameters

The first mode for parameters is the one we have been implicitly using so far. Parameters
passed using this mode cannot be modified, so that the following program will cause an
error:

Listing 8: swap.adb

procedure Swap (A, B : Integer) is
Tmp : Integer;

begin
Tmp := A;

-- Error: assignment to "in" mode
- parameter not allowed

-- Error: assignment to "in" mode
-- parameter not allowed
B := Tmp;

end Swap;

Code block metadata

Project: Courses.Intro To Ada.Subprograms.Swap
MD5: 478ac23f878934aae820e4b9c056d939

Build output

24 Chapter 3. Subprograms

© ©® N o U A W N K

P e L i <
© @ N o U A W N B O

Introduction to Ada

swap.adb:8:04: error: assignment to "in" mode parameter not allowed
swap.adb:12:04: error: assignment to "in" mode parameter not allowed
gprbuild: *** compilation phase failed

The fact that in is the default mode is very important. It means that a parameter will not
be modified unless you explicitly specify a mode in which modification is allowed.

3.3.2 In out parameters

To correct our code above, we can use an in out parameter.

Listing 9: in_out_params.adb
with Ada.Text IO; use Ada.Text IO;

procedure In Out Params is

procedure Swap (A, B : in out Integer) is
Tmp : Integer;

begin
Tmp
A
B

end Swap;

A;
B;
Tmp;

A : Integer
B : Integer :
begin
Swap (A, B);

12;
44,

-- Prints 44
Put _Line (Integer'Image (A));
end In Out Params;

Code block metadata

Project: Courses.Intro To Ada.Subprograms.In Out Params
MD5: 319358e479449c115cf2b3cbb4ff3abb

Runtime output

44

An in out parameter will allow read and write access to the object passed as parameter,
so in the example above, we can see that A is modified after the call to Swap.

A Attention

While in out parameters look a bit like references in C++, or regular parameters in
Java that are passed by-reference, the Ada language standard does not mandate "by
reference" passing for in out parameters except for certain categories of types as will
be explained later.

In general, it is better to think of modes as higher level than by-value versus by-reference
semantics. For the compiler, it means that an array passed as an in parameter might
be passed by reference, because it is more efficient (which does not change anything
for the user since the parameter is not assignable). However, a parameter of a discrete
type will always be passed by copy, regardless of its mode (which is more efficient on
most architectures).

3.3. Subprogram calls 25

© N U A W N e

=
= o

Introduction to Ada

3.3.3 Out parameters

The out mode applies when the subprogram needs to write to a parameter that might be
uninitialized at the point of call. Reading the value of an out parameter is permitted, but
it should only be done after the subprogram has assigned a value to the parameter. Out
parameters behave a bit like return values for functions. When the subprogram returns,
the actual parameter (a variable) will have the value of the out parameter at the point of
return.

© In other languages

Ada doesn't have a tuple construct and does not allow returning multiple values from
a subprogram (except by declaring a full-fledged record type). Hence, a way to return
multiple values from a subprogram is to use out parameters.

For example, a procedure reading integers from the network could have one of the following
specifications:

procedure Read Int
(Stream : Network Stream;
Success : out Boolean;
Result : out Integer);

function Read Int
(Stream : Network Stream;
Result : out Integer) return Boolean;

While reading an out variable before writing to it should, ideally, trigger an error, imposing
that as a rule would cause either inefficient run-time checks or complex compile-time rules.
So from the user's perspective an out parameter acts like an uninitialized variable when the
subprogram is invoked.

© In the GNAT toolchain

GNAT will detect simple cases of incorrect use of out parameters. For example, the
compiler will emit a warning for the following program:

Listing 10: outp.adb

procedure Outp is
procedure Foo (A : out Integer) is
B : Integer := A;
-- ~ Warning on reference
-- to uninitialized A
begin
A := B;
end Foo;
begin
null;
end Outp;

Code block metadata

Project: Courses.Intro To Ada.Subprograms.Qut Params
MD5: 36bdb4e541297d7fbOb075816cb6e73a

Build output

outp.adb:3:22: warning: "A" may be referenced before it has a value [enabled by,
~default]

26 Chapter 3. Subprograms

© ©® N o U A W N R

NONON R R R B E R B B e e
N B O © ® W o 0 A W N = O

oA W N e

Introduction to Ada

3.3.4 Forward declaration of subprograms

As we saw earlier, a subprogram can be declared without being fully defined, This is possible
in general, and can be useful if you need subprograms to be mutually recursive, as in the
example below:

Listing 11: mutually_recursive_subprograms.adb

procedure Mutually Recursive Subprograms is
procedure Compute A (V : Natural);
-- Forward declaration of Compute A

procedure Compute B (V : Natural) is
begin
if V > 5 then
Compute A (V - 1);
-- Call to Compute A
end if;
end Compute B;

procedure Compute A (V : Natural) is
begin
if V > 2 then
Compute B (V - 1);
-- Call to Compute B
end if;
end Compute A;
begin
Compute A (15);
end Mutually Recursive Subprograms;

Code block metadata

Project: Courses.Intro To Ada.Subprograms.Mutually Recursive Subprograms
MD5: 5ee030cdecc6c4aea8916cbb763e8526

3.4 Renaming

Subprograms can be renamed by using the renames keyword and declaring a new hame
for a subprogram:

procedure New Proc renames Original Proc;

This can be useful, for example, to improve the readability of your application when you're
using code from external sources that cannot be changed in your system. Let's look at an
example:

Listing 12: a_procedure_with_very long_name_that cannot be_changed.ads

procedure A Procedure With Very Long Name That Cannot Be Changed
(A _Message : String);

Listing 13: a_procedure_with _very long_name_that cannot be changed.adb
with Ada.Text IO; use Ada.Text IO;

procedure A Procedure With Very Long Name That Cannot Be Changed
(A Message : String) is
begin
(continues on next page)

3.4. Renaming 27

© @ N o U A W N e

=
o

W @ N U A W N e

e
= o

Introduction to Ada

(continued from previous page)
Put _Line (A Message);
end A Procedure With Very Long Name That Cannot Be Changed;

Code block metadata

Project: Courses.Intro To Ada.Subprograms.Proc_Renaming
MD5: 6d4952e9dee8ef69a9e3c3e185c635f1

As the wording in the name of procedure above implies, we cannot change its name. We
can, however, rename it to something like Show in our test application and use this shorter
name. Note that we also have to declare all parameters of the original subprogram — we
may rename them, too, in the declaration. For example:

Listing 14: show_renaming.adb

with A Procedure With Very Long Name That Cannot Be Changed;
procedure Show Renaming is

procedure Show (S : String) renames
A Procedure With Very Long Name That Cannot Be Changed;

begin
Show ("Hello World!");
end Show Renaming;

Code block metadata

Project: Courses.Intro To Ada.Subprograms.Proc_Renaming
MD5: 5b3b550f8alcbeb7d9cfd3673f6d42b3

Runtime output

Hello World!

Note that the original name (A_Procedure With Very Long Name That Cannot Be Changed)
is still visible after the declaration of the Show procedure.
We may also rename subprograms from the standard library. For example, we may rename
Integer'Image to Img:

Listing 15: show_image_renaming.adb
with Ada.Text IO; use Ada.Text IO;

procedure Show Image Renaming is

function Img (I : Integer) return String
renames Integer'Image;

begin
Put Line (Img (2));
Put Line (Img (3));
end Show Image Renaming;

Code block metadata

Project: Courses.Intro To Ada.Subprograms.Integer Image Renaming
MD5: 9843b9d5967679c4fe8bd83a5213829f

Runtime output

28 Chapter 3. Subprograms

Introduction to Ada

2
3

Renaming also allows us to introduce default expressions that were not available in the
original declaration. For example, we may specify "Hello World!" as the default for the
String parameter of the Show procedure:

with A Procedure With Very Long Name That Cannot Be Changed;
procedure Show Renaming Defaults is

procedure Show (S : String := "Hello World!")
renames
A Procedure With Very Long Name That Cannot Be Changed;

begin
Show;
end Show Renaming Defaults;

3.4. Renaming 29

Introduction to Ada

30 Chapter 3. Subprograms

© ® N o U A W N e

=
= o

© O N U A W N e

=
o

CHAPTER
FOUR

MODULAR PROGRAMMING

So far, our examples have been simple standalone subprograms. Ada is helpful in that
regard, since it allows arbitrary declarations in a declarative part. We were thus able to

declare our types and variables in the bodies of main procedures.

However, it is easy to see that this is not going to scale up for real-world applications. We

need a better way to structure our programs into modular and distinct units.

Ada encourages the separation of programs into multiple packages and sub-packages, pro-
viding many tools to a programmer on a quest for a perfectly organized code-base.

4.1 Packages

Here is an example of a package declaration in Ada:

Listing 1: week.ads

package Week is

: constant String := "Monday";

: constant String := "Tuesday";

: constant String := "Wednesday";
: constant String := "Thursday";
: constant String := "Friday";

: constant String := "Saturday";
: constant String := "Sunday";

end Week;

Code block metadata

Project: Courses.Intro To Ada.Modular Programming.Week
MD5: 0fa033dc8fe2b9741483de273354e7ee

And here is how you use it:

Listing 2: main.adb

with Ada.Text IO; use Ada.Text IO;

with Week;

-- References the Week package, and

-- adds a dependency from Main to Week

procedure Main is

begin
Put Line ("First day of the week is "
& Week.Mon);
end Main;

31

Introduction to Ada

Code block metadata

Project: Courses.Intro To Ada.Modular Programming.Week
MD5: 03el7a75620de6a397bld3c5a3e22f6a

Runtime output

First day of the week is Monday

Packages let you make your code modular, separating your programs into semantically
significant units. Additionally the separation of a package's specification from its body
(which we will see below) can reduce compilation time.

While the with clause indicates a dependency, you can see in the example above that you
still need to prefix the referencing of entities from the Week package by the name of the
package. (If we had included a use Week clause, then such a prefix would not have been
necessary.)

Accessing entities from a package uses the dot notation, A.B, which is the same notation
as the one used to access record fields.

A with clause can only appear in the prelude of a compilation unit (i.e., before the reserved
word, such as procedure, that marks the beginning of the unit). It is not allowed anywhere
else. This rule is only needed for methodological reasons: the person reading your code
should be able to see immediately which units the code depends on.

© In other languages

Packages look similar to, but are semantically very different from, header files in C/C++.

* The first and most important distinction is that packages are a language-level mech-
anism. This is in contrast to a #include'd header file, which is a functionality of the
C preprocessor.

* Animmediate consequence is that the with construct is a semantic inclusion mech-
anism, not a text inclusion mechanism. Hence, when you with a package, you are
saying to the compiler "I'm depending on this semantic unit", and not "include this
bunch of text in place here".

» The effect of a package thus does not vary depending on where it has been withed
from. Contrast this with C/C++, where the meaning of the included text depends
on the context in which the #include appears.

This allows compilation/recompilation to be more efficient. It also allows tools like
IDEs to have correct information about the semantics of a program. In turn, this
allows better tooling in general, and code that is more analyzable, even by humans.

An important benefit of Ada with clauses when compared to #include is that it is state-
less. The order of with and use clauses does not matter, and can be changed without
side effects.

©® In the GNAT toolchain

The Ada language standard does not mandate any particular relationship between
source files and packages; for example, in theory you can put all your code in one
file, or use your own file naming conventions. In practice, however, an implementa-
tion will have specific rules. With GNAT, each top-level compilation unit needs to go into
a separate file. In the example above, the Week package will be in an .ads file (for Ada
specification), and the Main procedure will be in an .adb file (for Ada body).

32 Chapter 4. Modular programming

© ©® N o U A W N R

R
w N B o

W W N U A W N e

-
o

Introduction to Ada

4.2 Using a package

As we have seen above, the with clause indicates a dependency on another package.
However, every reference to an entity coming from the Week package had to be prefixed
by the full name of the package. It is possible to make every entity of a package visible
directly in the current scope, using the use clause.

In fact, we have been using the use clause since almost the beginning of this tutorial.

Listing 3: main.adb

with Ada.Text IO0; use Ada.Text IO;

-- ~ Make every entity of the
=a Ada.Text I0 package

-- directly visible.
with Week;

procedure Main is

use Week;

-- Make every entity of the Week

-- package directly visible.
begin

Put Line ("First day of the week is " & Mon);
end Main;

Code block metadata

Project: Courses.Intro To Ada.Modular Programming.Week
MD5: ea54077d4ael65b28ae8facfe8ba2db7

Runtime output

First day of the week is Monday

As you can see in the example above:

* Put Line is a subprogram that comes from the Ada.Text IO package. We can refer-
ence it directly because we have used the package at the top of the Main unit.

* Unlike with clauses, a use clause can be placed either in the prelude, orin any declara-
tive region. In the latter case the use clause will have an effect in its containing lexical
scope.

4.3 Package body

In the simple example above, the Week package only has declarations and no body. That's
not a mistake: in a package specification, which is what is illustrated above, you cannot
declare bodies. Those have to be in the package body.

Listing 4: operations.ads

package Operations is
-- Declaration
function Increment By
(I : Integer;
Incr : Integer := 0) return Integer;
function Get Increment Value return Integer;

end Operations;

4.2. Using a package 33

© ©® N o U A W N R

10
11
12
13
14
15
16
17
18
19
20
21

©W @ N U A W N e

R e
N = O

14
15
16
17
18
19
20

22

Introduction to Ada

Listing 5: operations.adb

package body Operations is
Last Increment : Integer := 1;

function Increment By

(I : Integer;
Incr : Integer := 0) return Integer is
begin
if Incr /= 0 then
Last Increment := Incr;
end if;

return I + Last Increment;
end Increment By;

function Get Increment Value return Integer is
begin

return Last Increment;
end Get Increment Value;

end Operations;

Code block metadata

Project: Courses.Intro To Ada.Modular Programming.Operations
MD5: 2adfb64e825605c74fecf6c9d45c8437

Here we can see that the body of the Increment By function has to be declared in the
body. Coincidentally, introducing a body allows us to put the Last Increment variable in
the body, and make them inaccessible to the user of the Operations package, providing a
first form of encapsulation.

This works because entities declared in the body are only visible in the body.

This example shows how Last Increment is used indirectly:

Listing 6: main.adb

with Ada.Text IO0; use Ada.Text IO;
with Operations;

procedure Main is
use Operations;

I : Integer := 0;
R : Integer;

procedure Display Update Values is
: constant Integer :=
Get Increment Value;
begin
Put Line (Integer'Image (I)

& " incremented by "
& Integer'Image (Incr)
& n is n
& Integer'Image (R));
I :=R;
end Display Update Values;

begin
R := Increment By (I);
(continues on next page)

34 Chapter 4. Modular programming

23
24
25
26
27
28
29
30
31
32
33
34
35
36

W @ N U A W N e

Introduction to Ada

(continued from previous page)
Display Update Values;
R := Increment By (I);
Display Update Values;

R := Increment By (I, 5);
Display Update Values;
R := Increment By (I);
Display Update Values;

R := Increment By (I, 10);
Display Update Values;
R := Increment By (I);
Display Update Values;

end Main;

Code block metadata

Project: Courses.Intro To Ada.Modular Programming.Operations
MD5: 76190b1261a9652cfb7986ecec191e37

Runtime output

0 incremented by 1 is 1
1 incremented by 1 is 2
2 incremented by 5 is 7
7 incremented by 5 is 12

12 incremented by 10 is 22
22 incremented by 10 is 32

4.4 Child packages

Packages can be used to create hierarchies. We achieve this by using child packages, which
extend the functionality of their parent package. One example of a child package that
we've been using so far is the Ada.Text I0 package. Here, the parent package is called
Ada, while the child package is called Text I0.In the previous examples, we've been using
the Put_Line procedure from the Text IO child package.

© Important

Ada also supports nested packages. However, since they can be more complicated to
use, the recommendation is to use child packages instead. Nested packages will be
covered in the advanced course.

Let's begin our discussion on child packages by taking our previous Week package:

Listing 7: week.ads

package Week is

: constant String := "Monday";

: constant String := "Tuesday";

: constant String := "Wednesday";
: constant String := "Thursday";
: constant String := "Friday";

: constant String := "Saturday";
: constant String := "Sunday";

(continues on next page)

4.4. Child packages 35

10
11

U oA W N e

©® N O U A W N R

o U A W N -

Introduction to Ada

(continued from previous page)
end Week;

Code block metadata

Project: Courses.Intro To Ada.Modular Programming.Child Packages
MD5: 0fa033dc8fe2b9741483de273354e7ee

If we want to create a child package for Week, we may write:

Listing 8: week-child.ads
package Week.Child is

function Get First Of Week return String;

end Week.Child;

Code block metadata

Project: Courses.Intro To Ada.Modular Programming.Child Packages
MD5: a7db38e772cf6153b5eb95069517e833

Here, Week is the parent package and Child is the child package. This is the corresponding
package body of Week.Child:

Listing 9: week-child.adb
package body Week.Child is

function Get First Of Week return String is
begin

return Mon;
end Get First Of Week;

end Week.Child;

Code block metadata

Project: Courses.Intro To Ada.Modular Programming.Child Packages
MD5: 04dad82685ad9f0231c3084266b0af83

In the implementation of the Get First Of Week function, we can use the Mon string di-
rectly, even though it was declared in the parent package Week. We don't write with Week
here because all elements from the specification of the Week package — such as Mon, Tue
and so on — are visible in the child package Week.Child.

Now that we've completed the implementation of the Week.Child package, we can use
elements from this child package in a subprogram by simply writing with Week.Child.
Similarly, if we want to use these elements directly, we write use Week.Child in addition.
For example:

Listing 10: main.adb

with Ada.Text IO; use Ada.Text IO;
with Week.Child; use Week.Child;

procedure Main is
begin
Put Line ("First day of the week is

(continues on next page)

36 Chapter 4. Modular programming

oA W N e

® N o U A W N e

© ® N o U A W N R

=
o

Introduction to Ada

(continued from previous page)

& Get First Of Week);
end Main;

Code block metadata

Project: Courses.Intro To Ada.Modular Programming.Child Packages
MD5: e2f5c6ad3a92dadch04ee7ecl2293df4

Runtime output

First day of the week is Monday

4.4.1 Child of a child package

So far, we've seen a two-level package hierarchy. But the hierarchy that we can potentially
create isn't limited to that. For instance, we could extend the hierarchy of the previous
source code example by declaring a Week.Child.Grandchild package. In this case, Week.
Child would be the parent of the Grandchild package. Let's consider this implementation:

Listing 11: week-child-grandchild.ads
package Week.Child.Grandchild is

function Get Second Of Week return String;

end Week.Child.Grandchild;

Listing 12: week-child-grandchild.adb
package body Week.Child.Grandchild is

function Get Second Of Week return String is
begin

return Tue;
end Get Second Of Week;

end Week.Child.Grandchild;

Code block metadata

Project: Courses.Intro To Ada.Modular Programming.Child Packages
MD5: 03ee5932a68212b2e501370212508ab1l

We can use this new Grandchild package in our test application in the same way as before:
we can reuse the previous test application and adapt the with and use, and the function
call. This is the updated code:

Listing 13: main.adb
with Ada.Text IO0; use Ada.Text IO;

with Week.Child.Grandchild;
use Week.Child.Grandchild;

procedure Main is
begin
Put Line ("Second day of the week is "
& Get Second Of Week);
end Main;

4.4. Child packages 37

oA W N e

©® N O U A W N R

U A W N e

Introduction to Ada

Code block metadata

Project: Courses.Intro To Ada.Modular Programming.Child Packages
MD5: 29ee409c8131bd9529c6bT6e366bb390

Runtime output

Second day of the week is Tuesday

Again, this isn't the limit for the package hierarchy. We could continue to extend
the hierarchy of the previous example by implementing a Week.Child.Grandchild.
Grand grandchild package.

4.4.2 Multiple children

So far, we've seen a single child package of a parent package. However, a parent package
can also have multiple children. We could extend the example above and implement a
Week.Child 2 package. For example:

Listing 14: week-child_2.ads
package Week.Child_2 is

function Get Last Of Week return String;

end Week.Child 2;

Code block metadata

Project: Courses.Intro To Ada.Modular Programming.Child Packages

MD5: bd3f63cacd142d9885600f4000b4573b

Here, Week is still the parent package of the Child package, but it's also the parent of the
Child 2 package. Inthe same way, Child 2 is obviously one of the child packages of Week.

This is the corresponding package body of Week.Child 2:

Listing 15: week-child_2.adb
package body Week.Child 2 is

function Get Last Of Week return String is
begin

return Sun;
end Get Last Of Week;

end Week.Child 2;

Code block metadata
Project: Courses.Intro To Ada.Modular Programming.Child Packages
MD5: c2c03e4cbldaff02dd6076c2956ef2aa

We can now reference both children in our test application:

Listing 16: main.adb

with Ada.Text I0; wuse Ada.Text IO0;
with Week.Child; use Week.Child;
with Week.Child 2; use Week.Child 2;

procedure Main is
(continues on next page)

38 Chapter 4. Modular programming

© © N o

10
11

© @ N o U A W N R

—
o

N o U A W N e

Introduction to Ada

(continued from previous page)
begin
Put Line ("First day of the week is "
& Get First Of Week);
Put Line ("Last day of the week is "
& Get _Last Of Week);
end Main;

Code block metadata

Project: Courses.Intro To Ada.Modular Programming.Child Packages
MD5: 6a91f239fb2a2d8c702409c22467a424

Runtime output

First day of the week is Monday
Last day of the week is Sunday

4.4.3 Visibility

In the previous section, we've seen that elements declared in a parent package specification
are visible in the child package. This is, however, not the case for elements declared in the
package body of a parent package.

Let's consider the package Book and its child Additional Operations:

Listing 17: book.ads

package Book is

: constant String :=
"Visible for my children";

function Get Title return String;
function Get Author return String;

end Book;

Listing 18: book-additional_operations.ads

package Book.Additional Operations is
function Get Extended Title return String;
function Get Extended Author return String;
end Book.Additional Operations;

Code block metadata

Project: Courses.Intro To Ada.Modular Programming.Visibility
MD5: a0d67cff9aeff288709391d16306dT00

This is the body of both packages:

Listing 19: book.adb
package body Book is

: constant String :=
(continues on next page)

4.4. Child packages 39

© ©® N o U A

© ® N o U A W N R

11
12
13
14
15
16
17
18
19

N~ o U A W N &

Introduction to Ada

(continued from previous page)
"Author not visible for my children";

function Get Title return String is
begin

return Title;
end Get Title;

function Get Author return String is
begin

return Author;
end Get Author;

end Book;

Listing 20: book-additional_operations.adb
package body Book.Additional Operations is

function Get Extended Title return String is
begin

return "Book Title: " & Title;
end Get Extended Title;

function Get Extended Author return String is
begin
-- "Author" string declared in the body
-- of the Book package is not visible
-- here. Therefore, we cannot write:

-- return "Book Author: " & Author;

return "Book Author: Unknown";
end Get Extended Author;

end Book.Additional Operations;

Code block metadata

Project: Courses.Intro To Ada.Modular_ Programming.Visibility
MD5: 68b7490dal2bafae@aabfe@ab76cbblc

In the implementation of the Get Extended Title, we're using the Title constant from the
parent package Book. However, as indicated in the comments of the Get Extended Author
function, the Author string — which we declared in the body of the Book package — isn't
visible in the Book.Additional Operations package. Therefore, we cannot use it to im-
plement the Get Extended Author function.

We can, however, use the Get Author function from Book in the implementation of the
Get Extended Author function to retrieve this string. Likewise, we can use this strategy
to implement the Get Extended Title function. This is the adapted code:

Listing 21: book-additional_operations.adb

package body Book.Additional Operations is
function Get Extended Title return String is
begin

return "Book Title: " & Get Title;
end Get Extended Title;

(continues on next page)

40 Chapter 4. Modular programming

10
11
12
13

© ©® N o U A W N R

—
o

N o U A W N e

Introduction to Ada

(continued from previous page)

function Get Extended Author return String is
begin

return "Book Author: " & Get_Author;
end Get Extended Author;

end Book.Additional Operations;

Code block metadata

Project: Courses.Intro To Ada.Modular Programming.Visibility
MD5: b00c187cb54d3fcb9574726028clefch

This is a simple test application for the packages above:

Listing 22: main.adb
with Ada.Text IO; use Ada.Text IO;

with Book.Additional Operations;
use Book.Additional Operations;

procedure Main is
begin
Put Line (Get Extended Title);
Put Line (Get Extended Author);
end Main;

Code block metadata

Project: Courses.Intro To Ada.Modular Programming.Visibility
MD5: bdc75987fe61e9401b400f8704890ebe

Runtime output

Book Title: Visible for my children
Book Author: Author not visible for my children

By declaring elements in the body of a package, we can implement encapsulation in Ada.
Those elements will only be visible in the package body, but nowhere else. This isn't,
however, the only way to achieve encapsulation in Ada: we'll discuss other approaches in
the Privacy (page 109) chapter.

4.5 Renaming

Previously, we've mentioned that subprograms can be renamed (page 27). We can re-
name packages, too. Again, we use the renames keyword for that. The following example
renames the Ada.Text I0 package as TIO:

Listing 23: main.adb
with Ada.Text I0;

procedure Main is

package TIO renames Ada.Text_IO;
begin

TIO.Put Line ("Hello");
end Main;

Code block metadata

4.5. Renaming 41

©® N O U A W N R

Introduction to Ada

Project: Courses.Intro To Ada.Modular Programming.Rename Text IO
MD5: 33652dd004ef33d95¢168ab8893cd412

Runtime output

Hello

We can use renaming to improve the readability of our code by using shorter package
names. In the example above, we write TI0.Put Line instead of the longer version (Ada.
Text I0.Put Line). This approach is especially useful when we don't use packages and
want to avoid that the code becomes too verbose.

Note we can also rename subprograms and objects inside packages. Forinstance, we could
have just renamed the Put Line procedure in the source code example above:

Listing 24: main.adb
with Ada.Text I0;

procedure Main is
procedure Say (Something : String)
renames Ada.Text I0.Put Line;
begin
Say ("Hello");
end Main;

Code block metadata

Project: Courses.Intro To Ada.Modular Programming.Rename Put Line
MD5: f30174ff29eb01f33bc95f1787f9f1ldc

Runtime output

Hello

In this example, we rename the Put Line procedure to Say.

42 Chapter 4. Modular programming

© @ N U A W N e

=R e
N = O

13
14
15
16
17

CHAPTER
FIVE

STRONGLY TYPED LANGUAGE

Ada is a strongly typed language. It is interestingly modern in that respect: strong static
typing has been increasing in popularity in programming language design, owing to factors
such as the growth of statically typed functional programming, a big push from the research
community in the typing domain, and many practical languages with strong type systems.

5.1 What is a type?

In statically typed languages, a type is mainly (but not only) a compile time construct.
It is a construct to enforce invariants about the behavior of a program. Invariants are
unchangeable properties that hold for all variables of a given type. Enforcing them ensures,
for example, that variables of a data type never have invalid values.

A type is used to reason about the objects a program manipulates (an object is a variable
or a constant). The aim is to classify objects by what you can accomplish with them (i.e.,
the operations that are permitted), and this way you can reason about the correctness of
the objects' values.

5.2 Integers

A nice feature of Ada is that you can define your own integer types, based on the require-
ments of your program (i.e., the range of values that makes sense). In fact, the definitional
mechanism that Ada provides forms the semantic basis for the predefined integer types.
There is no "magical" built-in type in that regard, which is unlike most languages, and ar-
guably very elegant.

Listing 1: integer_type_example.adb
with Ada.Text IO; use Ada.Text IO;

procedure Integer Type Example is
-- Declare a signed integer type,
-- and give the bounds
type My_Int is range -1 .. 20;
-- ~ High bound
-- ~ Low bound

-- Like variables, type declarations can
-- only appear in declarative regions.
begin

for I in My Int loop

Put Line (My Int'Image (I));

-- ~ 'Image attribute

-- converts a value

-- to a String.

(continues on next page)

43

18
19

Introduction to Ada

(continued from previous page)

end loop;
end Integer Type Example;

Code block metadata

Project: Courses.Intro To Ada.Strongly Typed Language.Integer Type Example
MD5: 1d82fa54b604944fdd8652chbf84f4ff2

Runtime output

CooONOUPA,WNREROR

This example illustrates the declaration of a signed integer type, and several things we can
do with them.

Every type declaration in Ada starts with the type keyword (except for task types
(page 156)). After the type, we can see a range that looks a lot like the ranges that we
use in for loops, that defines the low and high bound of the type. Every integer in the
inclusive range of the bounds is a valid value for the type.

O Ada integer types

In Ada, an integer type is not specified in terms of its machine representation, but rather
by its range. The compiler will then choose the most appropriate representation.

Another point to note in the above example is the My Int'Image (I) expression. The
Name'Attribute (optional params) notation is used for what is called an attribute in
Ada. An attribute is a built-in operation on a type, a value, or some other program entity.
It is accessed by using a ' symbol (the ASCII apostrophe).

Ada has several types available as "built-ins"; Integer is one of them. Here is how Integer
might be defined for a typical processor:

type Integer is
range -(2 ** 31) .. +(2 ** 31 - 1);

** is the exponent operator, which means that the first valid value for Integer is -23!, and
the last valid value is 23! - 1.

44 Chapter 5. Strongly typed language

©® N O U~ W N R

© ©® N o U A W N R

_oe e
N = O

Introduction to Ada

Ada does not mandate the range of the built-in type Integer. An implementation for a
16-bit target would likely choose the range -215 through 2% - 1.

5.2.1 Operational semantics

Unlike some other languages, Ada requires that operations on integers should be checked
for overflow.

Listing 2: main.adb

procedure Main is
A : Integer := Integer'lLast;

B : Integer;
begin
B := A + 5;

-- This operation will overflow, eg. it
-- will raise an exception at run time.
end Main;

Code block metadata

Project: Courses.Intro To Ada.Strongly Typed Language.Overflow Check
MD5: bddd15b394f043442024899d12b982fb

Build output

main.adb:5:11: warning: value not in range of type "Standard.Integer" [enabled by,
~default]

main.adb:5:11: warning: Constraint Error will be raised at run time [enabled by,
~default]

Runtime output

raised CONSTRAINT ERROR : main.adb:5 overflow check failed

There are two types of overflow checks:

* Machine-level overflow, when the result of an operation exceeds the maximum value
(or is less than the minimum value) that can be represented in the storage reserved
for an object of the type, and

* Type-level overflow, when the result of an operation is outside the range defined for
the type.

Mainly for efficiency reasons, while machine-level overflow always results in an exception,
type-level overflows will only be checked at specific boundaries, like assignment:

Listing 3: main.adb
with Ada.Text IO0; use Ada.Text IO;

procedure Main is
type My _Int is range 1 .. 20;

My Int := 12;
B : My Int := 15;
M : My Int := (A + B) / 2;

- No overflow here, overflow checks
-- are done at specific boundaries.
begin
for I in 1 .. M loop
Put Line ("Hello, World!");

(continues on next page)

5.2. Integers 45

13
14
15

© ©® N o U A W N R

N L N < e =
N o 0 A W N B O

Introduction to Ada

(continued from previous page)
end loop;
-- Loop body executed 13 times
end Main;

Code block metadata

Project: Courses.Intro To Ada.Strongly Typed Language.Overflow Check 2
MD5: d24283cbb42cbbe5b5fa215ebl6ad2e?

Runtime output

Hello, World!
Hello, World!
Hello, World!
Hello, World!
Hello, World!
Hello, World!
Hello, World!
Hello, World!
Hello, World!
Hello, World!
Hello, World!
Hello, World!
Hello, World!

Type-level overflow will only be checked at specific points in the execution. The result,
as we see above, is that you might have an operation that overflows in an intermediate
computation, but no exception will be raised because the final result does not overflow.

5.3 Unsigned types

Ada also features unsigned Integer types. They're called modular types in Ada parlance.
The reason for this designation is due to their behavior in case of overflow: They simply
"wrap around", as if a modulo operation was applied.

For machine sized modular types, for example a modulus of 232, this mimics the most
common implementation behavior of unsigned types. However, an advantage of Ada is
that the modulus is more general:

Listing 4: main.adb
with Ada.Text IO; use Ada.Text IO;
procedure Main is

type Mod_Int is mod 2 ** 5;
-- ~ Range is 0 .. 31

: constant Mod Int := 20;
: constant Mod Int := 15;
: constant Mod Int := A + B;

-- No overflow here,
-- M= (20 + 15) mod 32 = 3
begin
for I in 1 .. M loop
Put Line ("Hello, World!");
end loop;
end Main;

Code block metadata

46 Chapter 5. Strongly typed language

© @ N U A W N e

I I N T s T e O o < =
P O © ® N o U A W N = O

Introduction to Ada

Project: Courses.Intro To Ada.Strongly Typed Language.Unsigned Types
MD5: df4efeedeb29e7eal5adcf961b600dd5

Runtime output

Hello, World!
Hello, World!
Hello, World!

Unlike in C/C++, since this wraparound behavior is guaranteed by the Ada specification,
you can rely on it to implement portable code. Also, being able to leverage the wrapping
on arbitrary bounds is very useful — the modulus does not need to be a power of 2 — to
implement certain algorithms and data structures, such as ring buffers'?,

5.4 Enumerations

Enumeration types are another nicety of Ada's type system. Unlike C's enums, they are not
integers, and each new enumeration type is incompatible with other enumeration types.
Enumeration types are part of the bigger family of discrete types, which makes them usable
in certain situations that we will describe later but one context that we have already seen
is a case statement.

Listing 5: enumeration_example.adb
with Ada.Text I0; use Ada.Text IO;

procedure Enumeration Example is
type Days is (Monday, Tuesday, Wednesday,
Thursday, Friday,
Saturday, Sunday);
-- An enumeration type
begin
for I in Days loop
case I is
when Saturday .. Sunday =>
Put Line ("Week end!");

when Monday .. Friday =>

Put Line ("Hello on "
& Days'Image (I));
-- 'Image attribute, works on
-- enums too
end case;
end loop;
end Enumeration Example;

Code block metadata

Project: Courses.Intro To Ada.Strongly Typed Language.Enumeration Example
MD5: 45d6c83992af4fb6d5015d5f22cb7113

Runtime output

Hello on MONDAY
Hello on TUESDAY
Hello on WEDNESDAY
Hello on THURSDAY
Hello on FRIDAY

(continues on next page)

10 https://en.wikipedia.org/wiki/Circular_buffer

5.4. Enumerations a7

https://en.wikipedia.org/wiki/Circular_buffer

® N O U A W N e

© @ N U A W N e

=
o

11

Introduction to Ada

(continued from previous page)

Week end!
Week end!

Enumeration types are powerful enough that, unlike in most languages, they're used to
define the standard Boolean type:

type Boolean is (False, True);

As mentioned previously, every "built-in" type in Ada is defined with facilities generally
available to the user.

5.5 Floating-point types

5.5.1 Basic properties

Like most languages, Ada supports floating-point types. The most commonly used floating-
point type is Float:

Listing 6: floating_point_demo.adb
with Ada.Text I0; use Ada.Text IO;

procedure Floating Point Demo is
: constant Float := 2.5;
begin
Put Line ("The value of A is "
& Float'Image (A));
end Floating Point Demo;

Code block metadata

Project: Courses.Intro To Ada.Strongly Typed Language.Floating Point Demo
MD5: 06998775497b68b742700138faecbbba

Runtime output

The value of A is 2.50000E+00

The application will display 2.5 as the value of A.

The Ada language does not specify the precision (number of decimal digits in the mantissa)
for Float; on a typical 32-bit machine the precision will be 6.

All common operations that could be expected for floating-point types are available, includ-
ing absolute value and exponentiation. For example:

Listing 7: floating_point_operations.adb
with Ada.Text I0; use Ada.Text IO;

procedure Floating Point Operations is
A : Float := 2.5;
begin
A := abs (A - 4.5);
Put Line ("The value of A is
& Float'Image (A));

A=A *2+1.0;
Put Line ("The value of A is "
(continues on next page)

438 Chapter 5. Strongly typed language

12

13

© ©® N o U A W N R

R L i T
N o 0 A W N B O

Introduction to Ada

(continued from previous page)

& Float'Image (A));
end Floating Point Operations;

Code block metadata

Project: Courses.Intro To Ada.Strongly Typed Language.Floating Point Operations
MD5: c280e0f23e020aaeela8777e7fb4c242

Runtime output

The value of A is 2.00000E+00
The value of A is 5.00000E+00

The value of A is 2.0 after the first operation and 5.0 after the second operation.

In addition to Float, an Ada implementation may offer data types with higher precision such
as Long_Float and Long_Long_Float. Like Float, the standard does not indicate the exact
precision of these types: it only guarantees that the type Long_Float, for example, has at
least the precision of Float. In order to guarantee that a certain precision requirement is
met, we can define custom floating-point types, as we will see in the next section.

5.5.2 Precision of floating-point types

Ada allows the user to specify the precision for a floating-point type, expressed in terms
of decimal digits. Operations on these custom types will then have at least the specified
precision. The syntax for a simple floating-point type declaration is:

type T is digits <number of decimal digits>;

The compiler will choose a floating-point representation that supports the required preci-
sion. For example:

Listing 8: custom_floating_types.adb
with Ada.Text IO; use Ada.Text IO;

procedure Custom Floating Types is
type T3 is digits 3;
type T15 is digits 15;
type T18 is digits 18;
begin
Put Line ("T3 requires "
& Integer'Image (T3'Size)
& " bits");
Put Line ("T15 requires "
& Integer'Image (T15'Size)
& " bits");
Put Line ("T18 requires "
& Integer'Image (T18'Size)
& " bits");
end Custom Floating Types;

Code block metadata

Project: Courses.Intro To Ada.Strongly Typed Language.Custom Floating Types
MD5: 3c23738f13e081038996c533da8fb723

Runtime output

5.5. Floating-point types 49

© @ N o U A W N e

e e e
o U A W N B O

© N O U A W N

Introduction to Ada

T3 requires 32 bits
T15 requires 64 bits
T18 requires 128 bits

In this example, the attribute 'Size is used to retrieve the number of bits used for the
specified data type. As we can see by running this example, the compiler allocates 32
bits for T3, 64 bits for T15 and 128 bits for T18. This includes both the mantissa and the
exponent.

The number of digits specified in the data type is also used in the format when displaying
floating-point variables. For example:
Listing 9: display_custom_floating_types.adb
with Ada.Text IO0; use Ada.Text IO;
procedure Display Custom Floating Types is

type T3 1is digits 3;
type T18 is digits 18;

: constant := 1.0e-4;
: constant T3 =1.0 + C1;
: constant T18 := 1.0 + C1;

begin
Put Line ("The value of A is "
& T3'Image (A));
Put Line ("The value of B is "
& T18'Image (B));
end Display Custom Floating Types;

Code block metadata

Project: Courses.Intro To Ada.Strongly Typed Language.Display Custom Floating Types
MD5: 58ec2660388a7f05e139f73e94303cf1l

Runtime output

The value of A is 1.00E+00

The value of B is 1.00010000000000000E+00

As expected, the application will display the variables according to specified precision
(1.00E4+00 and 1.00010000000000000E+00).

5.5.3 Range of floating-point types

In addition to the precision, a range can also be specified for a floating-point type. The
syntax is similar to the one used for integer data types — using the range keyword. This
simple example creates a new floating-point type based on the type Float, for a normalized
range between -1.0 and 1.0:

Listing 10: floating_point_range.adb
with Ada.Text IO; use Ada.Text IO;

procedure Floating Point Range is
type T _Norm is new Float range -1.0 .. 1.0;

A : T Norm;
begin
A :=1.0;

Put Line ("The value of A is "
(continues on next page)

50 Chapter 5. Strongly typed language

9
10

© ©® N o U A W N K

=
o

© ©® N o U A W N R

Introduction to Ada

(continued from previous page)

& T _Norm'Image (A));
end Floating Point Range;

Code block metadata

Project: Courses.Intro To Ada.Strongly Typed Language.Floating Point Range
MD5: b43d596682aa0falll24a3a3d0596abc

Runtime output
The value of A is 1.00000E+00
The application is responsible for ensuring that variables of this type stay within this range;
otherwise an exception is raised. In this example, the exception Constraint Error is
raised when assigning 2.0 to the variable A:

Listing 11: floating_point_range_exception.adb
with Ada.Text IO; use Ada.Text IO;

procedure Floating Point Range Exception is
type T_Norm is new Float range -1.0 .. 1.0;

A : T Norm;
begin
A :=2.0;

Put Line ("The value of A is
& T _Norm'Image (A));
end Floating Point Range Exception;

Code block metadata

Project: Courses.Intro To Ada.Strongly Typed Language.Floating Point Range
<Exception
MD5: ecdab66589ba28e453956dcal59ea5f0d

Build output

floating point range exception.adb:7:09: warning: value not in range of type "T_
~Norm" defined at line 4 [enabled by default]

floating point range exception.adb:7:09: warning: Constraint Error will be raised,
~at run time [enabled by default]

Runtime output

raised CONSTRAINT ERROR : floating point range exception.adb:7 range check failed
Ranges can also be specified for custom floating-point types. For example:

Listing 12: custom_range_types.adb

with Ada.Text I0; wuse Ada.Text I0;
with Ada.Numerics; use Ada.Numerics;

procedure Custom Range Types is
type T6 _Inv Trig is
digits 6 range -Pi / 2.0 .. Pi / 2.0;
begin
null;
end Custom Range Types;

Code block metadata

5.5. Floating-point types 51

© ©® N o0 U A W N K

L e e
o U A W N B O

© ©® N o U A W N R

=
o

Introduction to Ada

Project: Courses.Intro To Ada.Strongly Typed Language.Custom Range Types
MD5: 7b62abc869290a30e351163f670059e0

In this example, we are defining a type called T6_Inv_Trig, which has a range from -t /
2 to m/ 2 with a minimum precision of 6 digits. (Pi is defined in the predefined package
Ada.Numerics.)

5.6 Strong typing

As noted earlier, Ada is strongly typed. As a result, different types of the same family are
incompatible with each other; a value of one type cannot be assigned to a variable from
the other type. For example:

Listing 13: illegal_example.adb
with Ada.Text IO; use Ada.Text IO;

procedure Illegal Example is
-- Declare two different floating point types
type Meters is new Float;
type Miles is new Float;

Dist Imperial : Miles;

-- Declare a constant
: constant Meters := 1000.0;
begin
-- Not correct: types mismatch
Dist Imperial := Dist Metric * 621.371e-6;
Put Line (Miles'Image (Dist Imperial));
end Illegal Example;

Code block metadata

Project: Courses.Intro To Ada.Strongly Typed Language.Imperial Metric Error
MD5: e28e341c5eda9b3b4cef691fa24b7f7e

Build output

illegal example.adb:14:33: error: expected type "Miles" defined at line 6
illegal example.adb:14:33: error: found type "Meters" defined at line 5
gprbuild: *** compilation phase failed

A consequence of these rules is that, in the general case, a "mixed mode" expression like
2 * 3.0 will trigger a compilation error. In a language like C or Python, such expressions
are made valid by implicit conversions. In Ada, such conversions must be made explicit:

Listing 14: conv.adb

with Ada.Text IO; use Ada.Text IO;
procedure Conv is

type Meters is new Float;

type Miles is new Float;

Dist Imperial : Miles;

: constant Meters := 1000.0;

begin

Dist Imperial :=

Miles (Dist Metric) * 621.371e-6;

AAAAAAAAAAAAAAAAN

(continues on next page)

52 Chapter 5. Strongly typed language

11
12
13

15

© ©® N o U A W N K

I R T e T
S © ® N o U A W N = O

Introduction to Ada

(continued from previous page)

-- Type conversion, from Meters to Miles
-- Now the code is correct

Put Line (Miles'Image (Dist Imperial));
end Conv;

Code block metadata

Project: Courses.Intro To Ada.Strongly Typed Language.Imperial Metric
MD5: e455641e86227e80e5f920b5af6315d4

Runtime output

6.21371E-01

Of course, we probably do not want to write the conversion code every time we convert
from meters to miles. The idiomatic Ada way in that case would be to introduce conversion
functions along with the types.

Listing 15: conv.adb
with Ada.Text IO; use Ada.Text IO;

procedure Conv is
type Meters is new Float;
type Miles is new Float;

-- Function declaration, like procedure
-- but returns a value.
function To Miles (M : Meters) return Miles is
-- ~ Return type
begin

return Miles (M) * 621.371e-6;
end To Miles;

Dist Imperial : Miles;
. constant Meters := 1000.0;
begin
Dist Imperial := To Miles (Dist Metric);
Put Line (Miles'Image (Dist Imperial));
end Conv;

Code block metadata

Project: Courses.Intro To Ada.Strongly Typed Language.Imperial Metric Func
MD5: 661737fa9f130ac3070210bbf6f08214

Runtime output

6.21371E-01

If you write a lot of numeric code, having to explicitly provide such conversions might seem
painful at first. However, this approach brings some advantages. Notably, you can rely on
the absence of implicit conversions, which will in turn prevent some subtle errors.

© In other languages

In C, for example, the rules for implicit conversions may not always be com-
pletely obvious. In Ada, however, the code will always do exactly what it seems
to do. For example:

5.6. Strong typing 53

N o U A W N &

Introduction to Ada

int a

=3, b=2;
float f =

a/ b;

This code will compile fine, but the result of T will be 1.0 instead of 1.5, be-
cause the compiler will generate an integer division (three divided by two)
that results in one. The software developer must be aware of data conversion
issues and use an appropriate casting:

inta =3, b =2;
float f = (float)a / b;

In the corrected example, the compiler will convert both variables to their cor-
responding floating-point representation before performing the division. This
will produce the expected result.

This example is very simple, and experienced C developers will probably notice
and correct it before it creates bigger problems. However, in more complex
applications where the type declaration is not always visible — e.g. when
referring to elements of a struct — this situation might not always be evident
and quickly lead to software defects that can be harder to find.

The Ada compiler, in contrast, will always reject code that mixes floating-point
and integer variables without explicit conversion. The following Ada code,
based on the erroneous example in C, will not compile:

Listing 16: main.adb
procedure Main is

A : Integer := 3;
B : Integer := 2;
F : Float;

begin
F := A/ B;

end Main;

Code block metadata

Project: Courses.Intro To Ada.Strongly Typed Language.Implicit Cast
MD5: 38a8fcc6608c22e22940052ab8dd62f4

Build output
main.adb:6:11: error: expected type "Standard.Float"
main.adb:6:11: error: found type "Standard.Integer"
gprbuild: *** compilation phase failed

The offending line must be changed to F := Float (A) / Float (B); in
order to be accepted by the compiler.

You can use Ada's strong typing to help enforce invariants in your code, as in the example
above: Since Miles and Meters are two different types, you cannot mistakenly convert
an instance of one to an instance of the other.

5.7 Derived types

In Ada you can create new types based on existing ones. This is very useful: you get a type
that has the same properties as some existing type but is treated as a distinct type in the
interest of strong typing.

54 Chapter 5. Strongly typed language

Introduction to Ada

Listing 17: main.adb

procedure Main is

-- ID card number type,

-- Incompatible with Integer.

type Social_Security Number is new Integer
range 0 .. 999 99 9999;

-- ~ Since a SSN has 9 digits

-- max., and cannot be

- - negative, we enforce

-- a validity constraint.

SSN : Social Security Number :=
555 55 5555;

-- ~ You can put underscores as

-- formatting in any number.

I : Integer;

-- The value -1 below will cause a

-- runtime error and a compile time

-- warning with GNAT.

Invalid : Social Security Number := -1;

begin

-- Illegal, they have different types:
I := SSN;

-- Likewise illegal:
SSN :=I;

-- OK with explicit conversion:
I := Integer (SSN);

-- Likewise OK:
SSN := Social Security Number (I);

end Main;

Code block metadata

Project: Courses.Intro To Ada.Strongly Typed Language.Derived Types
MD5: 63445601ddb5e52dceab095d3305623a

Build output

main.adb:21:40: warning: value not in range of type "Social Security Number"
~defined at line 4 [enabled by default]

main.adb:21:40: warning: Constraint Error will be raised at run time [enabled by,
~default]

main.adb:24:09: error: expected type "Standard.Integer"

main.adb:24:09: error: found type "Social Security Number" defined at line 4

main.adb:27:11: error: expected type "Social Security Number" defined at line 4

main.adb:27:11: error: found type "Standard.Integer"

gprbuild: *** compilation phase failed

The type Social Security is said to be a derived type; its parent type is Integer.

As illustrated in this example, you can refine the valid range when defining a derived scalar
type (such as integer, floating-point and enumeration).

The syntax for enumerations uses the range <range> syntax:

5.7. Derived types 55

©W @ N U A W N e

i <
> W N B O

19

Introduction to Ada

Listing 18: greet.adb
with Ada.Text IO0; use Ada.Text IO;

procedure Greet is
type Days is (Monday, Tuesday, Wednesday,
Thursday, Friday,
Saturday, Sunday);

type Weekend_Days is new
Days range Saturday .. Sunday;
-- New type, where only Saturday and Sunday
-- are valid literals.
begin
null;
end Greet;

Code block metadata

Project: Courses.Intro To Ada.Strongly Typed Language.Days
MD5: 853b5c1576961c7c20d4306275122364

5.8 Subtypes

As we are starting to see, types may be used in Ada to enforce constraints on the valid
range of values. However, we sometimes want to enforce constraints on some values while
staying within a single type. This is where subtypes come into play. A subtype does not
introduce a new type.

Listing 19: greet.adb
with Ada.Text IO; use Ada.Text IO;

procedure Greet is
type Days is (Monday, Tuesday, Wednesday,
Thursday, Friday,
Saturday, Sunday);

-- Declaration of a subtype
subtype Weekend_Days is

Days range Saturday .. Sunday;
-- ”~ Constraint of the subtype

M : Days := Sunday;

S : Weekend Days := M;
-- No error here, Days and Weekend Days
-- are of the same type.
begin
for I in Days loop
case I is
-- Just like a type, a subtype can
-- be used as a range
when Weekend Days =>
Put Line ("Week end!");
when others =>
Put Line ("Hello on "
& Days'Image (I));
end case;
(continues on next page)

56 Chapter 5. Strongly typed language

29
30

©W N U A W N e

I R R T <
S © ®»® W o U A W N = O

Introduction to Ada

(continued from previous page)

end loop;
end Greet;

Code block metadata

Project: Courses.Intro To Ada.Strongly Typed Language.Days Subtype
MD5: 8ee7127d152a8b2c9d0ac74d05fc2fc2

Runtime output

Hello on MONDAY
Hello on TUESDAY
Hello on WEDNESDAY
Hello on THURSDAY
Hello on FRIDAY
Week end!

Week end!

Several subtypes are predefined in the standard package in Ada, and are automatically
available to you:

subtype Natural is Integer range 0 .. Integer'last;
subtype Positive is Integer range 1 .. Integer'last;

While subtypes of a type are statically compatible with each other, constraints are enforced
at run time: if you violate a subtype constraint, an exception will be raised.

Listing 20: greet.adb
with Ada.Text IO; use Ada.Text IO;

procedure Greet is
type Days is (Monday, Tuesday, Wednesday,
Thursday, Friday,
Saturday, Sunday);

subtype Weekend_Days is
Days range Saturday .. Sunday;

Day : Days := Saturday;

Weekend : Weekend Days;
begin

Weekend := Day;

-- ~ Correct: Same type, subtype
- - constraints are respected

Weekend := Monday;

-- ~ Wrong value for the subtype

-- Compiles, but exception at runtime
end Greet;

Code block metadata

Project: Courses.Intro To Ada.Strongly Typed Language.Days Subtype Error
MD5: 84d42d276d26544f35edab5870459378

Build output

greet.adb:17:15: warning: value not in range of type "Weekend Days" defined at,
~line 8 [enabled by default]

greet.adb:17:15: warning: Constraint Error will be raised at run time [enabled by,
~default]

5.8. Subtypes 57

© ©® N o U A W N K

I N i s T e O < =
B O © ® N o U & W N F O

Introduction to Ada

Runtime output

raised CONSTRAINT ERROR : greet.adb:17 range check failed

5.8.1 Subtypes as type aliases

Previously, we've seen that we can create new types by declaring e.g. type Miles is new
Float. We could also create type aliases, which generate alternative names — aliases —
for known types. Note that type aliases are sometimes called type synonyms.

We achieve this in Ada by using subtypes without new constraints. In this case, however,
we don't get all of the benefits of Ada's strong type checking. Let's rewrite an example
using type aliases:

Listing 21: undetected_imperial_metric_error.adb
with Ada.Text IO; use Ada.Text IO;

procedure Undetected Imperial Metric Error is
-- Declare two type aliases
subtype Meters is Float;
subtype Miles is Float;

Dist Imperial : Miles;

-- Declare a constant
: constant Meters := 100.0;
begin
-- No conversion to Miles type required:
Dist Imperial := (Dist Metric * 1609.0)
/ 1000.0;

-- Not correct, but undetected:
Dist Imperial := Dist Metric;

Put Line (Miles'Image (Dist Imperial));
end Undetected Imperial Metric Error;

Code block metadata

Project: Courses.Intro To Ada.Strongly Typed Language.Undetected Imperial Metric_
~Error
MD5: cdb8f949c69f3c480502b859dac298ee

Runtime output

1.00000E+02

In the example above, the fact that both Meters and Miles are subtypes of Float allows
us to mix variables of both types without type conversion. This, however, can lead to all
sorts of programming mistakes that we'd like to avoid, as we can see in the undetected
error highlighted in the code above. In that example, the error in the assignment of a value
in meters to a variable meant to store values in miles remains undetected because both
Meters and Miles are subtypes of Float. Therefore, the recommendation is to use strong
typing — via type X is new Y — for cases such as the one above.

There are, however, many situations where type aliases are useful. For example, in an
application that uses floating-point types in multiple contexts, we could use type aliases
to indicate additional meaning to the types or to avoid long variable names. For example,
instead of writing:

58 Chapter 5. Strongly typed language

Introduction to Ada

Paid Amount, Due Amount : Float;

We could write:

subtype Amount is Float;

Paid, Due : Amount;

© In other languages

In C, for example, we can use a typedef declaration to create a type alias. For example:
typedef float meters;

This corresponds to the declaration that we've seen above using subtypes. Other pro-
gramming languages include this concept in similar ways. For example:

e C++: using meters = float;
» Swift: typealias Meters = Double
e Kotlin: typealias Meters = Double

e Haskell: type Meters = Float

Note, however, that subtypes in Ada correspond to type aliases if, and only if, they don't
have new constraints. Thus, if we add a new constraint to a subtype declaration, we don't
have a type alias anymore. For example, the following declaration can't be considered a
type alias of Float:

subtype Meters is Float range 0.0 .. 1 000 000.0;

Let's look at another example:

subtype Degree Celsius is Float;

subtype Liquid_Water_Temperature is
Degree Celsius range 0.0 .. 100.0;

subtype Running_Water_Temperature is
Liquid Water Temperature;

In this example, Liquid Water Temperatureisn'tan alias of Degree Celsius, since it adds
a new constraint that wasn't part of the declaration of the Degree Celsius. However, we
do have two type aliases here:

* Degree Celsius is an alias of Float;

* Running Water Temperatureisan alias of Liquid Water Temperature, evenifLiq-
uid Water Temperature itself has a constrained range.

5.8. Subtypes 59

Introduction to Ada

60 Chapter 5. Strongly typed language

CHAPTER
SIX

RECORDS

So far, all the types we have encountered have values that are not decomposable: each
instance represents a single piece of data. Now we are going to see our first class of com-
posite types: records.

Records allow composing a value out of instances of other types. Each of those instances
will be given a name. The pair consisting of a name and an instance of a specific type is
called a field, or a component.

6.1 Record type declaration

Here is an example of a simple record declaration:

type Date is record
-- The following declarations are
-- components of the record
Day : Integer range 1 .. 31;
Month : Months;
-- You can add custom constraints
-- on fields
Year : Integer range 1 .. 3000;
end record;

Fields look a lot like variable declarations, except that they are inside of a record definition.
And as with variable declarations, you can specify additional constraints when supplying
the subtype of the field.

type Date is record
Day : Integer range 1 .. 31;
Month : Months := January;
-- This component has a default value
Year : Integer range 1 .. 3000 := 2012;

AAAN

o Default value
end record;

Record components can have default values. When a variable having the record type is
declared, a field with a default initialization will be automatically set to this value. The
value can be any expression of the component type, and may be run-time computable.

In the remaining sections of this chapter, we see how to use record types. In addition to
that, we discuss more about records in another chapter (page 97).

61

© @ N U A W N e

NONONNNNN B H HE B R el e e
o U0 B W N P O © ® N O U A W N B O

Introduction to Ada

6.2 Aggregates

-- Positional components
Ada Birthday : Date := (10, December, 1815);

-- Named components

Leap Day 2020 : Date := (Day => 29,
Month => February,
Year => 2020);

S0 ~ By name

Records have a convenient notation for expressing values, illustrated above. This notation
is called aggregate notation, and the literals are called aggregates. They can be used in
a variety of contexts that we will see throughout the course, one of which is to initialize
records.

An aggregate is a list of values separated by commas and enclosed in parentheses. It is
allowed in any context where a value of the record is expected.

Values for the components can be specified positionally, as in Ada_Birthday example, or
by name, as in Leap Day 2020. A mixture of positional and named values is permitted, but
you cannot use a positional notation after a named one.

6.3 Component selection

To access components of a record instance, you use an operation that is called component
selection. This is achieved by using the dot notation. For example, if we declare a variable
Some_Day of the Date record type mentioned above, we can access the Year component
by writing Some Day.Year.

Let's look at an example:

Listing 1: record_selection.adb
with Ada.Text IO; use Ada.Text IO;

procedure Record Selection is

type Months is
(January, February, March, April,
May, June, July, August, September,
October, November, December);

type Date is record

Day : Integer range 1 .. 31;

Month : Months;

Year : Integer range 1 .. 3000 := 2032;
end record;

procedure Display Date (D : Date) is

begin
Put Line ("Day:" & Integer'Image (D.Day)
& ", Month: "
& Months'Image (D.Month)
& ", Year:"

& Integer'Image (D.Year));
end Display Date;

Some Day : Date := (1, January, 2000);

(continues on next page)

62 Chapter 6. Records

27
28
29
30
31
32
33
34

© O N o U A W N R

Introduction to Ada

(continued from previous page)
begin
Display Date (Some Day);

Put Line ("Changing year...");
Some Day.Year := 2001;

Display Date (Some Day);
end Record Selection;

Code block metadata

Project: Courses.Intro To Ada.Records.Record Selection
MD5: 79602cf4d011ba7423d07772b13e2b5a

Runtime output

Day: 1, Month: JANUARY, Year: 2000
Changing year...
Day: 1, Month: JANUARY, Year: 2001

As you can see in this example, we can use the dot notation in the expression D.Year or
Some Day.Year to access the information stored in that component, as well as to mod-
ify this information in assignments. To be more specific, when we use D.Year in the call
to Put Line, we're retrieving the information stored in that component. When we write
Some Day.Year := 2001, we're overwriting the information that was previously stored in
the Year component of Some Day.

6.4 Renaming

In previous chapters, we've discussed subprogram (page 27) and package (page 41) re-
naming. We can rename record components as well. Instead of writing the full component
selection using the dot notation, we can declare an alias that allows us to access the same
component. This is useful to simplify the implementation of a subprogram, for example.

We can rename record components by using the renames keyword in a variable declaration.
For example:

Some Day : Date;
Y : Integer renames Some Day.Year;

Here, Y is an alias, so that every time we using Y, we are really using the Year component
of Some Day.

Let's look at a complete example:

Listing 2: dates.ads

package Dates is

type Months is
(January, February, March, April,
May, June, July, August, September,
October, November, December);

type Date is record
Day : Integer range 1 .. 31;
Month : Months;
Year : Integer range 1 .. 3000 := 2032;
end record;
(continues on next page)

6.4. Renaming 63

13
14
15
16
17
18
19
20

© ©® N o U A W N K

AA W W OW W W W W W W W N NNNNNNNNNKRERBHB B B B B B B B
P O © ® N o 0 A W N B O © ® N O U & W N P © © ® N 06 U A W N F O

[B N N N

Introduction to Ada

(continued from previous page)

procedure Increase Month
(Some Day : in out Date);

procedure Display Month
(Some Day : Date);

end Dates;

Listing 3: dates.adb
with Ada.Text IO; use Ada.Text IO;

package body Dates is

procedure Increase Month

(Some Day : in out Date)
is

-- Renaming components from

-- the Date record

M : Months renames Some Day.Month;
Y : Integer renames Some Day.Year;

-- Renaming function (for Months
-- enumeration)
function Next (M : Months)
return Months
renames Months'Succ;
begin
if M = December then
M := January;
Y :=Y + 1;
else
M := Next (M);
end if;
end Increase Month;

procedure Display Month
(Some Day : Date)
is
-- Renaming components from
-- the Date record
M : Months renames Some Day.Month;
Y : Integer renames Some Day.Year;
begin
Put Line ("Month: "
& Months'Image (M)
& ", Year:"
& Integer'Image (Y));
end Display Month;

end Dates;

Listing 4: main.adb

with Ada.Text IO; use Ada.Text IO;
with Dates; use Dates;

procedure Main is
D : Date := (1, January, 2000);

(continues on next page)

64 Chapter 6. Records

© © N o

10
11
12
13

Introduction to Ada

(continued from previous page)
begin
Display Month (D);

Put Line ("Increasing month...");
Increase Month (D);

Display Month (D);
end Main;

Code block metadata

Project: Courses.Intro To Ada.Arrays.Record Component Renaming
MD5: 905390bd02b8417039052218800975a3

Runtime output

Month: JANUARY, Year: 2000
Increasing month...
Month: FEBRUARY, Year: 2000

We apply renaming to two components of the Date record in the implementation of the In-
crease Month procedure. Then, instead of directly using Some Day.Month and Some Day.
Year in the next operations, we simply use the renamed versions M and Y.

Note that, in the example above, we also rename Months'Succ — which is the function that
gives us the next month — to Next.

6.4. Renaming 65

Introduction to Ada

66 Chapter 6. Records

© @ N U A W N e

N ONONN B R R B HE e R s e e
W N B O © ® N O U A W N B O

CHAPTER
SEVEN

ARRAYS

Arrays provide another fundamental family of composite types in Ada.

7.1 Array type declaration

Arrays in Ada are used to define contiguous collections of elements that can be selected by
indexing. Here's a simple example:

Listing 1: greet.adb
with Ada.Text IO; use Ada.Text IO;

procedure Greet is
type My Int is range 0 .. 1000;
type Index is range 1 .. 5;

type My Int_Array is
array (Index) of My Int;
-- ~ Type of elements
- - ~ Bounds of the array
Arr : My Int Array := (2, 3, 5, 7, 11);
-- ~ Array literal

- - (aggregate)
V : My Int;
begin
for I in Index loop
V := Arr (I);

-- ~ Take the Ith element
Put (My Int'Image (V));
end loop;
New Line;
end Greet;

Code block metadata

Project: Courses.Intro To Ada.Arrays.Greet
MD5: ffdd2ba2322b0946dfcac3a55bce5270

Runtime output
235711
The first point to note is that we specify the index type for the array, rather than its size.

Here we declared an integer type named Index ranging from 1 to 5, so each array instance
will have 5 elements, with the initial element at index 1 and the last element at index 5.

67

© N U A W N e

e~ e e i <
© ©® N o U A W N = O

N
o

Introduction to Ada

Although this example used an integer type for the index, Ada is more general: any discrete
type is permitted to index an array, including Enum types (page 47). We will soon see what
that means.

Another point to note is that querying an element of the array at a given index uses the same
syntax as for function calls: that is, the array object followed by the index in parentheses.

Thus when you see an expression such as A (B), whether it is a function call or an array
subscript depends on what A refers to.

Finally, notice how we initialize the array with the (2, 3, 5, 7, 11) expression. This
is another kind of aggregate in Ada, and is in a sense a literal expression for an array, in
the same way that 3 is a literal expression for an integer. The notation is very powerful,
with a number of properties that we will introduce later. A detailed overview appears in the
notation of aggregate types (page 85).

Unrelated to arrays, the example also illustrated two procedures from Ada.Text I0:
* Put, which displays a string without a terminating end of line
* New Line, which outputs an end of line

Let's now delve into what it means to be able to use any discrete type to index into the
array.

© In other languages

Semantically, an array object in Ada is the entire data structure, and not simply a handle
or pointer. Unlike C and C++, there is no implicit equivalence between an array and a
pointer to its initial element.

Listing 2: array_bounds_example.adb
with Ada.Text IO; use Ada.Text IO;

procedure Array Bounds Example is
type My Int is range 0 .. 1000;

type Index is range 11 .. 15;
- - ~ Low bound can
-- be any value

type My _Int_Array is
array (Index) of My Int;

: constant My Int Array :=
(2, 3, 5, 7, 11);

begin

for I in Index loop

Put (My Int'Image (Tab (I)));

end loop;

New Line;
end Array Bounds Example;

Code block metadata

Project: Courses.Intro To Ada.Arrays.Array Bounds Example
MD5: e5fe9e7b83055f3ae23dd890e29c22de

Runtime output

235711

68 Chapter 7. Arrays

© ©® N o U A W N R

10
11
12
13
14
15
16
17

19
20
21

23
24
25
26
27
28
29
30
31
32

Introduction to Ada

One effect is that the bounds of an array can be any values. In the first example we con-
structed an array type whose first index is 1, but in the example above we declare an array
type whose first index is 11.

That's perfectly fine in Ada, and moreover since we use the index type as a range to iterate
over the array indices, the code using the array does not need to change.

That leads us to an important consequence with regard to code dealing with arrays. Since
the bounds can vary, you should not assume / hard-code specific bounds when iterating /
using arrays. That means the code above is good, because it uses the index type, but a for
loop as shown below is bad practice even though it works correctly:

for I in 11 .. 15 loop
Tab (I) := Tab (I) * 2;
end loop;

Since you can use any discrete type to index an array, enumeration types are permitted.

Listing 3: month_example.adb
with Ada.Text IO0; use Ada.Text IO;

procedure Month Example is
type Month_Duration is range 1 .. 31;
type Month is (Jan, Feb, Mar, Apr,
May, Jun, Jul, Aug,
Sep, Oct, Nov, Dec);

type My _Int_Array is

array (Month) of Month Duration;
-- ~ Can use an enumeration type
-- as the index

: constant My Int Array :=
-- ~ constant is like a variable but
-- cannot be modified
(31, 28, 31, 30, 31, 30,
31, 31, 30, 31, 30, 31);
-- Maps months to number of days
-- (ignoring leap years)

Feb Days : Month Duration := Tab (Feb);
-- Number of days in February

begin
for M in Month loop
Put Line

(Month'Image (M) & " has "
& Month_Duration'Image (Tab (M))
& " days.");

-- ~ Concatenation operator

end loop;

end Month Example;

Code block metadata

Project: Courses.Intro To Ada.Arrays.Month Example
MD5: 420bb8faa36d0efd3d071c76c2033d21

Runtime output

JAN has 31 days.
FEB has 28 days.
MAR has 31 days.
(continues on next page)

7.1. Array type declaration 69

© @ N o U A W N e

P~ e e O i <
© ® N o U A W N B O

Introduction to Ada

(continued from previous page)

APR has 30 days.
MAY has 31 days.
JUN has 30 days.
JUL has 31 days.
AUG has 31 days.
SEP has 30 days.
OCT has 31 days.
NOV has 30 days.
DEC has 31 days.

In the example above, we are:

* Creating an array type mapping months to month durations in days.

* Creating an array, and instantiating it with an aggregate mapping months to their

actual durations in days.

* |terating over the array, printing out the months, and the number of days for each.

Being able to use enumeration values as indices is very helpful in creating mappings such

as shown above one, and is an often used feature in Ada.

7.2 Indexing

We have already seen the syntax for selecting elements of an array. There are however a

few more points to note.

First, as is true in general in Ada, the indexing operation is strongly typed. If you use a

value of the wrong type to index the array, you will get a compile-time error.

Listing 4: greet.adb
with Ada.Text IO0; use Ada.Text IO;

procedure Greet is
type My Int is range 0 .. 1000;

type My _Index is range 1 .. 5;
type Your_Index is range 1 .. 5;

type My_Int_Array is
array (My Index) of My Int;

Tab : My Int Array := (2, 3, 5, 7, 11);
begin
for I in Your Index loop
Put (My Int'Image (Tab (I)));
-- ~ Compile time error
end loop;
New Line;
end Greet;

Code block metadata

Project: Courses.Intro To Ada.Arrays.Greet 2
MD5: 54543017e4ec69d24bT9e43d507b50e6

Build output

70 Chapter 7.

Arrays

© O N o U A W N e

e~ e e < e
© ©® N o U B W N = O

Introduction to Ada

greet.adb:15:31: error: expected type "My Index" defined at line 6
greet.adb:15:31: error: found type "Your Index" defined at line 7
gprbuild: *** compilation phase failed

Second, arrays in Ada are bounds checked. This means that if you try to access an element
outside of the bounds of the array, you will get a run-time error instead of accessing random
memory as in unsafe languages.

Listing 5: greet.adb
with Ada.Text IO0; use Ada.Text IO;
procedure Greet is
type My Int is range 0 .. 1000;

type Index is range 1 .. 5;

type My Int_Array is
array (Index) of My Int;

Tab : My Int Array := (2, 3, 5, 7, 11);

begin
for I in Index range 2 .. 6 loop
Put (My Int'Image (Tab (I)));
-- ~ Will raise an
X exception when
-- I =6
end loop;
New Line;
end Greet;

Code block metadata

Project: Courses.Intro To Ada.Arrays.Greet 3
MD5: 0102674d089be838f1dfbf0791d99fce

Build output

greet.adb:12:30: warning: static value out of range of type "Index" defined at,
~line 5 [enabled by default]

greet.adb:12:30: warning: Constraint Error will be raised at run time [enabled by,
~default]

greet.adb:12:30: warning: suspicious loop bound out of range of loop subtype,
~[enabled by default]

greet.adb:12:30: warning: loop executes zero times or raises Constraint Error,
~[enabled by default]

Runtime output

raised CONSTRAINT ERROR : greet.adb:12 range check failed

7.3 Simpler array declarations

In the previous examples, we have always explicitly created an index type for the array.
While this can be useful for typing and readability purposes, sometimes you simply want
to express a range of values. Ada allows you to do that, too.

7.3. Simpler array declarations 71

©W @ N U A W N e

T e e i
©® N o U A W N B O

© ©® N o U A W N K

e
= o

Introduction to Ada

Listing 6: simple_array_bounds.adb
with Ada.Text IO0; use Ada.Text IO;

procedure Simple Array Bounds is
type My Int is range 0 .. 1000;

type My_Int_Array is
array (1 .. 5) of My Int;
-- ~ Subtype of Integer

: constant My Int Array :=
(2, 3, 5, 7, 11);
begin
for I in 1 .. 5 loop
-- ~ Subtype of Integer
Put (My Int'Image (Tab (I)));
end loop;
New Line;
end Simple Array Bounds;

Code block metadata

Project: Courses.Intro To Ada.Arrays.Simple Array Bounds
MD5: c337a7feO@dacccc5f60f7b234a2a96d39

Runtime output

235711

This example defines the range of the array via the range syntax, which specifies an anony-
mous subtype of Integer and uses it to index the array.

This means that the type of the index is Integer. Similarly, when you use an anonymous
rangein aforloop as in the example above, the type of the iteration variable is also Integer,
so you can use I to index Tab.

You can also use a named subtype for the bounds for an array.

7.4 Range attribute

We noted earlier that hard coding bounds when iterating over an array is a bad idea, and
showed how to use the array's index type/subtype to iterate over its range in a for loop.
That raises the question of how to write an iteration when the array has an anonymous
range for its bounds, since there is no name to refer to the range. Ada solves that via
several attributes of array objects:

Listing 7: range_example.adb
with Ada.Text IO; use Ada.Text IO;

procedure Range Example is
type My_Int is range 0 .. 1000;

type My_Int_Array is
array (1 .. 5) of My Int;

: constant My Int Array :=
(2, 3, 5, 7, 11);
begin
(continues on next page)

72 Chapter 7. Arrays

12
13
14
15
16
17

© @ N o U A W N R

T L N e <
© N o U A W N B O

Introduction to Ada

(continued from previous page)

for I in Tab'Range loop
-- ~ Gets the range of Tab
Put (My Int'Image (Tab (I)));
end loop;
New Line;
end Range Example;

Code block metadata

Project: Courses.Intro To Ada.Arrays.Range Example
MD5: 8b0d7bf346cb59999dfdl2dbaaf3e2a6b

Runtime output

235711

If you want more fine grained control, you can use the separate attributes 'First and

'Last.

Listing 8: array_attributes_example.adb
with Ada.Text IO; use Ada.Text IO;

procedure Array Attributes Example is
type My_Int is range 0 .. 1000;

type My_Int_Array is
array (1 .. 5) of My Int;

Tab : My Int Array :=
(2, 3, 5, 7, 11);
begin
for I in Tab'First .. Tab'Last - 1 loop
-- ~ Iterate on every index
-- except the last
Put (My Int'Image (Tab (I)));
end loop;
New Line;
end Array Attributes Example;

Code block metadata

Project: Courses.Intro To Ada.Arrays.Array Attributes Example
MD5: 95cc407c8aadd936e050fe3505e8Th46

Runtime output

2357

The 'Range, 'First and 'Last attributes in these examples could also have been applied

to the array type name, and not just the array instances.

Although not illustrated in the above examples, another useful attribute for an array in-
stance Ais A'Length, which is the number of elements that A contains.

It is legal and sometimes useful to have a "null array", which contains no elements. To get
this effect, define an index range whose upper bound is less than the lower bound.

7.4. Range attribute

73

© ©® N o U A W N K

NONONN NN B B HE B B e B e e e
0 F W N P O © ® N O U A W N B O

Introduction to Ada

7.5 Unconstrained arrays

Let's now consider one of the most powerful aspects of Ada's array facility.

Every array type we have defined so far has a fixed size: every instance of this type will
have the same bounds and therefore the same number of elements and the same size.

However, Ada also allows you to declare array types whose bounds are not fixed: in that
case, the bounds will need to be provided when creating instances of the type.

Listing 9: unconstrained_array_example.adb
with Ada.Text IO; use Ada.Text IO;

procedure Unconstrained Array Example is
type Days is (Monday, Tuesday, Wednesday,
Thursday, Friday,
Saturday, Sunday);

type Workload Type is

array (Days range <>) of Natural;
-- Indefinite array type
-- ~ Bounds are of type Days,
-- but not known

: constant
Workload Type (Monday .. Friday) :=
-- ~ Specify the bounds
-- when declaring
(Friday => 7, others => 8);
-- ~ Default value
-- ~ Specify element by name of index
begin
for I in Workload'Range loop
Put Line (Integer'Image (Workload (I)));
end loop;
end Unconstrained Array Example;

Code block metadata

Project: Courses.Intro To Ada.Arrays.Unconstrained Array Example
MD5: c84910e9b424cfabbbbe018ba®abde59

Runtime output

~N 00 00 00 0

The fact that the bounds of the array are not known is indicated by the Days range <>
syntax. Given a discrete type Discrete Type, if we use Discrete Type for the index in an
array type then Discrete Type serves as the type of the index and comprises the range
of index values for each array instance.

If we define the index as Discrete Type range <>thenDiscrete Type serves as the type
of the index, but different array instances may have different bounds from this type.

An array type that is defined with the Discrete Type range <> syntax for its index is
referred to as an unconstrained array type, and, as illustrated above, the bounds need to
be provided when an instance is created.

74 Chapter 7. Arrays

N o U A W N e

Introduction to Ada

The above example also shows other forms of the aggregate syntax. You can specify asso-
ciations by name, by giving the value of the index on the left side of an arrow association.
1 => 2 thus means "assign value 2 to the element at index 1 in my array"”. others => 8
means "assign value 8 to every element that wasn't previously assigned in this aggregate".

A Attention

The so-called "box" notation (<>) is commonly used as a wildcard or placeholder in Ada.
You will often see it when the meaning is "what is expected here can be anything".

O In other languages

While unconstrained arrays in Ada might seem similar to variable length arrays in C,
they are in reality much more powerful, because they're truly first-class values in the
language. You can pass them as parameters to subprograms or return them from func-
tions, and they implicitly contain their bounds as part of their value. This means that it is
useless to pass the bounds or length of an array explicitly along with the array, because
they are accessible via the 'First, 'Last, 'Range and 'Length attributes explained
earlier.

Although different instances of the same unconstrained array type can have different
bounds, a specific instance has the same bounds throughout its lifetime. This allows Ada
to implement unconstrained arrays efficiently; instances can be stored on the stack and do
not require heap allocation as in languages like Java.

7.6 Predefined array type: String

A recurring theme in our introduction to Ada types has been the way important built-in
types like Boolean or Integer are defined through the same facilities that are available to
the user. This is also true for strings: The String type in Ada is a simple array.

Here is how the string type is defined in Ada:

type String is
array (Positive range <>) of Character;

The only built-in feature Ada adds to make strings more ergonomic is custom literals, as we
can see in the example below.

Hint

String literals are a syntactic sugar for aggregates, so that in the following example, A
and B have the same value.

Listing 10: string_literals.ads

package String Literals is
-- Those two declarations are equivalent
A : String (1 .. 11) := "Hello World";
B : String (1 .. 11) :=
(IHII Iell II"I I-LII I()II I I’
'W', 'o', 'r', 'Ll', 'd');
end String Literals;

Code block metadata

7.6. Predefined array type: String 75

© ©® N o U A W N R

e
w N B o

© ©® N o U A W N R

e
w N B o

N o U A W N &

Introduction to Ada

Project: Courses.Intro To Ada.Arrays.String Literals
MD5: 8e5871c8ead4ff8dab643539857e23b30

Listing 11: greet.adb
with Ada.Text IO0; use Ada.Text IO;

procedure Greet is
Message : String (1 .. 11) := "dlroW olleH";
-- ~ Pre-defined array type.
-- Component type is Character
begin
for I in reverse Message'Range loop
-- ~ Iterate in reverse order
Put (Message (I));
end loop;
New Line;
end Greet;

However, specifying the bounds of the object explicitly is a bit of a hassle; you have to
manually count the number of characters in the literal. Fortunately, Ada gives you an
easier way.

You can omit the bounds when creating an instance of an unconstrained array type if you
supply an initialization, since the bounds can be deduced from the initialization expression.

Listing 12: greet.adb
with Ada.Text IO0; use Ada.Text IO;

procedure Greet is
: constant String := "dlroW olleH";

-- ~ Bounds are automatically

-- computed from

-- initialization value
begin

for I in reverse Message'Range loop

Put (Message (I));

end loop;

New Line;
end Greet;

Code block metadata

Project: Courses.Intro To Ada.Arrays.Greet 5
MD5: 21448a1007a07ec9d434880628625c3f

Runtime output

Hello World

Listing 13: main.adb
with Ada.Text IO0; use Ada.Text IO;
procedure Main is

type Integer_Array is
array (Natural range <>) of Integer;

: constant Integer Array :=
(continues on next page)

76 Chapter 7. Arrays

12
13
14
15

Introduction to Ada

(continued from previous page)
(1, 2, 3, 4);
-- Bounds are automatically
-- computed from
-- initialization value
begin
null;
end Main;

A Attention

As you can see above, the standard String type in Ada is an array. As such, it shares the
advantages and drawbacks of arrays: a String value is stack allocated, it is accessed
efficiently, and its bounds are immutable.

If you want something akin to C++'s std::string, you can use Unbounded Strings
(page 243) from Ada's standard library. This type is more like a mutable, automatically
managed string buffer to which you can add content.

7.7 Restrictions

A very important point about arrays: bounds have to be known when instances are created.
It is for example illegal to do the following.

declare

A : String;
begin

A := "World";
end;

Also, while you of course can change the values of elements in an array, you cannot change
the array's bounds (and therefore its size) after it has been initialized. So this is also illegal:

declare

A : String := "Hello";
begin

A := "World"; -- OK: Same size

A := "Hello World"; -- Not OK: Different size
end;

Also, while you can expect a warning for this kind of error in very simple cases like this one,
it is impossible for a compiler to know in the general case if you are assigning a value of
the correct length, so this violation will generally result in a run-time error.

O Attention

While we will learn more about this later, it is important to know that arrays are
not the only types whose instances might be of unknown size at compile-time.

Such objects are said to be of an indefinite subtype, which means that the
subtype size is not known at compile time, but is dynamically computed (at
run time).

7.7. Restrictions 77

© ©® N o U A W N R

N i e e o < =
B O © ® N o U B W N B O

© ® N o U A W N e

[T T T S R R R
P © © ® W o U & W N = O

Introduction to Ada

Listing 14: indefinite_subtypes.adb
with Ada.Text IO0; use Ada.Text IO;

procedure Indefinite Subtypes is
function Get Number return Integer is
begin
return Integer'Value (Get Line);
end Get Number;

A : String := "Hello";
-- Indefinite subtype

B : String (1 .. 5) := "Hello";
-- Definite subtype

C : String (1 .. Get Number);
-- Indefinite subtype
-- (Get Number's value is computed at
-- run-time)
begin
null;
end Indefinite Subtypes;

Code block metadata

Project: Courses.Intro To Ada.Arrays.Indefinite Subtypes
MD5: a24235838511a94879f74757421a28f0

Here, the 'Value attribute converts the string to an integer.

7.8 Returning unconstrained arrays

The return type of a function can be any type; a function can return a value whose size is
unknown at compile time. Likewise, the parameters can be of any type.

For example, this is a function that returns an unconstrained String:

Listing 15: main.adb
with Ada.Text IO0; use Ada.Text IO;
procedure Main is
type Days is (Monday, Tuesday, Wednesday,
Thursday, Friday,
Saturday, Sunday);

function Get Day Name (Day : Days := Monday)
return String is

begin
return
(case Day is
when Monday => "Monday",
when Tuesday => "Tuesday",

when Wednesday => "Wednesday",
when Thursday => "Thursday",

when Friday => "Friday",
when Saturday => "Saturday",
when Sunday => "Sunday");

end Get Day Name;
(continues on next page)

78 Chapter 7. Arrays

22
23
24
25
26

© ® N o U A W N R

L i < e
o A W N B O

Introduction to Ada

(continued from previous page)

begin
Put Line ("First day is "
& Get Day Name (Days'First));
end Main;

Code block metadata

Project: Courses.Intro To Ada.Arrays.Day Name 1
MD5: Ob7c567c723ded52d8e95c4ef4b6bcecc

Runtime output

First day is Monday

(This example is for illustrative purposes only. There is a built-in mechanism, the 'Image
attribute for scalar types, that returns the name (as a String) of any element of an enu-
meration type. For example Days'Image(Monday) is "MONDAY".)

© In other languages

Returning variable size objects in languages lacking a garbage collector is a bit compli-
cated implementation-wise, which is why C and C++ don't allow it, preferring to depend
on explicit dynamic allocation / free from the user.

The problem is that explicit storage management is unsafe as soon as you want to collect
unused memory. Ada's ability to return variable size objects will remove one use case for
dynamic allocation, and hence, remove one potential source of bugs from your programs.

Rust follows the C/C++ model, but with safe pointer semantics. However, dynamic al-
location is still used. Ada can benefit from a possible performance edge because it can
use any model.

7.9 Declaring arrays (2)

While we can have array types whose size and bounds are determined at run time, the
array's component type needs to be of a definite and constrained type.

Thus, if you need to declare, for example, an array of strings, the String subtype used as
component will need to have a fixed size.

Listing 16: show_days.adb
with Ada.Text IO0; use Ada.Text IO;

procedure Show Days is
type Days is (Monday, Tuesday, Wednesday,
Thursday, Friday,
Saturday, Sunday);

subtype Day Name is String (1 .. 2);
-- Subtype of string with known size

type Days_Name_Type is
array (Days) of Day Name;
-- ~ Type of the index
-- ~ Type of the element.
-- Must be definite

(continues on next page)

7.9. Declaring arrays (2) 79

16
17
18
19
20
21
22
23
24

W @ N U A W N e

T e e
©® N o U A W N B O

Introduction to Ada

(continued from previous page)

: constant Days Name Type :=
("Mo", "Tu", "We", "Th", "Fr", "Sa", "Su");
-- Initial value given by aggregate
begin
for I in Names'Range loop
Put Line (Names (I));
end loop;
end Show Days;

Code block metadata

Project: Courses.Intro To Ada.Arrays.Day Name 2
MD5: bc66303091c084f66abde72ae59f55a9

Runtime output

Mo
Tu
We
Th
Fr
Sa
Su

7.10 Array slices

One last feature of Ada arrays that we're going to cover is array slices. It is possible to take
and use a slice of an array (a contiguous sequence of elements) as a name or a value.

Listing 17: main.adb
with Ada.Text IO; use Ada.Text IO;

procedure Main is

Buf : String := "Hello ...";

Full Name : String := "John Smith";
begin

Buf (7 .. 9) := "Bob";

-- Careful! This works because the string
-- on the right side is the same length as
-- the replaced slice!

-- Prints "Hello Bob"
Put Line (Buf);

-- Prints "Hi John"

Put Line ("Hi " & Full Name (1 .. 4));
end Main;

Code block metadata

Project: Courses.Intro To Ada.Arrays.Slices
MD5: cdf582c6c9089658236f5c79b7bedc3f

Runtime output

80 Chapter 7.

Arrays

N o U A W N &

© ® N o U A W N R

P e e e <
© ©® N o U0 B W N H O

20

Introduction to Ada

Hello Bob
Hi John

As we can see above, you can use a slice on the left side of an assignment, to replace only
part of an array.

A slice of an array is of the same type as the array, but has a different subtype, constrained
by the bounds of the slice.

A Attention

Ada has multidimensional arrays'!, which are not covered in this course. Slices will only
work on one dimensional arrays.

7.11 Renaming

So far, we've seen that the following elements can be renamed: subprograms (page 27),
packages (page 41), and record components (page 63). We can also rename objects by
using the renames keyword. This allows for creating alternative names for these objects.
Let's look at an example:

Listing 18: measurements.ads

package Measurements is
subtype Degree Celsius is Float;
Current_Temperature : Degree Celsius;

end Measurements;

Listing 19: main.adb

with Ada.Text I0; use Ada.Text I0;
with Measurements;

procedure Main is
subtype Degrees is
Measurements.Degree Celsius;

T : Degrees
renames Measurements.Current Temperature;
begin
T :=5.0;

Put Line (Degrees'Image (T));
Put_Line (Degrees'Image
(Measurements.Current Temperature));

T:=T+ 2.5;
Put Line (Degrees'Image (T));
Put_Line (Degrees'Image

(Measurements.Current Temperature));
end Main;

Code block metadata

11 http://www.ada-auth.org/standards/12rm/htmI/RM-3-6.htm|

7.11. Renaming 81

http://www.ada-auth.org/standards/12rm/html/RM-3-6.html

© ©® N o U A W N R

e
A W N = O

© @ N U A W N e

[e < e
U A W N B O

Introduction to Ada

Project: Courses.Intro To Ada.Arrays.Variable Renaming
MD5: 4426aeaa364cb5cfl0ff40elbccb9757

Runtime output

5.00000E+00
5.00000E+00
7.50000E+00
7.50000E+00

In the example above, we declare a variable T by renaming the Current Temperature
object from the Measurements package. As you can see by running this example, both
Current_Temperature and its alternative name T have the same values:

* first, they show the value 5.0
» after the addition, they show the value 7.5.

This is because they are essentially referring to the same object, but with two different
names.

Note that, in the example above, we're using Degrees as an alias of Degree Celsius. We
discussed this method earlier in the course (page 58).

Renaming can be useful for improving the readability of more complicated array indexing.
Instead of explicitly using indices every time we're accessing certain positions of the ar-
ray, we can create shorter names for these positions by renaming them. Let's look at the
following example:

Listing 20: colors.ads

package Colors is

type Color is (Black,
Red,
Green,
Blue,
White);

type Color_Array is
array (Positive range <>) of Color;

procedure Reverse It (X : in out Color Array);

end Colors;

Listing 21: colors.adb
package body Colors is

procedure Reverse It (X : in out Color Array)
is
begin
for I in X'First ..
(X'Last + X'First) / 2
loop
declare
Tmp : Color;
X Left : Color
renames X (I);
X Right : Color
renames X (X'Last + X'First - I);
begin
(continues on next page)

82 Chapter 7. Arrays

16
17
18
19
20

22
23

© ©® N o U A W N K

NONON NN NN B B H B B e el e
o U B W N B O © ©® N O 0 & W N B O

Introduction to Ada

(continued from previous page)

Tmp = X Left;
X Left := X Right;
X Right := Tmp;
end;
end loop;

end Reverse It;

end Colors;

Listing 22: test _reverse _colors.adb
with Ada.Text IO; use Ada.Text IO;

with Colors; use Colors;
procedure Test Reverse Colors is

My Colors : Color Array (1 .. 5) :=
(Black, Red, Green, Blue, White);

begin
for C of My Colors loop
Put Line ("My Color: "
& Color'Image (C));
end loop;

New Line;

Put Line ("Reversing My Color...");
New Line;

Reverse It (My Colors);

for C of My Colors loop
Put Line ("My Color: "
& Color'Image (C));
end loop;

end Test Reverse Colors;

Code block metadata

Project: Courses.Intro To Ada.Arrays.Reverse Colors
MD5: cd9fd7f64dlec8967e340d57fd7afcOa

Runtime output

My Color: BLACK
My Color: RED
My Color: GREEN
My Color: BLUE
My Color: WHITE

Reversing My Color...

My Color: WHITE
My Color: BLUE
My Color: GREEN
My Color: RED
My Color: BLACK

In the example above, package Colors implements the procedure Reverse It by declaring
new names for two positions of the array. The actual implementation becomes easy to read:

7.11. Renaming 83

Introduction to Ada

begin
Tmp = X Left;
X Left := X Right;
X Right := Tmp;
end;

Compare this to the alternative version without renaming:

begin
Tmp = X (I);
X (I) = X (X'Last +
X'First - I);
X (X'Last + X'First - I) := Tmp;
end;
84 Chapter 7. Arrays

D S N

CHAPTER
EIGHT

MORE ABOUT TYPES

8.1 Aggregates: A primer

So far, we have talked about aggregates quite a bit and have seen a number of examples.
Now we will revisit this feature in some more detail.

An Ada aggregate is, in effect, a literal value for a composite type. It's a very powerful
notation that helps you to avoid writing procedural code for the initialization of your data
structures in many cases.

A basic rule when writing aggregates is that every component of the array or record has to
be specified, even components that have a default value.

This means that the following code is incorrect:

Listing 1: incorrect.ads

package Incorrect is
type Point is record
X, Y : Integer := 0;
end record;

Origin : Point := (X => 0);
end Incorrect;

Code block metadata

Project: Courses.Intro To Ada.More About Types.Incorrect Aggregate
MD5: 80a3475decelc42cfb67b1ld57b5bd464

Build output

incorrect.ads:6:22: error: no value supplied for component "Y"

gprbuild: *** compilation phase failed

There are a few shortcuts that you can use to make the notation more convenient:
* To specify the default value for a component, you can use the <> notation.
* You can use the | symbol to give several components the same value.

* You can use the others choice to refer to every component that has not yet been
specified, provided all those fields have the same type.

* You can use the range notation .. to refer to specify a contiguous sequence of indices
in an array.

However, note that as soon as you used a named association, all subsequent components
likewise need to be specified with named associations.

85

W @ N U A W N e

e~ e L O e < =
© ® N o U A W N B O

A W N R

Introduction to Ada

Listing 2: points.ads

package Points is
type Point is record
X, Y : Integer := 0;
end record;

type Point_Array is
array (Positive range <>) of Point;

-- use the default values

Origin : Point = (X | ¥ => <>);

-- likewise, use the defaults

Origin 2 : Point := (others => <>);

Points 1 : Point Array := ((1, 2), (3, 4));

Points 2 : Point Array := (1 = (1, 2),
2 => (3, 4),
3., 20 => <>);

end Points;

Code block metadata

Project: Courses.Intro To Ada.More About Types.Points
MD5: 48ealB83a42f203325ed6190fbd8493d9

8.2 Overloading and qualified expressions

Ada has a general concept of name overloading, which we saw earlier in the section on
enumeration types (page 47).

Let's take a simple example: it is possible in Ada to have functions that have the same
name, but different types for their parameters.
Listing 3: pkg.ads

package Pkg is
function F (A : Integer) return Integer;
function F (A : Character) return Integer;
end Pkg;

Code block metadata

Project: Courses.Intro To Ada.More About Types.Overloading
MD5: defaeB85228eel83b536af395d077e71e

This is a common concept in programming languages, called overloading'?, or name over-
loading.
One of the novel aspects of Ada's overloading facility is the ability to resolve overloading
based on the return type of a function.
Listing 4: pkg.ads
package Pkg is
type SSID is new Integer;

(continues on next page)

12 https://en.wikipedia.org/wiki/Function_overloading

86 Chapter 8. More about types

https://en.wikipedia.org/wiki/Function_overloading

© N o u »

© ©® N o U A W N R

—
S}

© ® N o U A W N e

=
o

©® N O U A W N P

Introduction to Ada

(continued from previous page)
function Convert (Self : SSID)
return Integer;
function Convert (Self : SSID)
return String;
end Pkg;

Listing 5: main.adb

with Ada.Text IO; use Ada.Text IO;
with Pkg; use Pkg;

procedure Main is
S : String := Convert (123 145 299);
- - ~ Valid, will choose the
-- proper Convert
begin
Put Line (S);
end Main;

Code block metadata

Project: Courses.Intro To Ada.More About Types.Overloading
MD5: aa556b55ee89f9c5f8f7e138d84c27b8

A Attention

Note that overload resolution based on the type is allowed for both functions and enu-
meration literals in Ada - which is why you can have multiple enumeration literals with
the same name. Semantically, an enumeration literal is treated like a function that has
no parameters.

However, sometimes an ambiguity makes it impossible to resolve which declaration of an
overloaded name a given occurrence of the name refers to. This is where a qualified ex-
pression becomes useful.

Listing 6: pkg.ads

package Pkg is
type SSID is new Integer;

function Convert (Self : SSID)
return Integer;
function Convert (Self : SSID)
return String;
function Convert (Self : Integer)
return String;
end Pkg;

Listing 7: main.adb

with Ada.Text IO; use Ada.Text IO;
with Pkg; use Pkg;

procedure Main is
S : String := Convert (123 145 299);
-- ~ Invalid, which convert
-- should we call?

(continues on next page)

8.2. Overloading and qualified expressions 87

10
11
12
13
14
15
16
17
18
19
20
21

W N U A W N e

Introduction to Ada

(continued from previous page)

S2 : String := Convert (SSID'(123 145 299));
-- ~ We specify that the
X type of the

X expression is SSID.

-- We could also have declared a temporary
I : SSID := 123 145 299;

S3 : String := Convert (I);
begin

Put Line (S);
end Main;

Code block metadata

Project: Courses.Intro To Ada.More About Types.Overloading Error
MD5: 722660d8b692cde65alc2b7800dd78c4

Syntactically the target of a qualified expression can be either any expression in parenthe-
ses, or an aggregate:

Listing 8: qual_expr.ads

package Qual Expr is
type Point is record
A, B : Integer;
end record;

P : Point := Point'(12, 15);

A : Integer := Integer'(12);
end Qual Expr;

Code block metadata

Project: Courses.Intro To Ada.More About Types.Qual Expr
MD5: e71523eb441a28a4f6549d5f0418620a

This illustrates that qualified expressions are a convenient (and sometimes necessary) way
for the programmer to make the type of an expression explicit, for the compiler of course,
but also for other programmers.

A Attention
While they look and feel similar, type conversions and qualified expressions are not the
same.

A qualified expression specifies the exact type that the target expression will be resolved
to, whereas a type conversion will try to convert the target and issue a run-time error if
the target value cannot be so converted.

Note that you can use a qualified expression to convert from one subtype to another,
with an exception raised if a constraint is violated.

X : Integer := Natural'(l);

88 Chapter 8. More about types

© ® N o U A W N R

=
o

11

Introduction to Ada

8.3 Character types

As noted earlier, each enumeration type is distinct and incompatible with every other enu-
meration type. However, what we did not mention previously is that character literals are
permitted as enumeration literals. This means that in addition to the language's strongly
typed character types, user-defined character types are also permitted:

Listing 9: character_example.adb
with Ada.Text IO0; use Ada.Text IO;

procedure Character Example is
type My _Char is ('a', 'b', 'c');
-- QOur custom character type, an
-- enumeration type with 3 valid values.

C : Character;
~ Built-in character type
-- (it's an enumeration type)

M : My Char;
begin
C:="'7";
-- ~ Character literal
-- (enumeration literal)

M:= 'a';
C := 65;

-- ~ Invalid: 65 is not a
-- Character value

C := Character'Val (65);

-- Assign the character at

-- position 65 in the

-- enumeration (which is 'A'")

M :=C;

- - ~ Invalid: C is of type Character,
-- and M is a My Char

M :='d';

-- ~ Invalid: 'd' is not a valid
-- literal for type My Char
end Character Example;

Code block metadata

Project: Courses.Intro To Ada.More About Types.Character Example
MD5: e4c5a07dbe8745749056f8c110d69fa3

Build output

character_example.adb:20:09: error: expected type "Standard.Character"

character_example.adb:20:09: error: found type universal integer

character example.adb:29:09: error: expected type "My Char" defined at line 4

character_example.adb:29:09: error: found type "Standard.Character"

character_example.adb:33:09: error: character not defined for type "My Char",
~defined at line 4

gprbuild: *** compilation phase failed

In this example, we're using characters in the definition of My Char.

8.3. Character types 89

Introduction to Ada

20

Chapter 8. More about types

© ® N o U A W N R

© @ N o U A W N e

e e
w N P o

CHAPTER
NINE

ACCESS TYPES (POINTERS)

9.1 Overview

Pointers are a potentially dangerous construct, which conflicts with Ada's underlying phi-
losophy.

There are two ways in which Ada helps shield programmers from the dangers of pointers:

1. One approach, which we have already seen, is to provide alternative features so that
the programmer does not need to use pointers. Parameter modes, arrays, and varying
size types are all constructs that can replace typical pointer usages in C.

2. Second, Ada has made pointers as safe and restricted as possible, but allows "escape
hatches" when the programmer explicitly requests them and presumably will be exer-
cising such features with appropriate care.

Here is how you declare a simple pointer type, or access type, in Ada:

Listing 1: dates.ads

package Dates is
type Months is
(January, February, March, April,
May, June, July, August, September,
October, November, December);

type Date is record

Day : Integer range 1 .. 31;
Month : Months;
Year : Integer;
end record;
end Dates;

Listing 2: access_types.ads

with Dates; use Dates;

package Access_Types is
-- Declare an access type
type Date_ Acc is access Date;
-- ~ "Designated type"
-- ~ Date Acc values
X point to Date
-- objects

D : Date Acc := null,;
-- ~ Literal for
=c "access to nothing"

(continues on next page)

91

14

15

W @ N U A W N e

e
= o

Introduction to Ada

(continued from previous page)

-- ™ Access to date
end Access _Types;

Code block metadata

Project: Courses.Intro To Ada.Access Types.Access Types
MD5: d3421918c48c221836bdf03b9e68bfb5

This illustrates how to:

* Declare an access type whose values point to ("designate") objects from a specific
type

» Declare a variable (access value) from this access type

* Give it a value of null

In line with Ada's strong typing philosophy, if you declare a second access type whose
designated type is Date, the two access types will be incompatible with each other:

Listing 3: access_types.ads

with Dates; use Dates;

package Access_Types is
-- Declare an access type
type Date_Acc is access Date;
type Date_Acc_2 is access Date;

D : Date Acc null;

D2 : Date Acc 2 D;

-- ~ Invalid! Different types
end Access _Types;

Code block metadata

Project: Courses.Intro To Ada.Access Types.Access Types
MD5: af@dff5a26cbl6f0fel5c84286557a44

Build output

access_types.ads:9:24: error: expected type "Date Acc 2" defined at line 6
access _types.ads:9:24: error: found type "Date Acc" defined at line 5
gprbuild: *** compilation phase failed

© In other languages

In most other languages, pointer types are structurally, not nominally typed, like they
are in Ada, which means that two pointer types will be the same as long as they share
the same target type and accessibility rules.

Not so in Ada, which takes some time getting used to. A seemingly simple problem
is, if you want to have a canonical access to a type, where should it be declared? A
commonly used pattern is that if you need an access type to a specific type you "own",
you will declare it along with the type:

package Access_Types is
type Point is record
X, Y : Natural;
end record;

type Point_Access is access Point;
end Access Types;

92 Chapter 9. Access types (pointers)

©® N O U A W N R

© @ N o U A W N e

e
w N B o

©® N o U A W N e

Introduction to Ada

9.2 Allocation (by type)

Once we have declared an access type, we need a way to give variables of the types a
meaningful value! You can allocate a value of an access type with the new keyword in Ada.

Listing 4: access_types.ads

with Dates; use Dates;

package Access_Types is
type Date_Acc is access Date;

D : Date Acc := new Date;
-- ~ Allocate a new Date record
end Access Types;

Code block metadata

Project: Courses.Intro To Ada.Access Types.Access Types
MD5: eObe95b966ed4aebaaf25db646d60c35¢C

If the type you want to allocate needs constraints, you can put them in the subtype indica-
tion, just as you would do in a variable declaration:

Listing 5: access_types.ads

with Dates; use Dates;

package Access_Types is
type String_Acc is access String;

-- Access to unconstrained array type
Msg : String Acc;
-- ~ Default value is null

Buffer : String Acc :=
new String (1 .. 10);
-- ~ Constraint required
end Access Types;

Code block metadata

Project: Courses.Intro To Ada.Access Types.Access Types
MD5: 83cf7al1074ff1b739658508098aa8208

In some cases, though, allocating just by specifying the type is not ideal, so Ada also allows
you to initialize along with the allocation. This is done via the qualified expression syntax:

Listing 6: access_types.ads

with Dates; use Dates;

package Access_Types is
type Date_Acc is access Date;
type String_Acc is access String;

D : Date_Acc =
new Date' (30, November, 2011);
(continues on next page)

9.2. Allocation (by type) 93

10

© ©® N o U A W N R

e e e
o U0 A W N H O

Introduction to Ada

(continued from previous page)
Msg : String Acc := new String'("Hello");
end Access _Types;

9.3 Dereferencing

The last important piece of Ada's access type facility is how to get from an access value
to the object that is pointed to, that is, how to dereference the pointer. Dereferencing a
pointer uses the .all syntax in Ada, but is often not needed — in many cases, the access
value will be implicitly dereferenced for you:

Listing 7: access_types.ads

with Dates; use Dates;

package Access_Types is
type Date_Acc is access Date;

D : Date Acc :=
new Date' (30, November, 2011);

Today : Date := D.all;

-- ~ Access value dereference

J : Integer := D.Day;

-- ~ Implicit dereference

-- for record and array

-- components

-- Equivalent to D.all.day
end Access _Types;

Code block metadata

Project: Courses.Intro To Ada.Access Types.Access Types
MD5: 5cd1c259da04010b0dclb43e9bd93b55

9.4 Other features

As you might know if you have used pointers in C or C++, we are still missing features that
are considered fundamental to the use of pointers, such as:

» Pointer arithmetic (being able to increment or decrement a pointer in order to point to
the next or previous object)

* Manual deallocation - what is called free or delete in C. This is a potentially unsafe
operation. To keep within the realm of safe Ada, you need to never deallocate manually.

Those features exist in Ada, but are only available through specific standard library APIs.

A Attention

The guideline in Ada is that most of the time you can avoid manual allocation, and you
should.

There are many ways to avoid manual allocation, some of which have been covered
(such as parameter modes). The language also provides library abstractions to avoid
pointers:

94 Chapter 9. Access types (pointers)

© @ N U A W N e

e
w N~ o

Introduction to Ada

1. One is the use of containers (page 199). Containers help users avoid pointers,
because container memory is automatically managed.

2. A container to note in this context is the Indefinite holder!3. This container allows
you to store a value of an indefinite type such as String.

3. GNATCOLL has a library for smart pointers, called Refcount'* Those pointers' mem-
ory is automatically managed, so that when an allocated object has no more refer-
ences to it, the memory is automatically deallocated.

9.5 Mutually recursive types

The linked list is a common idiom in data structures; in Ada this would be most naturally
defined through two types, a record type and an access type, that are mutually dependent.
To declare mutually dependent types, you can use an incomplete type declaration:

Listing 8: simple_list.ads

package Simple List is
type Node;
-- This is an incomplete type declaration,
-- which is completed in the same
-- declarative region.

type Node_Acc is access Node;

type Node is record

Content : Natural;
Prev, Next : Node Acc;
end record;

end Simple List;

Code block metadata

Project: Courses.Intro To Ada.Access Types.Simple List
MD5: 4929b89c1fc913dab35fa02e48248271

In this example, the Node and Node Acc types are mutually dependent.

13 http://www.ada-auth.org/standards/12rat/html|/Rat12-8-5.html
14 https://github.com/AdaCore/gnatcoll-core/blob/master/src/gnatcoll-refcount.ads

9.5. Mutually recursive types 95

http://www.ada-auth.org/standards/12rat/html/Rat12-8-5.html
https://github.com/AdaCore/gnatcoll-core/blob/master/src/gnatcoll-refcount.ads

Introduction to Ada

96

Chapter 9. Access types (pointers)

© ©® N o U A W N R

P e e e <
© ® N o U A W N B O

CHAPTER
TEN

MORE ABOUT RECORDS

10.1 Dynamically sized record types

We have previously seen some simple examples of record types (page 61). Let's now look

at some of the more advanced properties of this fundamental language feature.

One point to note is that object size for a record type does not need to be known at compile

time. This is illustrated in the example below:

Listing 1: runtime_length.ads

package Runtime_ Length is
function Compute Max Len return Natural;
end Runtime Length;

Listing 2: var_size_record.ads

with Runtime Length; use Runtime Length;

package Var_Size Record is
: constant Natural :=
Compute Max Len;
-- ~ Not known at compile time

type Items_Array is
array (Positive range <>) of Integer;

type Growable_Stack is record
Items : Items Array (1 .. Max Len);
Len : Natural;
end record;
-- Growable Stack is a definite type, but
-- size 1is not known at compile time.

G : Growable Stack;
end Var Size Record;

Code block metadata

Project: Courses.Intro_To Ada.More About Records.Var_Size Record
MD5: 6fbOb3f2b685a72ec694640ce378f77c¢

It is completely fine to determine the size of your records at run time, but note that all

objects of this type will have the same size.

97

Introduction to Ada

10.2 Records with discriminant

In the example above, the size of the Items field is determined once, at run-time, but every
Growable Stack instance will be exactly the same size. But maybe that's not what you
want to do. We saw that arrays in general offer this flexibility: for an unconstrained array
type, different objects can have different sizes.

You can get analogous functionality for records, too, using a special kind of field that is
called a discriminant:

Listing 3: var_size_record_2.ads

package Var_Size Record 2 is
type Items_Array is
array (Positive range <>) of Integer;

type Growable Stack (Max Len : Natural) is
record
-- ~ Discriminant. Cannot be
- - modified once
-- initialized.
Items : Items Array (1 .. Max_ Len);
Len : Natural := 0;
end record;
-- Growable Stack is an indefinite type
-- (like an array)
end Var Size Record 2;

© ©® N o U A W N K

e i <
U A W N F O

Code block metadata

Project: Courses.Intro To Ada.More About Records.Var_Size Record 2
MD5: 0c2ffed41b7553984elef48a50386559f

Discriminants, in their simple forms, are constant: You cannot modify them once you have
initialized the object. This intuitively makes sense since they determine the size of the
object.

Also, they make a type indefinite: Whether or not the discriminant is used to specify the size
of an object, a type with a discriminant will be indefinite if the discriminant is not declared
with an initialization:

Listing 4: test discriminants.ads

package Test Discriminants is
type Point (X, Y : Natural) is record
null;
end record;

P : Point;

-- ERROR: Point is indefinite, so you
-- need to specify the discriminants
-- or give a default value

©W @ N U A W N e

—
o

P2 : Point (1, 2);
P3 : Point := (1, 2);
-- Those two declarations are equivalent.

e <
A w N &

15 end Test Discriminants;

Code block metadata

98 Chapter 10. More about records

© ©® N o U A W N R

e e e e
o U A W N R O

© ©® N o U A W N K

=
o

Introduction to Ada

Project: Courses.Intro To Ada.More About Records.Test Discriminants
MD5: c3ec8lccae0d4144fe952ad99482be81

Build output

test discriminants.ads:6:08: error: unconstrained subtype not allowed (need,
~initialization)

test discriminants.ads:6:08: error: provide initial value or explicit discriminant,
-values

test discriminants.ads:6:08: error: or give default discriminant values for type
~"Point"

gprbuild: *** compilation phase failed

This also means that, in the example above, you cannot declare an array of Point values,
because the size of a Point is not known.

As mentioned in the example above, we could provide a default value for the discriminants,
so that we could legally declare Point values without specifying the discriminants. For the
example above, this is how it would look:

Listing 5: test_discriminants.ads

package Test_Discriminants is
type Point (X, Y : Natural := 0) is record

null;
end record;
P : Point;

-- We can now simply declare a "Point"
-- without further ado. In this case,
-- we're using the default values (0)
-- for X and Y.

P2 : Point (1, 2);
P3 : Point := (1, 2);
-- We can still specify discriminants.

end Test Discriminants;

Code block metadata

Project: Courses.Intro To Ada.More About Records.Test Discriminants
MD5: 259f6cdf7fa857cc006dac6dldaedd73

Also note that, even though the Point type now has default discriminants, we can still
specify discriminants, as we're doing in the declarations of P2 and P3.

In most other respects discriminants behave like regular fields: You have to specify their
values in aggregates, as seen above, and you can access their values via the dot notation.

Listing 6: main.adb
with Ada.Text I0; use Ada.Text IO;

with Var Size Record 2; use Var Size Record 2;

procedure Main is
procedure Print Stack (G : Growable Stack) is
begin
Put ("<Stack, items: [");
for I in G.Items'Range loop
exit when I > G.Len;

(continues on next page)

10.2. Records with discriminant 99

11
12
13
14
15
16
17
18
19
20
21
22

©W L N U A W N e

e~ s e e < e
© ® N o U A W N = O

Introduction to Ada

(continued from previous page)
Put (" " & Integer'Image (G.Items (I)));
end loop;
Put _Line ("]>");
end Print Stack;

S : Growable Stack :=
(Max_Len => 128,
Items => (1, 2, 3, 4, others => <>),

Len = 4);
begin
Print Stack (S);
end Main;

Code block metadata

Project: Courses.Intro To Ada.More About Records.Var Size Record 2
MD5: 4e8c102cd93dc5d8aalb402589c5239b

Runtime output

<Stack, items: [1 2 3 4]>

O Note

In the examples above, we used a discriminant to determine the size of an array, but it
is not limited to that, and could be used, for example, to determine the size of a nested
discriminated record.

10.3 Variant records

The examples of discriminants thus far have illustrated the declaration of records of varying
size, by having components whose size depends on the discriminant.

However, discriminants can also be used to obtain the functionality of what are sometimes
called "variant records": records that can contain different sets of fields.

Listing 7: variant_record.ads

package Variant_Record is
-- Forward declaration of Expr
type Expr;

-- Access to a Expr
type Expr_Access is access Expr;

type Expr_Kind_Type is (Bin Op Plus,
Bin Op Minus,
Num) ;

-- A regular enumeration type

type Expr (Kind : Expr Kind Type) is record

-- ~ The discriminant is an
-- enumeration value
case Kind is

when Bin Op Plus | Bin Op Minus =>

Left, Right : Expr_Access;
when Num =>
(continues on next page)

100 Chapter 10. More about records

20
21
22
23
24

26

©® N O U A W N e

© N U A W N e

Introduction to Ada

(continued from previous page)
Val : Integer;

end case;
-- Variant part. Only one, at the end of
-- the record definition, but can be
-- nested

end record;

end Variant Record;

Code block metadata

Project: Courses.Intro To Ada.More About Records.Variant Record
MD5: af9cledca3ed6b2d938249c7258806b1

The fields that are in a when branch will be only available when the value of the discriminant
is covered by the branch. In the example above, you will only be able to access the fields
Left and Right when the Kind is Bin_Op Plus or Bin Op Minus.

If you try to access a field that is not valid for your record, a Constraint Error will be
raised.

Listing 8: main.adb

with Variant Record; use Variant Record;

procedure Main is

E : Expr := (Num, 12);
begin

E.Left := new Expr'(Num, 15);

-- Will compile but fail at runtime
end Main;

Code block metadata

Project: Courses.Intro To Ada.More About Records.Variant Record
MD5: d157d5f96db0825b9376ba7fca9613ed

Build output

main.adb:6:05: warning: component not present in subtype of "Expr" defined at line,
-4 [enabled by default]

main.adb:6:05: warning: Constraint Error will be raised at run time [enabled by,
~default]

Runtime output

raised CONSTRAINT ERROR : main.adb:6 discriminant check failed
Here is how you could write an evaluator for expressions:

Listing 9: main.adb
with Ada.Text I0; use Ada.Text I0;

with Variant Record; use Variant Record;

procedure Main is
function Eval Expr (E : Expr) return Integer is
(case E.Kind is
when Bin Op Plus =>
Eval Expr (E.Left.all)

(continues on next page)

10.3. Variant records 101

10
11
12
13
14
15
16
17
18
19
20
21
22
23

Introduction to Ada

(continued from previous page)
+ Eval Expr (E.Right.all),
when Bin Op Minus =>
Eval Expr (E.Left.all)
- Eval Expr (E.Right.all),
when Num => E.Val);

E : Expr := (Bin Op Plus,
new Expr'(Bin Op Minus,
new Expr'(Num, 12),
new Expr'(Num, 15)),
new Expr'(Num, 3));
begin
Put Line (Integer'Image (Eval Expr (E)));
end Main;

Code block metadata

Project: Courses.Intro To Ada.More About Records.Variant Record
MD5: 807dbb921b44b3eaeaflbaf6ffelafaa

Runtime output

0

© In other languages

Ada's variant records are very similar to Sum types in functional languages such as
OCaml or Haskell. A major difference is that the discriminant is a separate field in Ada,
whereas the 'tag' of a Sum type is kind of built in, and only accessible with pattern
matching.

There are other differences (you can have several discriminants in a variant record in
Ada). Nevertheless, they allow the same kind of type modeling as sum types in functional
languages.

Compared to C/C++ unions, Ada variant records are more powerful in what they allow,
and are also checked at run time, which makes them safer.

102 Chapter 10. More about records

© ® N o U A W N R

e e e e
o U A W N R O

CHAPTER
ELEVEN

FIXED-POINT TYPES

11.1 Decimal fixed-point types

We have already seen how to specify floating-point types. However, in some applications
floating-point is not appropriate since, for example, the roundoff error from binary arith-
metic may be unacceptable or perhaps the hardware does not support floating-point in-
structions. Ada provides a category of types, the decimal fixed-point types, that allows the
programmer to specify the required decimal precision (number of digits) as well as the scal-
ing factor (a power of ten) and, optionally, a range. In effect the values will be represented
as integers implicitly scaled by the specified power of 10. This is useful, for example, for
financial applications.

The syntax for a simple decimal fixed-point type is

type <type-name> is delta <delta-value> digits <digits-value>;

In this case, the delta and the digits will be used by the compiler to derive a range.

Several attributes are useful for dealing with decimal types:

Attribute Name Meaning

First The first value of the type
Last The last value of the type
Delta The delta value of the type

In the example below, we declare two data types: T3 D3 and T6_D3. For both types, the
delta value is the same: 0.001.

Listing 1: decimal_fixed_point_types.adb
with Ada.Text IO; use Ada.Text IO;

procedure Decimal Fixed Point Types is
type T3 _D3 is delta 10.0 ** (-3) digits 3;
type T6_D3 is delta 10.0 ** (-3) digits 6;
begin
Put Line ("The delta value of T3 D3 is "
& T3 D3'Image (T3 _D3'Delta));
Put _Line ("The minimum value of T3 D3 is "
& T3 D3'Image (T3 D3'First));
Put_Line ("The maximum value of T3 D3 is "
& T3 D3'Image (T3 D3'Last));
New Line;

Put Line ("The delta value of T6 D3 is "
& T6 _D3'Image (T6 _D3'Delta));
(continues on next page)

103

17
18
19
20
21

© ©® N o U A W N R

N N i e e O o < =
B O © ® N o U A W N B O

Introduction to Ada

(continued from previous page)
Put Line ("The minimum value of T6 D3 is "
& T6_D3'Image (T6 D3'First));
Put _Line ("The maximum value of T6 D3 is "
& T6 _D3'Image (T6 D3'Last));
end Decimal Fixed Point Types;

Code block metadata

Project: Courses.Intro To Ada.Fixed Point Types.Decimal Fixed Point Types
MD5: 6blfé6bfa555031b831aa872187c8bee9

Runtime output

The delta value of T3 D3 is 0.001
The minimum value of T3 D3 is -0.999
The maximum value of T3 D3 is 0.999

The delta value of T6 D3 is 0.001
The minimum value of T6 D3 is -999.999
The maximum value of T6 D3 is 999.999

When running the application, we see that the delta value of both types is indeed the same:
0.001. However, because T3 D3 is restricted to 3 digits, its range is -0.999 to 0.999. For
the T6_D3, we have defined a precision of 6 digits, so the range is -999.999 to 999.999.

Similar to the type definition using the range syntax, because we have an implicit range,
the compiled code will check that the variables contain values that are not out-of-range.
Also, if the result of a multiplication or division on decimal fixed-point types is smaller than
the delta value required for the context, the actual result will be zero. For example:

Listing 2: decimal_fixed_point_smaller.adb
with Ada.Text IO; use Ada.Text IO;
procedure Decimal Fixed Point Smaller is

type T3_D3 is delta 10.0 ** (-3) digits 3;
type T6_D6 is delta 10.0 ** (-6) digits 6;

A : T3 D3 := T3 D3'Delta;
B : T3 D3 := 0.5;
C : T6 D6;
begin
Put Line ("The value of A is "

& T3_D3'Image (A));

A = A * B;
Put Line ("The value of A * B is "
& T3 _D3'Image (A));

A T3 D3'Delta;
C := A * B;
Put Line ("The value of A * B is "
& T6 _D6'Image (C));
end Decimal Fixed Point Smaller;

Code block metadata

Project: Courses.Intro To Ada.Fixed Point Types.Decimal Fixed Point Smaller
MD5: 6b0242caad4a79f9b3447a304002e6a3b

Runtime output

104 Chapter 11. Fixed-point types

© @ N o U A W N e

e i
U A W N B O

16

Introduction to Ada

The value of A is 0.001
The value of A * B is 0.000
The value of A * B is 0.000500

In this example, the result of the operation 0.001 * 0.5 is 0.0005. Since this value is not
representable for the T3 D3 type because the delta value is 0.001, the actual value stored
in variable A is zero. However, accuracy is preserved during the arithmetic operations if the
target has sufficient precision, and the value displayed for C is 0.000500.

11.2 Ordinary fixed-point types

Ordinary fixed-point types are similar to decimal fixed-point types in that the values are, in
effect, scaled integers. The difference between them is in the scale factor: for a decimal
fixed-point type, the scaling, given explicitly by the type's delta, is always a power of ten.

In contrast, for an ordinary fixed-point type, the scaling is defined by the type's small,
which is derived from the specified delta and, by default, is a power of two. Therefore,
ordinary fixed-point types are sometimes called binary fixed-point types.

O Note

Ordinary fixed-point types can be thought of being closer to the actual representation on
the machine, since hardware support for decimal fixed-point arithmetic is not widespread
(rescalings by a power of ten), while ordinary fixed-point types make use of the available
integer shift instructions.

The syntax for an ordinary fixed-point type is

type <type-name> is
delta <delta-value>
range <lower-bound> .. <upper-bound>;

By default the compiler will choose a scale factor, or small, that is a power of 2 no greater
than <delta-value>.

For example, we may define a normalized range between -1.0 and 1.0 as following:

Listing 3: normalized fixed point_type.adb
with Ada.Text IO; use Ada.Text IO;

procedure Normalized Fixed Point Type is
: constant := 2.0 ** (-31);
type TQ31 is delta D range -1.0 .. 1.0 - D;
begin
Put Line ("TQ31 requires "
& Integer'Image (TQ31'Size)
& " bits");
Put Line ("The delta value of TQ31 is "
& TQ31'Image (TQ31'Delta));
Put Line ("The minimum value of TQ31 is "
& TQ31'Image (TQ31'First));
Put Line ("The maximum value of TQ31 is "
& TQ31'Image (TQ31'Last));
end Normalized Fixed Point Type;

Code block metadata

11.2. Ordinary fixed-point types 105

N o U A W N &

W W N U A W N e

10
11
12
13
14
15
16
17
18
19
20
21

Introduction to Ada

Project: Courses.Intro To Ada.Fixed Point Types.Normalized Fixed Point Type
MD5: 778dde401c7ff3dd42938dccfebcf9od3

Runtime output

TQ31 requires 32 bits

The delta value of TQ31 is 0.0000000005
The minimum value of TQ31 is -1.0000000000
The maximum value of TQ31 is 0.9999999995

In this example, we are defining a 32-bit fixed-point data type for our normalized range.
When running the application, we notice that the upper bound is close to one, but not
exact one. This is a typical effect of fixed-point data types — you can find more details in
this discussion about the Q format'.

We may also rewrite this code with an exact type definition:

Listing 4: normalized_adapted_fixed point_type.adb

procedure Normalized Adapted Fixed Point Type is
type TQ31 is
delta 2.0 ** (-31)
range -1.0 .. 1.0 - 2.0 ** (-31);
begin
null;
end Normalized Adapted Fixed Point Type;

Code block metadata

Project: Courses.Intro To Ada.Fixed Point Types.Normalized Adapted Fixed Point Type
MD5: 3421800bb47b282d601a51d276944162

We may also use any other range. For example:

Listing 5: custom_fixed_point_range.adb

with Ada.Text I0; use Ada.Text I0;
with Ada.Numerics; use Ada.Numerics;

procedure Custom Fixed Point Range is
type T_Inv_Trig is
delta 2.0 ** (-15) * Pi
range -Pi / 2.0 .. Pi / 2.0;
begin
Put Line ("T Inv Trig requires "
& Integer'Image (T Inv Trig'Size)
& " bits");
Put Line ("Delta value of T Inv Trig: "
& T Inv Trig'Image
(T _Inv _Trig'Delta));
Put Line ("Minimum value of T Inv Trig: "
& T Inv Trig'Image
(T _Inv _Trig'First));
Put Line ("Maximum value of T Inv Trig: "
& T Inv Trig'Image
(T _Inv _Trig'Last));
end Custom Fixed Point Range;

Code block metadata

15 https://en.wikipedia.org/wiki/Q_(number_format)

106 Chapter 11. Fixed-point types

https://en.wikipedia.org/wiki/Q_(number_format)

©W @ N U A W N e

i <
> W N B O

Introduction to Ada

Project: Courses.Intro To Ada.Fixed Point Types.Custom Fixed Point Range

MD5: a3e6c549cb1070aa285857ae8813de27

Runtime output

T Inv Trig requires 16 bits

Delta value of T Inv Trig: 0.00006
Minimum value of T Inv Trig: -1.57080
Maximum value of T Inv Trig: 1.57080

In this example, we are defining a 16-bit type called T _Inv_Trig, which has a range from

-Tt/2 to /2.

All standard operations are available for fixed-point types. For example:

Listing 6: fixed_point_op.adb

with Ada.Text I0; use Ada.Text IO;

procedure Fixed Point Op is
type TQ31 is
delta 2.0 ** (-31)
range -1.0 .. 1.0 - 2.0 ** (-31);

A, B, R : TQ31;

begin
A := 0.25;
B := 0.50;
R := A + B;

Put Line ("R is " & TQ31'Image (R));
end Fixed Point Op;

Code block metadata

Project: Courses.Intro To Ada.Fixed Point Types.Fixed Point Op

MD5: cad218b70b7fb0621468027a807431b1

Runtime output

R is 0.7500000000

As expected, R contains 0.75 after the addition of A and B.

In fact the language is more general than these examples imply, since in practice it is typical
to need to multiply or divide values from different fixed-point types, and obtain a result that
may be of a third fixed-point type. The details are outside the scope of this introductory

course.

It is also worth noting, although again the details are outside the scope of this course,
that you can explicitly specify a value for an ordinary fixed-point type's small. This allows

non-binary scaling, for example:

type Angle is

delta 1.0/3600.0

range 0.0 .. 360.0 - 1.0 / 3600.0;
for Angle'Small use Angle'Delta;

11.2. Ordinary fixed-point types

107

Introduction to Ada

108 Chapter 11. Fixed-point types

©® N O U A W N R

© ©® N o U A W N R

T i
A W N = O

15

CHAPTER
TWELVE

PRIVACY

One of the main principles of modular programming, as well as object oriented program-
ming, is encapsulation®®,

Encapsulation, briefly, is the concept that the implementer of a piece of software will dis-
tinguish between the code's public interface and its private implementation.

This is not only applicable to software libraries but wherever abstraction is used.

In Ada, the granularity of encapsulation is a bit different from most object-oriented lan-
guages, because privacy is generally specified at the package level.

12.1 Basic encapsulation

Listing 1: encapsulate.ads
package Encapsulate is
procedure Hello;

private

procedure Hello2;
-- Not visible from external units
end Encapsulate;

Listing 2: encapsulate.adb
with Ada.Text IO; use Ada.Text IO;

package body Encapsulate is

procedure Hello is
begin

Put Line ("Hello");
end Hello;

procedure Hello2 is
begin

Put Line ("Hello #2");
end Hello2;

end Encapsulate;

16 https://en.wikipedia.org/wiki/Encapsulation_(computer_programming)

109

https://en.wikipedia.org/wiki/Encapsulation_(computer_programming)

©® N O U A W N R

© ® N o U A W N R

NONNN B R R B E e R B e
W N B © © ® N & 0 & W N B O

oA W N e

Introduction to Ada

Listing 3: main.adb

with Encapsulate;

procedure Main is
begin
Encapsulate.Hello;
Encapsulate.Hello2;
-- Invalid: Hello2 is not visible
end Main;

Code block metadata

Project: Courses.Intro To Ada.Privacy.Encapsulate
MD5: cf56ee89481962d1e0abdle9ad888362

Build output

main.adb:6:15: error: "Hello2" is not a visible entity of "Encapsulate"
gprbuild: *** compilation phase failed

12.2 Abstract data types

With this high-level granularity, it might not seem obvious how to hide the implementation
details of a type. Here is how it can be done in Ada:

Listing 4: stacks.ads

package Stacks is
type Stack is private;
-- Declare a private type: You cannot depend
-- on its implementation. You can only assign
-- and test for equality.

procedure Push (S : in out Stack;
Val : Integer);
procedure Pop (S : in out Stack;
Val : out Integer);
private

subtype Stack_Index is
Natural range 1 .. 10;

type Content_Type is
array (Stack Index) of Natural;

type Stack is record

Top : Stack Index;
Content : Content Type;
end record;

end Stacks;

Listing 5: stacks.adb
package body Stacks is

procedure Push (S : in out Stack;
Val : Integer) is
begin
(continues on next page)

110 Chapter 12. Privacy

© © N o

10
11
12
13
14
15
16
17

Introduction to Ada

(continued from previous page)
-- Missing implementation!
null;
end Push;

procedure Pop (S : in out Stack;
Val : out Integer) is
begin
-- Dummy implementation!
Val := 0;
end Pop;

end Stacks;

Code block metadata

Project: Courses.Intro To Ada.Privacy.Stacks
MD5: 364df7c6806afd4albc957c2c2d53b2cc

In the above example, we define a stack type in the public part (known as the visible part
of the package spec in Ada), but the exact representation of that type is private.

Then, in the private part, we define the representation of that type. We can also declare
other types that will be used as helpers for our main public type. This is useful since declar-
ing helper types is common in Ada.

A few words about terminology:

* The Stack type as viewed from the public part is called the partial view of the type.
This is what clients have access to.

* The Stack type as viewed from the private part or the body of the package is called
the full view of the type. This is what implementers have access to.

From the point of view of the client (the with'ing unit), only the public (visible) part is im-
portant, and the private part could as well not exist. It makes it very easy to read linearly
the part of the package that is important for you.

-- No need to read the private part to use the package
package Stacks is
type Stack is private;

procedure Push (S : in out Stack;
Val : Integer);
procedure Pop (S : in out Stack;
Val : out Integer);
private
end Stacks;

Here is how the Stacks package would be used:

-- Example of use
with Stacks; use Stacks;

procedure Test Stack is

S : Stack;

Res : Integer;
begin

Push (S, 5);

Push (S, 7);

Pop (S, Res);

end Test Stack;

12.2. Abstract data types 111

©W @ N U A W N e

S N e
N o U A W N B O

18

© ® N o U A W N R

10
11
12
13
14

16
17

Introduction to Ada

12.3 Limited types

Ada's limited type facility allows you to declare a type for which assignment and comparison
operations are not automatically provided.

package Stacks is
type Stack is limited private;
-- Limited type. Cannot assign nor compare.

procedure Push (S

procedure Pop (S

private

Val

Listing 6: stacks.ads

: in out Stack;
Val :
: in out Stack;

Integer);

out Integer);

subtype Stack Index is

Natural range 1 ..

type Content Type is

10;

array (Stack Index) of Natural;

type Stack is limited record
: Stack Index;

Top

Content

end record;

end Stacks;

package body Stacks is

procedure Push (S

begin

: Content_Type;

Listing 7: stacks.adb

: in out Stack;
Val :

Integer) is

-- Missing implementation!

null;

end Push;

procedure Pop (S

begin

Val

: in out Stack;

out Integer) is

-- Dummy implementation!

Val
end Pop;

end Stacks;

= 0;

112

Chapter 12. Privacy

©® N O U A W N R

Introduction to Ada

Listing 8: main.adb

with Stacks; use Stacks;

procedure Main is

S, S2 : Stack;
begin

S :=S52;

-- Illegal: S is limited.
end Main;

Code block metadata

Project: Courses.Intro To Ada.Privacy.Limited Stacks
MD5: 811343b46f20acbaf5elbf2656118d8d

Build output

main.adb:6:04: error: left hand of assignment must not be limited type
gprbuild: *** compilation phase failed

This is useful because, for example, for some data types the built-in assignment operation
might be incorrect (for example when a deep copy is required).

Ada does allow you to overload the comparison operators = and /= for limited types (and
to override the built-in declarations for non-limited types).

Ada also allows you to implement special semantics for assignment via controlled types'’.
However, in some cases assignment is simply inappropriate; one example is the File_Type
from the Ada.Text IO package, which is declared as a limited type and thus attempts to
assign one file to another would be detected as illegal.

12.4 Child packages & privacy

We've seen previously (in the child packages section (page 35)) that packages can have
child packages. Privacy plays an important role in child packages. This section discusses
some of the privacy rules that apply to child packages.

Although the private part of a package P is meant to encapsulate information, certain parts
of a child package P.C can have access to this private part of P. In those cases, information
from the private part of P can then be used as if it were declared in the public part of its
specification. To be more specific, the body of P.C and the private part of the specification
of P.C have access to the private part of P. However, the public part of the specification of
P.C only has access to the public part of P's specification. The following table summarizes
this:

Part of a child package Access to the private part of its parent's specification

Specification: public part
Specification: private part v
Body v

The rest of this section shows examples of how this access to private information actually
works for child packages.

Let's first look at an example where the body of a child package P.C has access to the private
part of the specification of its parent P. We've seen, in a previous source-code example,

17 http://www.ada-auth.org/standards/12rm/html/RM-7-6.html

12.4. Child packages & privacy 113

http://www.ada-auth.org/standards/12rm/html/RM-7-6.html

© ©® N o U A W N R

© O N o U A W N e

e i < e
U A W N B O

[N

© N U A W N e

e e
w N B o

Introduction to Ada

that the Hello2 procedure declared in the private part of the Encapsulate package cannot
be used in the Main procedure, since it's not visible there. This limitation doesn't apply,
however, for parts of the child packages of the Encapsulate package. In fact, the body of
its child package Encapsulate.Child has access to the Hello2 procedure and can call it
there, as you can see in the implementation of the Hello3 procedure of the Child package:

Listing 9: encapsulate.ads
package Encapsulate is
procedure Hello;

private

procedure Hello2;

-- Not visible from external units

-- But visible in child packages
end Encapsulate;

Listing 10: encapsulate.adb
with Ada.Text IO0; use Ada.Text IO;

package body Encapsulate is

procedure Hello is
begin

Put Line ("Hello");
end Hello;

procedure Hello2 is
begin

Put Line ("Hello #2");
end Hello2;

end Encapsulate;

Listing 11: encapsulate-child.ads

package Encapsulate.Child is
procedure Hello3;

end Encapsulate.Child;

Listing 12: encapsulate-child.adb
with Ada.Text IO; use Ada.Text IO;

package body Encapsulate.Child is

procedure Hello3 is

begin
-- Using private procedure Hello2
-- from the parent package
Hello2;
Put Line ("Hello #3");

end Hello3;

end Encapsulate.Child;

114

Chapter 12.

Privacy

o v A W N B

© ©® N o U A W N R

e
= o

oA W N e

© @ N U A W N e

=
= o

Introduction to Ada

Listing 13: main.adb
with Encapsulate.Child;

procedure Main is

begin
Encapsulate.Child.Hello3;

end Main;

Code block metadata

Project: Courses.Intro To Ada.Privacy.Encapsulate Child
MD5: 1533f43eee8f8b4d14c9b2101f42f13a

Runtime output

Hello #2
Hello #3

The same mechanism applies to types declared in the private part of a parent package. For
instance, the body of a child package can access components of a record declared in the
private part of its parent package. Let's look at an example:

Listing 14: my_types.ads
package My Types is
type Priv_Rec is private;
private
type Priv_Rec is record
Number : Integer := 42;

end record;

end My Types;

Listing 15: my_types-ops.ads
package My Types.Ops is

procedure Display (E : Priv Rec);

end My Types.Ops;

Listing 16: my_types-ops.adb
with Ada.Text IO0; use Ada.Text IO;

package body My Types.Ops is

procedure Display (E : Priv Rec) is
begin
Put_Line ("Priv_Rec.Number:
& Integer'Image (E.Number));
end Display;

end My Types.Ops;

12.4. Child packages & privacy 115

© ©® N o U A W N R

T e e i =
©® N o U A W N R O

Introduction to Ada

Listing 17: main.adb
with Ada.Text I0; wuse Ada.Text IO0;

with My Types; use My Types;
with My Types.Ops; use My Types.Ops;

procedure Main is
E : Priv_Rec;
begin
Put Line ("Presenting information:");

-- The following code would trigger a
-- compilation error here:

-- Put Line ("Priv_Rec.Number:
- - & Integer'Image (E.Number));

Display (E);
end Main;

Code block metadata

Project: Courses.Intro To Ada.Privacy.Private Type Child
MD5: 9960611460bc1190b30949ecal8fc0O2b

Runtime output

Presenting information:
Priv_Rec.Number: 42

In this example, we don't have access to the Number component of the record type Priv_Rec
in the Main procedure. You can see this in the call to Put_Line that has been commented-
out in the implementation of Main. Trying to access the Number component there would
trigger a compilation error. But we do have access to this component in the body of the
My Types.Ops package, since it's a child package of the My Types package. Therefore,
Ops's body has access to the declaration of the Priv_Rec type — which is in the private
part of its parent, the My Types package. For this reason, the same call to Put_Line that
would trigger a compilation error in the Main procedure works fine in the Display procedure
of the My Types.Ops package.

This kind of privacy rules for child packages allows for extending the functionality of a parent
package and, at the same time, retain its encapsulation.

As we mentioned previously, in addition to the package body, the private part of the speci-
fication of a child package P.C also has access to the private part of the specification of its
parent P. Let's look at an example where we declare an object of private type Priv_Rec in
the private part of the child package My Types.Child and initialize the Number component
of the Priv_Rec record directly:

package My Types.Child is
private
E : Priv_Rec := (Number => 99);

end My Types.Ops;

As expected, we wouldn't be able to initialize this component if we moved this declaration
to the public (visible) part of the same child package:

116 Chapter 12. Privacy

Introduction to Ada

package My Types.Child is
E : Priv_Rec := (Number => 99);
end My Types.Ops;

The declaration above triggers a compilation error, since type Priv_Rec is private. Because
the public part of My Types.Child is also visible outside the child package, Ada cannot
allow accessing private information in this part of the specification.

12.4. Child packages & privacy 117

Introduction to Ada

118 Chapter 12. Privacy

o U A W N K

A W N R

o U A W N -

CHAPTER
THIRTEEN

GENERICS

13.1 Introduction

Generics are used for metaprogramming in Ada. They are useful for abstract algorithms
that share common properties with each other.

Either a subprogram or a package can be generic. A generic is declared by using the key-
word generic. For example:

Listing 1: operator.ads

generic

type T is private;

-- Declaration of formal types and objects
-- Below, we could use one of the following:
-- <procedure | function | package>
procedure Operator (Dummy : in out T);

Listing 2: operator.adb

procedure Operator (Dummy : in out T) is
begin

null;
end Operator;

Code block metadata

Project: Courses.Intro To Ada.Generics.Show Simple Generic
MD5: 1321d437043dafdb725fad416e654318

13.2 Formal type declaration

Formal types are abstractions of a specific type. For example, we may want to create an
algorithm that works on any integer type, or even on any type at all, whether a numeric
type or not. The following example declares a formal type T for the Set procedure.

Listing 3: set.ads

generic
type T is private;
-- T is a formal type that indicates that
-- any type can be used, possibly a numeric
-- type or possibly even a record type.
procedure Set (Dummy : T);

119

A W N R

oA W N R

oA W N e

Introduction to Ada

Listing 4: set.adb

procedure Set (Dummy : T) is
begin

null;
end Set;

Code block metadata

Project: Courses.Intro To Ada.Generics.Show Formal Type Declaration
MD5: 668156166b2479c4932d18b5ad35deba

The declaration of T as private indicates that you can map any definite type to it. But you
can also restrict the declaration to allow only some types to be mapped to that formal type.
Here are some examples:

Formal Type Format
Any type type T is private;
Any discrete type type T is (<>);

Any floating-point type type T is digits <>;

13.3 Formal object declaration

Formal objects are similar to subprogram parameters. They can reference formal types
declared in the formal specification. For example:

Listing 5: set.ads

generic

type T is private;

X : in out T;

-- X can be used in the Set procedure
procedure Set (E : T);

Listing 6: set.adb

procedure Set (E : T) is
pragma Unreferenced (E, X);
begin
null;
end Set;

Code block metadata

Project: Courses.Intro To Ada.Generics.Show Formal Object Declaration
MD5: 1b88bcbe5b8f48a35394966e6af07acO

Formal objects can be either input parameters or specified using the in out mode.

13.4 Generic body definition

We don't repeat the generic keyword for the body declaration of a generic subprogram
or package. Instead, we start with the actual declaration and use the generic types and
objects we declared. For example:

120 Chapter 13. Generics

A W N =

o U A W N K

A W N R oA W N R

© @ N o U A W N R

e e <
U A W N F O

Introduction to Ada

Listing 7: set.ads

generic
type T is private;
X : in out T;
procedure Set (E : T);

Listing 8: set.adb

procedure Set (E : T) is
-- Body definition: "generic" keyword
-- 1s not used
begin
X := E;
end Set;

Code block metadata

Project: Courses.Intro To Ada.Generics.Show Generic Body Definition
MD5: de61lef77b528543fd6bad82c5385717

13.5 Generic instantiation

Generic subprograms or packages can't be used directly. Instead, they need to be instan-
tiated, which we do using the new keyword, as shown in the following example:

Listing 9: set.ads

generic

type T is private;

X : in out T;

-- X can be used in the Set procedure
procedure Set (E : T);

Listing 10: set.adb

procedure Set (E : T) is
begin

X = E;
end Set;

Listing 11: show_generic_instantiation.adb

with Ada.Text IO; use Ada.Text IO;
with Set;

procedure Show Generic Instantiation is

Main : Integer := 0;
Current : Integer;

procedure Set Main is new Set (T => Integer,
X => Main);

-- Here, we map the formal parameters to

-- actual types and objects.

-- The same approach can be used to
-- instantiate functions or packages, e.g.:

(continues on next page)

13.5. Generic instantiation 121

16
17
18
19
20
21
22
23
24
25
26

© ©® N o U A W N K

e i <
o A W N B O

o U A W N B

Introduction to Ada

(continued from previous page)

-- function Get Main 1is new ..
-- package Integer Queue 1is new ...

begin
Current := 10;

Set Main (Current);
Put Line ("Value of Main is
& Integer'Image (Main));
end Show Generic Instantiation;

Code block metadata

Project: Courses.Intro To Ada.Generics.Show Generic_ Instantiation
MD5: 13dc0692252496d954240952561e1c05

Runtime output

Value of Main is 10

In the example above, we instantiate the procedure Set by mapping the formal parameters
T and X to actual existing elements, in this case the Integer type and the Main variable.

13.6 Generic packages

The previous examples focused on generic subprograms. In this section, we look at generic
packages. The syntax is similar to that used for generic subprograms: we start with the
generic keyword and continue with formal declarations. The only difference is that package
is specified instead of a subprogram keyword.

Here's an example:

Listing 12: element.ads

generic
type T is private;
package Element is

procedure Set (E : T);

procedure Reset;

function Get return T;

function Is Valid return Boolean;

Invalid Element : exception;

private
Value : T;
Valid : Boolean := False;

end Element;

Listing 13: element.adb
package body Element is

procedure Set (E : T) is

begin
Value := E;
Valid := True;

(continues on next page)

122 Chapter 13. Generics

10
11
12
13
14
15
16
17
18
19
20
21

23

© ©® N o U A W N K

WON N NN NN NNNNKHB B B B B 2 2 op s
S © ® N o U A W N B O © ® N O U0 B W N H O

Introduction to Ada

end Set;
procedure Reset is
begin

Valid := False;
end Reset;

function Get return T 1is
begin
if not Valid then
raise Invalid Element;
end if;
return Value;
end Get;

function Is Valid return Boolean is
end Element;

Listing 14: show_generic_package.adb

with Ada.Text IO0; use Ada.Text IO;
with Element;

procedure Show Generic Package is

(valid);

package I is new Element (T => Integer);

procedure Display Initialized is
begin
if I.Is Valid then

Put Line ("Value is initialized");

else

Put Line ("Value is not initialized");

end if;
end Display Initialized;

begin
Display Initialized;

Put Line ("Initializing...");

I.Set (5);

Display Initialized;

Put Line ("Value is now set to
& Integer'Image (I.Get));

Put Line ("Resetting...");
I.Reset;
Display Initialized;

end Show Generic_ Package;

Code block metadata

Project: Courses.Intro To Ada.Generics
MD5: ¢5278a06c6d06f1f37353ee0cab686ec

Runtime output

Value is not initialized
Initializing...
Value is initialized

.Show Generic_ Package

(continued from previous page)

(continues on next page)

13.6. Generic packages

123

o U A W N B

W @ N U A W N e

T e e i
©® N o U A W N B O

©® N O U A W N

Introduction to Ada

(continued from previous page)

Value is now set to 5
Resetting...
Value is not initialized

In the example above, we created a simple container named Element, with just one single
element. This container tracks whether the element has been initialized or not.

After writing the package definition, we create the instance I of the Element. We use the
instance by calling the package subprograms (Set, Reset, and Get).

13.7 Formal subprograms

In addition to formal types and objects, we can also declare formal subprograms or pack-
ages. This course only describes formal subprograms; formal packages are discussed in
the advanced course.

We use the with keyword to declare a formal subprogram. In the example below, we declare
a formal function (Comparison) to be used by the generic procedure Check.

Listing 15: check.ads

generic
Description : String;
type T is private;
with function Comparison (X, Y : T)
return Boolean;
procedure Check (X, Y : T);

Listing 16: check.adb
with Ada.Text IO; use Ada.Text IO;

procedure Check (X, Y : T) is
Result : Boolean;
begin
Result := Comparison (X, Y);
if Result then
Put Line
("Comparison ("
& Description
& ") between arguments is OK!");
else
Put Line
("Comparison (
& Description
& ") between arguments is not OK!");
end if;
end Check;

Listing 17: show_formal_subprogram.adb
with Check;

procedure Show Formal Subprogram is
A, B : Integer;
procedure Check Is Equal is new

Check (Description => "equality",
(continues on next page)

124 Chapter 13. Generics

10
11
12
13
14
15
16
17
18

© ©® N o U A W N R

Introduction to Ada

(continued from previous page)
T => Integer,
Comparison => Standard."=");
-- Here, we are mapping the standard
-- equality operator for Integer types to
-- the Comparison formal function

begin
A = 0;
B := 1;

Check Is Equal (A, B);
end Show Formal Subprogram;

Code block metadata

Project: Courses.Intro To Ada.Generics.Show Formal Subprogram
MD5: 1c463a47e9ce56b5afbcaldabacdlled

Runtime output

Comparison (equality) between arguments is not OK!

13.8 Example: I/O instances

Ada offers generic I/O packages that can be instantiated for standard and derived types.
One example is the generic Float I0 package, which provides procedures such as Put and
Get. In fact, Float Text I0 — available from the standard library — is an instance of the
Float I0 package, and it's defined as:

with Ada.Text I0;

package Ada.Float_Text_IO is new Ada.Text_IO.Float_IO (Float);
You can use it directly with any object of floating-point type. For example:

Listing 18: show_float text io.adb
with Ada.Float Text IO;

procedure Show Float Text IO is
: constant Float := 2.5;

use Ada.Float Text IO;
begin

Put (X);
end Show Float Text IO0;

Code block metadata

Project: Courses.Intro To Ada.Generics.Show Float Text IO
MD5: 7cc9b547ef301a2071e9fb65caad631b

Runtime output

2.50000E+00

Instantiating generic I/O packages can be useful for derived types. For example, let's create
a new type Price that must be displayed with two decimal digits after the point, and no
exponent.

13.8. Example: 1/0 instances 125

©W @ N U A W N e

N NN B R R R R B E B B e
N B O © ® N o U A W N B O

Introduction to Ada

Listing 19: show_float_io_inst.adb
with Ada.Text IO0; use Ada.Text IO;

procedure Show Float I0 Inst is
type Price is digits 3;

package Price I0 is new
Ada.Text_I0.Float_IO (Price);

P : Price;

begin
-- Set to zero => don't display exponent
Price I0.Default Exp := 0;

P :=2.5;
Price IO0.Put (P);
New Line;

P :=5.75;
Price IO.Put (P);
New Line;

end Show Float IO Inst;

Code block metadata

Project: Courses.Intro To Ada.Generics.Show Float IO Inst
MD5: 583c761421d7fdb812dd2al83b676bae

Runtime output

2.50
5.75

By adjusting Default Exp from the Price I0 instance to remove the exponent, we can
control how variables of Price type are displayed. Just as a side note, we could also have
written:

-- [...]
type Price is new Float;

package Price_IO0 is new
Ada.Text_IO0.Float_IO0 (Price);

begin
Price IO.Default Aft := 2;
Price IO0.Default Exp := 0;

In this case, we're ajusting Default Aft, too, to get two decimal digits after the point when
calling Put.

In addition to the generic Float I0 package, the following generic packages are available
from Ada.Text IO:

Enumeration IO for enumeration types;

Integer IO for integer types;

Modular IO for modular types;

Fixed IO for fixed-point types;

126 Chapter 13. Generics

W @ N U A W N e

I I N T e e < =
P O © ® W o U A W N = O

©W N U A W N e

e e
w N B o

Introduction to Ada

* Decimal IO for decimal types.

In fact, we could rewrite the example above using decimal types:

Listing 20: show_decimal_io_inst.adb
with Ada.Text IO; use Ada.Text IO;

procedure Show Decimal IO Inst is
type Price is delta 10.0 ** (-2) digits 12;

package Price IO is new
Ada.Text_IO.Decimal_IO (Price);

P : Price;
begin
Price IO.Default Exp := 0;

PERI=R255)
Price I0.Put (P);
New Line;
P :=5.75;
Price IO.Put (P);

New Line;
end Show Decimal IO Inst;

Code block metadata

Project: Courses.Intro To Ada.Generics.Show Decimal IO Inst
MD5: f413570759dcb32cc166078b3ceelalb

Runtime output

2.50
5.75

13.9 Example: ADTs

An important application of generics is to model abstract data types (ADTs). In fact, Ada
includes a library with numerous ADTs using generics: Ada.Containers (described in the
containers section (page 199)).

A typical example of an ADT is a stack:

Listing 21: stacks.ads
generic
Max : Positive;
type T is private;
package Stacks is
type Stack is limited private;
Stack Underflow, Stack Overflow : exception;

function Is Empty (S : Stack) return Boolean;

function Pop (S : in out Stack) return T;

(continues on next page)

13.9. Example: ADTs 127

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

© ® N o U A W N R

W W W N N N NN NNNNN-RB B B B B B B B B
N B © © ® N o U A W N P © © ® N 0 U & W N H O

o U A W N R

Introduction to Ada

procedure Push (S :
Vo

in out Stack;
T);

(continued from previous page)

private

type Stack Array is
array (Natural range <>) of T;

: constant := 1;

type Stack is record
Container
Top

end record;

: Natural

end Stacks;

Listing 22: stacks.adb

package body Stacks is

function Is Empty (S : Stack)
(S.Top < S.Container'First);

function Is Full (S :
(S.Top >= S.Container'Last);
function Pop (S : in out Stack)
begin
if Is Empty (S) then
raise Stack Underflow;

: Stack Array (Min ..
= Min - 1;

Max) ;

return Boolean is

Stack) return Boolean 1is

return T is

else
return X : T do
X = S.Container (S.Top);
S.Top := S.Top - 1;
end return;
end if;
end Pop;

procedure Push (S :
Vo T) 1is
begin
if Is Full (S) then
raise Stack Overflow;
else
S.Top :
S.Container (S.Top)
end if;
end Push;

S
V;

end Stacks;

Listing 23: show_stack.adb

with Ada.Text IO; use Ada.Text IO;
with Stacks;

procedure Show Stack is

package Integer_Stacks is new

in out Stack;

.Top + 1;

128

(continues on next page)

Chapter 13. Generics

10

12
13
14
15
16
17
18
19

o v A W N R

W @ N U A W N e

-
o

A W N =

Introduction to Ada

(continued from previous page)

Stacks (Max => 10,
T => Integer);
use Integer Stacks;

Values : Integer Stacks.Stack;
begin

Push (Values, 10);

Push (Values, 20);

Put Line ("Last value was "
& Integer'Image (Pop (Values)));
end Show Stack;

Code block metadata

Project: Courses.Intro To Ada.Generics.Show Stack
MD5: eel12d395552c1a02d211b9e5425dc71

Runtime output

Last value was 20

In this example, we first create a generic stack package (Stacks) and then instantiate it to

create a stack of up to 10 integer values.

13.10 Example: Swap

Let's look at a simple procedure that swaps variables of type Color:

Listing 24: colors.ads

package Colors is
type Color is (Black, Red, Green,
Blue, White);

procedure Swap Colors (X, Y : in out Color);
end Colors;

Listing 25: colors.adb
package body Colors is

procedure Swap Colors (X, Y : in out Color) is

: constant Color := X;
begin
X :=Y;
Y := Tmp;

end Swap Colors;

end Colors;

Listing 26: test non_generic_swap_colors.adb

with Ada.Text IO; use Ada.Text IO;
with Colors; use Colors;

procedure Test Non Generic Swap Colors is

(continues on next page)

13.10. Example: Swap

129

© @ N o u

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

Introduction to Ada

A, B,
begin
A
B
C:

C:

(continued from previous page)
Color;

Blue;
White;
Red;

Put Line ("Value of A is "

& Color'Image (A));

Put Line ("Value of B is "

& Color'Image (B));

Put Line ("Value of C is "

& Color'Image (C));

New Line;

Put Line ("Swapping A and C...");
New Line;

Swap_Colors (A, C);

Put Line ("Value of A is "

& Color'Image (A));

Put Line ("Value of B is "

& Color'Image (B));

Put Line ("Value of C is "

& Color'Image (C));

end Test Non Generic_Swap Colors;

Code block metadata

Project: Courses.Intro To Ada.Generics.Test Non Generic Swap Colors
MD5: 4d1cf826al676c3750a8aabd484ac71f

Runtime output

Value of
Value of
Value of

Swapping
Value of

Value of
Value of

A
B
C

A
A

B
C

is BLUE
is WHITE
is RED

and C...
is RED

is WHITE
is BLUE

In this example, Swap Colors can only be used for the Color type. However, this algorithm
can theoretically be used for any type, whether an enumeration type or a complex record
type with many elements. The algorithm itself is the same: it's only the type that differs.
If, for example, we want to swap variables of Integer type, we don't want to duplicate the
implementation. Therefore, such an algorithm is a perfect candidate for abstraction using

generics

In the example below, we create a generic version of Swap Colors and name it
Generic Swap. This generic version can operate on any type due to the declaration of
formal type T.

generic

Listing 27: generic_swap.ads

type T is private;
procedure Generic Swap (X, Y : in out T);

130

Chapter 13. Generics

o v A W N B

W N U A W N e

=
= o

© ® N o U A W N R

NN NN NN NNNNB B B o2 R e R e e e
© ® N o U & W N B O © ® N O U A W N E O

Introduction to Ada

Listing 28: generic_swap.adb

procedure Generic Swap (X, Y : in out T) is
: constant T := X;

begin

=Y;

= Tmp;

end Generic Swap;

< X

Listing 29: colors.ads

with Generic_ Swap;
package Colors is

type Color is (Black, Red, Green,
Blue, White);

procedure Swap Colors is new
Generic Swap (T => Color);

end Colors;

Listing 30: test swap_colors.adb
with Ada.Text I0; use Ada.Text I0;
with Colors; use Colors;

procedure Test Swap Colors is
A, B, C : Color;

begin
A := Blue;
B := White;
C := Red;

Put Line ("Value of A is "

& Color'Image (A));
Put Line ("Value of B is "

& Color'Image (B));
Put Line ("Value of C is "

& Color'Image (C));

New Line;

Put Line ("Swapping A and C...");
New Line;

Swap Colors (A, C);

Put Line ("Value of A is "
& Color'Image (A));
Put Line ("Value of B is "
& Color'Image (B));
Put Line ("Value of C is "
& Color'Image (C));
end Test Swap Colors;

Code block metadata

Project: Courses.Intro To Ada.Generics.Test Swap Colors
MD5: a5d94a40bd9d1c6736cc873f8b58e867

Runtime output

13.10. Example: Swap

131

© @ N o U A W N e

e
= o

© ©® N o U A W N R

NONON B R R R R e R B e
N B O © ® W o U A W N = O

Introduction to Ada

Value of A is BLUE
Value of B is WHITE
Value of C is RED

Swapping A and C...
Value of A is RED

Value of B is WHITE
Value of C is BLUE

As we can see in the example, we can create the same Swap Colors procedure as we had
in the non-generic version of the algorithm by declaring it as an instance of the generic
Generic Swap procedure. We specify that the generic T type will be mapped to the Color

type by passing it as an argument to the Generic Swap instantiation.

13.11 Example: Reversing

The previous example, with an algorithm to swap two values, is one of the simplest exam-
ples of using generics. Next we study an algorithm for reversing elements of an array. First,
let's start with a non-generic version of the algorithm, one that works specifically for the

Color type:

Listing 31: colors.ads

package Colors is

type Color is (Black, Red, Green,
Blue, White);

type Color_Array is
array (Integer range <>) of Color;

procedure Reverse It (X : in out Color Array);

end Colors;

Listing 32: colors.adb

package body Colors is

procedure Reverse It (X : in out Color Array)
is
begin
for I in X'First ..
(X'Last + X'First) / 2 loop
declare
Tmp : Color;
X Left : Color
renames X (I);
X Right : Color
renames X (X'Last + X'First - I);

begin
Tmp = X Left;
X Left := X Right;
X Right := Tmp;
end;
end loop;

end Reverse It;

end Colors;

132 Chapter 13.

Generics

© ©® N o U A W N R

NN NN B R R B R R R B e
W N B O © ® N O 00 & W N B O

Introduction to Ada

Listing 33: test_non_generic_reverse_colors.adb

with Ada.Text IO; use Ada.Text IO;
with Colors; use Colors;

procedure Test Non Generic Reverse Colors is

My Colors : Color Array (1 .. 5) :=
(Black, Red, Green, Blue, White);

begin
for C of My Colors loop
Put _Line ("My Color: " & Color'Image (C));
end loop;

New Line;

Put Line ("Reversing My Color...");
New Line;

Reverse It (My Colors);

for C of My Colors loop
Put Line ("My Color: " & Color'Image (C));
end loop;

end Test Non Generic Reverse Colors;

Code block metadata

Project: Courses.Intro To Ada.Generics.Test Non Generic Reverse Colors
MD5: 9b3a489d0bcbecd79de6bad9fd7cd44f

Runtime output

My Color: BLACK
My Color: RED
My Color: GREEN
My Color: BLUE
My Color: WHITE

Reversing My Color...

My Color: WHITE
My Color: BLUE
My Color: GREEN
My Color: RED
My Color: BLACK

The procedure Reverse It takes an array of colors, starts by swapping the first and last
elements of the array, and continues doing that with successive elements until it reaches
the middle of array. At that point, the entire array has been reversed, as we see from the
output of the test program.

To abstract this procedure, we declare formal types for three components of the algorithm:
* the elements of the array (Color type in the example)
* the range used for the array (Integer range in the example)
» the actual array type (Color_ Array type in the example)

This is a generic version of the algorithm:

13.11. Example: Reversing 133

o U A W N B

© ©® N o U A W N R

R L N i < =
N o 0 A W N B O

© @ N U A W N e

T e e
o U A W N B O

© @ N U A W N e

-
o

Introduction to Ada

Listing 34: generic_reverse.ads

generic
type T is private;
type Index is range <>;
type Array T is
array (Index range <>) of T;
procedure Generic Reverse (X : in out Array T);

Listing 35: generic_reverse.adb

procedure Generic Reverse (X : in out Array T) is
begin
for I in X'First ..
(X'Last + X'First) / 2 loop

declare
Tmp T,
X Left T
renames X (I);
X Right : T
renames X (X'Last + X'First - I);
begin
Tmp = X Left;
X Left := X Right;
X Right := Tmp;
end;
end loop;

end Generic_ Reverse;

Listing 36: colors.ads

with Generic_Reverse;
package Colors is

type Color is (Black, Red, Green,
Blue, White);

type Color_Array is
array (Integer range <>) of Color;

procedure Reverse It is new
Generic Reverse (T => Color,
Index => Integer,
Array T => Color _Array);

end Colors;

Listing 37: test_reverse_colors.adb

with Ada.Text I0; use Ada.Text IO;
with Colors; use Colors;

procedure Test Reverse Colors is

My Colors : Color Array (1 .. 5) :=
(Black, Red, Green, Blue, White);

begin
for C of My Colors loop

(continues on next page)

134

Chapter 13. Generics

11
12
13
14
15
16
17
18
19
20
21
22

24
25

Introduction to Ada

(continued from previous page)
Put Line ("My Color: "
& Color'Image (C));
end loop;

New Line;

Put Line ("Reversing My Color...");
New Line;

Reverse It (My Colors);

for C of My Colors loop
Put_Line ("My Color: "
& Color'Image (C));
end loop;

end Test Reverse Colors;

Code block metadata

Project: Courses.Intro To Ada.Generics.Test Reverse Colors
MD5: 9ef175c517d7574b4b65b24ba0027 f1f
Runtime output

My Color: BLACK
My Color: RED
My Color: GREEN
My Color: BLUE
My Color: WHITE

Reversing My Color...

My Color: WHITE

My Color: BLUE

My Color: GREEN

My Color: RED

My Color: BLACK

As mentioned above, we're abstracting three components of the algorithm:
* the T type abstracts the elements of the array
* the Index type abstracts the range used for the array

* the Array T type abstracts the array type and uses the formal declarations of the T
and Index types.

13.12 Example: Test application

In the previous example we've focused only on abstracting the reversing algorithm itself.
However, we could have decided to also abstract our small test application. This could be
useful if we, for example, decide to test other procedures that change elements of an array.

In order to do this, we again have to choose the elements to abstract. We therefore declare
the following formal parameters:

* S: the string containing the array name
* a function Image that converts an element of type T to a string
* a procedure Test that performs some operation on the array

Note that Image and Test are examples of formal subprograms and S is an example of a
formal object.

13.12. Example: Test application 135

o U A W N K

© ©® N o U A W N R

R L i T
N o 0 A W N B O

© @ N o U A W N R

=
o

© ©® N o U A W N K

e i < e
o A W N B O

Introduction to Ada

Here is a version of the test application making use of the generic Perform Test procedure:

Listing 38: generic_reverse.ads

generic
type T is private;
type Index is range <>;
type Array_T is
array (Index range <>) of T;
procedure Generic_Reverse (X : in out Array T);

Listing 39: generic_reverse.adb

procedure Generic Reverse (X : in out Array T) is
begin
for I in X'First ..
(X'Last + X'First) / 2 loop

declare
Tmp T
X Left T
renames X (I);
X Right : T
renames X (X'Last + X'First - I);
begin
Tmp = X Left;
X Left := X Right;
X Right := Tmp;
end;
end loop;

end Generic Reverse;

Listing 40: perform_test.ads

generic

type T is private;

type Index is range <>;

type Array_T is

array (Index range <>) of T;
S : String;
with function Image (E : T)
return String is <>;

with procedure Test (X : in out Array T);

procedure Perform Test (X : in out Array T);

Listing 41: perform_test.adb
with Ada.Text I0; use Ada.Text I0;

procedure Perform Test (X : in out Array T) is
begin
for C of X loop
Put Line (S & ": " & Image (C));
end loop;

New Line;
Put Line ("Testing " & S & "...");
New Line;
Test (X);

for C of X loop
Put Line (S & ": " & Image (C));

(continues on next page)

136

Chapter 13. Generics

16
17

© ©® N o U A W N R

e e
o 0 A W N H O

© ©® N o U A W N R

P e L <
© ® N o U A W N B O

Introduction to Ada

end loop;
end Perform Test;

Listing 42: colors.ads

with Generic_Reverse;

package Colors is

type Color is (Black, Red, Green,

Blue, White);

type Color_ Array is

array (Integer range <>) of

procedure Reverse It is new

Generic Reverse (T => Color,
Index => Integer,
Array T => Color Array);

end Colors;

Listing 43: test _reverse _colors.adb

with Colors; use Colors;
with Perform Test;

procedure Test Reverse Colors is

procedure Perform Test Reverse It is new

Perform Test (T => Color,
Index => Integer,
Array T => Color_Array,
S => "My Color",
Image => Color'Image,
Test => Reverse It);

My Colors : Color Array (1 .. 5)
(Black, Red, Green, Blue, White);

begin

Perform Test Reverse It (My Colors);

end Test Reverse Colors;

Code block metadata

Project: Courses.Intro To Ada.Generics.Test Reverse Colors 2
MD5: 04640309f4f7e9f8bcffl37d1a6f8733

Runtime output

My Color:
My Color:
My Color:
My Color:
My Color:

BLACK
RED
GREEN
BLUE
WHITE

Testing My Color...

My Color:

WHITE

Color;

(continued from previous page)

(continues on next page)

13.12. Example: Test application

137

Introduction to Ada

(continued from previous page)

My Color: BLUE
My Color: GREEN
My Color: RED

My Color: BLACK

In this example, we create the procedure Perform Test Reverse It as an instance of the
generic procedure (Perform Test). Note that:
* For the formal Image function, we use the 'Image attribute of the Color type

* For the formal Test procedure, we reference the Reverse Array procedure from the
package.

138 Chapter 13. Generics

A W N e

© @ N o U A W N R

=
o

CHAPTER
FOURTEEN

EXCEPTIONS

Ada uses exceptions for error handling. Unlike many other languages, Ada speaks about
raising, not throwing, an exception and handling, not catching, an exception.

14.1 Exception declaration

Ada exceptions are not types, but instead objects, which may be peculiar to you if you're
used to the way Java or Python support exceptions. Here's how you declare an exception:

Listing 1: exceptions.ads

package Exceptions is

My Except : exception;

-- Like an object. *NOT* a type !
end Exceptions;

Code block metadata

Project: Courses.Intro To Ada.Exceptions.Show Exception
MD5: 6201faeca9b029c790023856d2c8c419

Even though they're objects, you're going to use each declared exception object as a "kind"
or "family" of exceptions. Ada does not require that a subprogram declare every exception
it can potentially raise.

14.2 Raising an exception

To raise an exception of our newly declared exception kind, do the following:

Listing 2: main.adb

with Exceptions; use Exceptions;

procedure Main is

begin
raise My Except;
-- Execution of current control flow
-- abandoned; an exception of kind
-- "My Except" will bubble up until it
-- 1s caught.

end Main;

Code block metadata

Project: Courses.Intro To Ada.Exceptions.Show Exception
MD5: 24b40ael509722adf51c3dd0d3eadfbe

139

© ® N o U A W N e

=
o

W N U A W N e

e i
U A W N B O

16

Introduction to Ada

Runtime output

raised EXCEPTIONS.MY EXCEPT : main.adb:5

Here, the My Except exception is raised. We can also specify a message:

Listing 3: main.adb

with Exceptions; use Exceptions;

procedure Main is

begin
raise My Except with "My exception message";
-- Execution of current control flow
-- abandoned; an exception of kind
-- "My Except" with associated string will
-- bubble up until it is caught.

end Main;

Code block metadata

Project: Courses.Intro To Ada.Exceptions.Show Exception
MD5: 279299c9703c3ed4e51fdd7c3a5e1392

Runtime output

raised EXCEPTIONS.MY EXCEPT : My exception message

In this case, we see an additional message when the exception is displayed.

14.3 Handling an exception

Next, we address how to handle exceptions that were raised by us or libraries that we call.
The neat thing in Ada is that you can add an exception handler to any statement block as

follows:

Listing 4: open file.adb
with Ada.Text IO; use Ada.Text IO;
with Ada.Exceptions; use Ada.Exceptions;

procedure Open File is
File : File_Type;

begin
-- Block (sequence of statements)
begin
Open (File, In File, "input.txt");
exception

when E : Name Error =>

-- ~ Exception to be handled
Put ("Cannot open input file : ");
Put Line (Exception Message (E));
raise;
-- Reraise current occurence

end;
end Open File;

Code block metadata

140

Chapter 14.

Exceptions

W W N U A W N e

HoR e
N = O

© ©® N o U A W N R

=
= o

12
13

Introduction to Ada

Project: Courses.Intro To Ada.Exceptions.Show Exception Handling
MD5: 4eald5da684a6d7d7ee32908810e9c8f

Runtime output

Cannot open input file : input.txt: No such file or directory

raised ADA.IO EXCEPTIONS.NAME ERROR : input.txt: No such file or directory

In the example above, we're using the Exception Message function from the Ada.
Exceptions package. This function returns the message associated with the exception
as a string.

You don't need to introduce a block just to handle an exception: you can add it to the
statements block of your current subprogram:

Listing 5: open file.adb

with Ada.Text IO; use Ada.Text IO;
with Ada.Exceptions; wuse Ada.Exceptions;

procedure Open File is

File : File_Type;
begin

Open (File, In File, "input.txt");
-- Exception block can be added to any block
exception

when Name Error =>

Put ("Cannot open input file");

end Open File;

Code block metadata

Project: Courses.Intro To Ada.Exceptions.Show Exception Message
MD5: 838e87ae416b3a717901cdc00eb71b40

Runtime output

Cannot open input file

© Attention

Exception handlers have an important restriction that you need to be careful about:
Exceptions raised in the declarative section are not caught by the handlers of that block.
So for example, in the following code, the exception will not be caught.

Listing 6: be_careful.adb

with Ada.Text IO; use Ada.Text IO;
with Ada.Exceptions; use Ada.Exceptions;
procedure Be Careful is
function Dangerous return Integer is
begin
raise Constraint Error;
return 42;
end Dangerous;
begin
declare
A : Integer := Dangerous;

14.3. Handling an exception 141

Introduction to Ada

14 begin

15 Put Line (Integer'Image (A));
16 exception

17 when Constraint Error =>

18 Put Line ("error!");

19 end;

20 | end Be Careful;

Code block metadata

Project: Courses.Intro To Ada.Exceptions.Be Careful
MD5: 6ea8a2l14bbbaca09d7444136d069e782

Runtime output

raised CONSTRAINT ERROR : be careful.adb:7 explicit raise

This is also the case for the top-level exception block that is part of the current subpro-
gram.

14.4 Predefined exceptions

Ada has a very small number of predefined exceptions:

Constraint Error is the main one you might see. It's raised:

When bounds don't match or, in general, any violation of constraints.

In case of overflow

In case of null dereferences

In case of division by 0

* Program Error might appear, but probably less often. It's raised in more arcane situ-
ations, such as for order of elaboration issues and some cases of detectable erroneous
execution.

» Storage Error will happen because of memory issues, such as:
- Not enough memory (allocator)

- Not enough stack

Tasking Error will happen with task related errors, such as any error happening dur-
ing task activation.

You should not reuse predefined exceptions. If you do then, it won't be obvious when one
is raised that it is because something went wrong in a built-in language operation.

142 Chapter 14. Exceptions

© ©® N o U A W N R

e e
N = O

CHAPTER
FIFTEEN

TASKING

Tasks and protected objects allow the implementation of concurrency in Ada. The following
sections explain these concepts in more detail.

15.1 Tasks

A task can be thought as an application that runs concurrently with the main application.
In other programming languages, a task might be called a thread'®, and tasking might be
called multithreading'®.

Tasks may synchronize with the main application but may also process information com-
pletely independently from the main application. Here we show how this is accomplished.

15.1.1 Simple task

Tasks are declared using the keyword task. The task implementation is specified in a task
body block. For example:

Listing 1: show_simple_task.adb
with Ada.Text IO; use Ada.Text IO;

procedure Show Simple Task is
task T;

task body T is
begin
Put _Line ("In task T");
end T;
begin
Put Line ("In main");
end Show Simple Task;

Code block metadata

Project: Courses.Intro To Ada.Tasking.Show Simple Task
MD5: b17d9b35b4b2b53bc59776749elbe219

Runtime output

In task T
In main

18 https://en.wikipedia.org/wiki/Thread_(computing)
19 https://en.wikipedia.org/wiki/Thread_(computing)#Multithreading

143

https://en.wikipedia.org/wiki/Thread_(computing)
https://en.wikipedia.org/wiki/Thread_(computing)#Multithreading

Introduction to Ada

Here, we're declaring and implementing the task T. As soon as the main application starts,
task T starts automatically — it's not necessary to manually start this task. By running the
application above, we can see that both calls to Put_Line are performed.

Note that:
* The main application is itself a task (the main or “environment” task).

- In this example, the subprogram Show Simple Task is the main task of the appli-
cation.

e Task T is a subtask.

- Each subtask has a master, which represents the program construct in which the
subtask is declared. In this case, the main subprogram Show Simple TaskisT's
master.

- The master construct is executed by some enclosing task, which we will refer to
as the "master task" of the subtask.

* The number of tasks is not limited to one: we could include a task T2 in the example
above.

- This task also starts automatically and runs concurrently with both task T and the
main task. For example:

Listing 2: show_simple_tasks.adb
with Ada.Text IO0; use Ada.Text IO;

procedure Show Simple Tasks is
task T;
task T2;

task body T is
begin

Put Line ("In task T");
end T;

© ©® N o U A W N R

e
= o

task body T2 is
begin

Put Line ("In task T2");
end T2;

R L -
N o 0~ W N

begin
Put Line ("In main");
end Show Simple Tasks;

e
o ®

Code block metadata

Project: Courses.Intro To Ada.Tasking.Multiple Simple Task
MD5: 5e24b797e742bec306ad498f4140d2b4

Runtime output

In task T2
In task T
In main

15.1.2 Simple synchronization

As we've just seen, as soon as the master construct reaches its “begin”, its subtasks also
start automatically. The master continues its processing until it has nothing more to do. At
that point, however, it will not terminate. Instead, the master waits until its subtasks have

144 Chapter 15. Tasking

© ® N o U A W N e

e i < e
U A W N B O

Introduction to Ada

finished before it allows itself to complete. In other words, this waiting process provides
synchronization between the master task and its subtasks. After this synchronization, the
master construct will complete. For example:

Listing 3: show_simple_sync.adb
with Ada.Text IO0; use Ada.Text IO;

procedure Show Simple Sync is
task T;
task body T is
begin
for I in 1 .. 10 loop
Put Line ("hello");
end loop;
end T;
begin
null;
-- Will wait here until all tasks
-- have terminated
end Show Simple Sync;

Code block metadata

Project: Courses.Intro To Ada.Tasking.Show Simple Sync
MD5: 84afce465854f99f8cbe®b57714d8a5f

Runtime output

hello
hello
hello
hello
hello
hello
hello
hello
hello
hello

The same mechanism is used for other subprograms that contain subtasks: the subprogram
execution will wait for its subtasks to finish. So this mechanism is not limited to the main
subprogram and also applies to any subprogram called by the main subprogram, directly
or indirectly.

Synchronization also occurs if we move the task to a separate package. In the example
below, we declare a task T in the package Simple Sync Pkag.
Listing 4: simple_sync_pkg.ads

package Simple_Sync_Pkg is
task T;
end Simple Sync Pkg;

Code block metadata

Project: Courses.Intro To Ada.Tasking.Simple Sync Pkg
MD5: 2f9be044d049942409701150e2293d5e

This is the corresponding package body:

15.1. Tasks 145

W @ N U A W N e

—
o

® N O U A W N E

Introduction to Ada

Listing 5: simple_sync_pkg.adb
with Ada.Text IO0; use Ada.Text IO;

package body Simple_Sync_Pkg is
task body T is
begin
for I in 1 .. 10 loop
Put Line ("hello");
end loop;
end T;
end Simple Sync Pkg;

Code block metadata

Project: Courses.Intro To Ada.Tasking.Simple Sync Pkg
MD5: b668451e4fb10e802619889bcd743ff

Because the package is with'ed by the main procedure, the task T defined in the package
will become a subtask of the main task. For example:

Listing 6: test_simple_sync_pkg.adb
with Simple Sync Pkg;

procedure Test Simple Sync Pkg is
begin
null;
-- Will wait here until all tasks
-- have terminated
end Test Simple Sync Pkg;

Code block metadata

Project: Courses.Intro To Ada.Tasking.Simple Sync Pkg
MD5: e51565b91767cel198496ef3e9c582ac8

Runtime output

hello
hello
hello
hello
hello
hello
hello
hello
hello
hello

As soon as the main subprogram returns, the main task synchronizes with any subtasks
spawned by packages T from Simple Sync Pkg before finally terminating.

15.1.3 Delay

We can introduce a delay by using the keyword delay. This puts the current task to sleep
for the length of time (in seconds) specified in the delay statement. For example:

146 Chapter 15. Tasking

W @ N U A W N e

T e e i
©® N o U A W N B O

Introduction to Ada

Listing 7: show_delay.adb
with Ada.Text IO0; use Ada.Text IO;

procedure Show Delay is
task T;

task body T is
begin
for I in 1 .. 5 loop
Put Line ("hello from task T");
delay 1.0;
-- ~ Wait 1.0 seconds
end loop;
end T;
begin
delay 1.5;
Put Line ("hello from main");
end Show Delay;

Code block metadata

Project: Courses.Intro To Ada.Tasking.Show Delay
MD5: 4a26e8039744301a128e8fb2dd27902a5

Runtime output

hello from task T
hello from task T
hello from main

hello from task T
hello from task T
hello from task T

In this example, we're making the task T wait one second after each time it displays the
"hello" message. In addition, the main task is waiting 1.5 seconds before displaying its own
"hello" message

15.1.4 Synchronization: rendezvous

The only type of synchronization we've seen so far is the one that happens automatically at
the end of a master construct with a subtask. You can also define custom synchronization
points using the keyword entry. An entry can be viewed as a special kind of subprogram,
which is called by another task using a similar syntax, as we will see later.

In the task body definition, you define which part of the task will accept the entries by using
the keyword accept. A task proceeds until it reaches an accept statement and then waits
for some other task to synchronize with it. Specifically,

* The task with the entry waits at that point (in the accept statement), ready to accept
a call to the corresponding entry from the master task.

e The other task calls the task entry, in a manner similar to a procedure call, to synchro-
nize with the entry.

This synchronization between tasks is called a rendezvous. Let's see an example:

15.1. Tasks 147

© O N U A W N e

NONONN B R R B E e R el e
W N B O © ® N O 0 & W N B O

Introduction to Ada

Listing 8: show_rendezvous.adb
with Ada.Text IO; use Ada.Text IO;

procedure Show Rendezvous is

task T is
entry Start;
end T;

task body T is

begin
accept Start;
-- ~ Waiting for somebody
-- to call the entry

Put Line ("In T");
end T;

begin
Put Line ("In Main");

-- Calling T's entry:
T.Start;
end Show Rendezvous;

Code block metadata

Project: Courses.Intro To Ada.Tasking.Show Rendezvous
MD5: 479eea7adc876ac359ad20ac6e3acf66

Runtime output

In Main
InT

In this example, we declare an entry Start for task T. In the task body, we implement this
entry using accept Start. When task T reaches this point, it waits for some other task to
call its entry. This synchronization occurs in the T.Start statement. After the rendezvous
completes, the main task and task T again run concurrently until they synchronize one final
time when the main subprogram Show Rendezvous finishes.

An entry may be used to perform more than a simple task synchronization: it also may
perform multiple statements during the time both tasks are synchronized. We do this with
ado ... end block. For the previous example, we would simply write accept Start do
<statements>; end;. We use this kind of block in the next example.

15.1.5 Select loop

There's no limit to the number of times an entry can be accepted. We could even create an
infinite loop in the task and accept calls to the same entry over and over again. An infinite
loop, however, prevents the subtask from finishing, so it blocks its master task when it
reaches the end of its processing. Therefore, a loop containing accept statements in a task
body can be used in conjunction with a select ... or terminate statement. In simple
terms, this statement allows its master task to automatically terminate the subtask when
the master construct reaches its end. For example:

Listing 9: show_rendezvous_loop.adb
with Ada.Text IO0; use Ada.Text IO;

(continues on next page)

148 Chapter 15. Tasking

© © N o u &~ W

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

Introduction to Ada

procedure Show Rendezvous Loop is

task T is
entry Reset;
entry Increment;
end T;

task body T is
Cnt : Integer := 0;
begin
loop
select
accept Reset do
Cnt := 0;
end Reset;
Put Line ("Reset");
or
accept Increment do
Cnt := Cnt + 1;
end Increment;

Put Line ("In T's loop ("
& Integer'Image (Cnt)

& "))
or
terminate;
end select;
end loop;
end T;

begin
Put Line ("In Main");

for I in 1 .. 4 loop

-- Calling T's entry multiple times

T.Increment;
end loop;

T.Reset;
for I in 1 .. 4 loop

-- Calling T's entry multiple times

T.Increment;
end loop;

end Show Rendezvous Loop;

Code block metadata

Project: Courses.Intro To Ada.Tasking.Show Rendezvous Loop
MD5: 0542dbc029cffb9f794d761bab9f3a9d

Runtime output

In Main

In T's loop (1)
In T's loop (2)
In T's loop (3)
In T's loop (4)
Reset

In T's loop (1)
In T's loop (2)
In T's loop (3)

(continued from previous page)

(continues on next page)

15.1. Tasks

149

© ©® N o U A W N K

-
S

Introduction to Ada

(continued from previous page)
In T's loop (4)

In this example, the task body implements an infinite loop that accepts calls to the Reset
and Increment entry. We make the following observations:

* The accept E do ... end block is used to increment a counter.

- As long as task T is performing the do ... end block, the main task waits for the
block to complete.

* The main task is calling the Increment entry multiple times in the loop from 1 .. 4.
It is also calling the Reset entry before the second loop.

- Because task T contains an infinite loop, it always accepts calls to the Reset and
Increment entries.

- When the master construct of the subtask (the Show Rendezvous Loop subpro-
gram) completes, it checks the status of the T task. Even though task T could
accept new calls to the Reset or Increment entries, the master construct is al-
lowed to terminate task T due to the or terminate part of the select statement.

15.1.6 Cycling tasks

In a previous example, we saw how to delay a task a specified time by using the delay
keyword. However, using delay statements in a loop is not enough to guarantee regular
intervals between those delay statements. For example, we may have a call to a compu-
tationally intensive procedure between executions of successive delay statements:

while True loop
delay 1.0;
-- ~ Wait 1.0 seconds
Computational Intensive App;
end loop;

In this case, we can't guarantee that exactly 10 seconds have elapsed after 10 calls
to the delay statement because a time drift may be introduced by the Computa-
tional Intensive App procedure. In many cases, this time drift is not relevant, so using
the delay keyword is good enough.

However, there are situations where a time drift isn't acceptable. In those cases, we need
to use the delay until statement, which accepts a precise time for the end of the delay,
allowing us to define a regular interval. This is useful, for example, in real-time applications.

We will soon see an example of how this time drift may be introduced and how the delay
until statement circumvents the problem. But before we do that, we look at a package
containing a procedure allowing us to measure the elapsed time (Show Elapsed Time) and
a dummy Computational Intensive App procedure which is simulated by using a simple
delay. This is the complete package:

Listing 10: delay_aux_pkg.ads

with Ada.Real Time; use Ada.Real Time;
package Delay_Aux_Pkg is

function Get Start Time return Time
with Inline;

procedure Show Elapsed Time
with Inline;

(continues on next page)

150 Chapter 15. Tasking

12
13
14
15
16
17
18

© ©® N o U A W N K

NONN B R R R R R H B s e
N B O © ® W o U & W N B O

© ©® N o U A W N R

e L e <
® N o U A W N R~ O

Introduction to Ada

procedure Computational Intensive App;
private
Start Time : Time := Clock;

function Get Start Time return Time is
(Start_Time);

end Delay Aux Pkg;

Listing 11: delay_aux_pkg.adb
with Ada.Text IO; use Ada.Text IO;

package body Delay Aux_ Pkg is

procedure Show Elapsed Time is

Now Time : Time;
Elapsed Time : Time Span;
begin
Now Time := Clock;
Elapsed Time := Now Time - Start Time;

Put_Line ("Elapsed time
& Duration'Image
(To Duration (Elapsed Time))
& " seconds");
end Show Elapsed Time;

procedure Computational Intensive App is
begin

delay 0.5;
end Computational Intensive App;

end Delay Aux Pkg;

Code block metadata

Project: Courses.Intro To Ada.Tasking.Show Time
MD5: 422a38clafa@bbd659ec81de88479e0a

(continued from previous page)

Using this auxiliary package, we're now ready to write our time-drifting application:

Listing 12: show_time_task.adb

with Ada.Text I0; use Ada.Text IO;
with Ada.Real Time; use Ada.Real Time;

with Delay Aux_ Pkg;

procedure Show Time Task is
package Aux renames Delay_ Aux_Pkg;

task T;

task body T is

Cnt : Integer := 1;
begin
for I in 1 .. 5 loop
delay 1.0;

Aux.Show Elapsed Time;
Aux.Computational Intensive App;

(continues on next page)

15.1. Tasks

151

19
20
21
22
23
24

26
27
28
29

© @ N U A W N e

NONONN B R B B R B R B e e
W N B O © ® N O U B W N~ O

Introduction to Ada

(continued from previous page)

Put Line ("Cycle # "
& Integer'Image (Cnt));

Cnt :=Cnt + 1;
end loop;
Put Line ("Finished time-drifting loop");
end T;
begin
null;

end Show Time Task;

Code block metadata

Project: Courses.Intro To Ada.Tasking.Show Time
MD5: fel7c902fc127c0132677ea4005ff3f1

Runtime output

Elapsed time 1.035719457 seconds
Cycle # 1

Elapsed time 2.662264927 seconds
Cycle # 2

Elapsed time 4.248919366 seconds
Cycle # 3

Elapsed time 5.800043909 seconds
Cycle # 4

Elapsed time 7.439936613 seconds
Cycle # 5

Finished time-drifting loop

We can see by running the application that we already have a time difference of about
four seconds after three iterations of the loop due to the drift introduced by Computa-
tional Intensive App. Using the delay until statement, however, we're able to avoid
this time drift and have a regular interval of exactly one second:

Listing 13: show_time_task.adb

with Ada.Text I0; use Ada.Text IO;
with Ada.Real Time; use Ada.Real Time;

with Delay Aux Pkg;

procedure Show Time Task is
package Aux renames Delay Aux_Pkg;

task T;

task body T is
: constant Time Span :=
Milliseconds (1000);
Next : Time := Aux.Get Start Time
+ Cycle;

Cnt : Integer := 1;
begin
for I in 1 .. 5 loop
delay until Next;

Aux.Show Elapsed Time;
Aux.Computational Intensive App;
(continues on next page)

152 Chapter 15. Tasking

24
25
26
27
28
29
30
31
32
33

35
36
37
38

Introduction to Ada

(continued from previous page)

-- Calculate next execution time
-- using a cycle of one second
Next := Next + Cycle;

Put Line ("Cycle # "
& Integer'Image (Cnt));

Cnt := Cnt + 1;
end loop;
Put Line ("Finished cycling");
end T;
begin
null;

end Show Time Task;

Code block metadata

Project: Courses.Intro To Ada.Tasking.Show Time
MD5: 1456c0feeeb6def8b370d994c0ab75al5

Runtime output

Elapsed time 1.004439277 seconds
Cycle # 1

Elapsed time 2.003812781 seconds
Cycle # 2

Elapsed time 3.047902067 seconds
Cycle # 3

Elapsed time 4.050966492 seconds
Cycle # 4

Elapsed time 5.000176143 seconds
Cycle # 5

Finished cycling

Now, as we can see by running the application, the delay until statement ensures that the
Computational Intensive App doesn'tdisturb the regularinterval of one second between
iterations.

15.2 Protected objects

When multiple tasks are accessing shared data, corruption of that data may occur. For
example, data may be inconsistent if one task overwrites parts of the information that's
being read by another task at the same time. In order to avoid these kinds of problems and
ensure information is accessed in a coordinated way, we use protected objects.

Protected objects encapsulate data and provide access to that data by means of protected
operations, which may be subprograms or protected entries. Using protected objects en-
sures that data is not corrupted by race conditions or other concurrent access.

© Important

Objects can be protected from concurrent access using Ada tasks. In fact, this was the
only way of protecting objects from concurrent access in Ada 83 (the first version of
the Ada language). However, the use of protected objects is much simpler than using
similar mechanisms implemented using only tasks. Therefore, you should use protected
objects when your main goal is only to protect data.

15.2. Protected objects 153

© ©® N o U A W N R

W W W NN NN NNNNNNREB B B B B B B B 9
N B O © ® N o U A W N P © © ® N 0 U A W N F O

Introduction to Ada

15.2.1 Simple object

You declare a protected object with the protected keyword. The syntax is similar to that
used for packages: you can declare operations (e.g., procedures and functions) in the public
part and data in the private part. The corresponding implementation of the operations is
included in the protected body of the object. For example:

Listing 14: show_protected_objects.adb
with Ada.Text IO0; use Ada.Text IO;

procedure Show Protected Objects is

protected 0Obj is
-- Operations go here (only subprograms)
procedure Set (V : Integer);
function Get return Integer;
private
-- Data goes here
Local : Integer := 0;
end 0bj;

protected body 0bj is
-- procedures can modify the data
procedure Set (V : Integer) is
begin
Local :=V;
end Set;

-- functions cannot modify the data
function Get return Integer is
begin
return Local;
end Get;
end 0bj;

begin
0bj.Set (5);
Put Line ("Number is:
& Integer'Image (Obj.Get));
end Show Protected Objects;

Code block metadata

Project: Courses.Intro To Ada.Tasking.Show Protected Objects
MD5: dd97dd584ba2f13def3c04725d4e48a7

Runtime output

Number is: 5

In this example, we define two operations for Obj: Set and Get. The implementation of
these operationsis in the Obj body. The syntax used for writing these operations is the same
as that for normal procedures and functions. The implementation of protected objects is
straightforward — we simply access and update Local in these subprograms. To call these
operations in the main application, we use prefixed notation, e.g., Obj .Get.

154 Chapter 15. Tasking

© ® N o U A W N e

A A R A DWW W W W W W W W WNNNDNNNNNNNEREBRB B B B B B B
2 W N B O O ®» N 66 00 A W N P O © ©® N 0 U & WN RO © ®©® N 0 0 2 W N H O

Introduction to Ada

15.2.2 Entries

In addition to protected procedures and functions, you can also define protected entry
points. Do this using the entry keyword. Protected entry points allow you to define barri-
ers using the when keyword. Barriers are conditions that must be fulfilled before the entry
can start performing its actual processing — we speak of releasing the barrier when the
condition is fulfilled.

The previous example used procedures and functions to define operations on the protected
objects. However, doing so permits reading protected information (via Obj .Get) before it's
set (via Obj .Set). To allow that to be a defined operation, we specified a default value (0).
Instead, by rewriting Obj .Get using an entry instead of a function, we implement a barrier,
ensuring no task can read the information before it's been set.

The following example implements the barrier for the Obj.Get operation. It also contains
two concurrent subprograms (main task and task T) that try to access the protected object.
Listing 15: show_protected objects_entries.adb

with Ada.Text IO0; use Ada.Text IO;
procedure Show Protected Objects Entries is
protected 0Obj is

procedure Set (V : Integer);
entry Get (V : out Integer);

private

Local : Integer;

Is Set : Boolean := False;
end 0bj;

protected body 0bj is
procedure Set (V : Integer) is
begin
Local :=V;
Is Set := True;
end Set;

entry Get (V : out Integer)
when Is Set is

-- Entry is blocked until the
-- condition is true. The barrier
-- 1s evaluated at call of entries
-- and at exits of procedures and
-- entries. The calling task sleeps
-- until the barrier is released.

begin
V := Local;
Is Set := False;

end Get;

end 0bj;

N : Integer := 0;
task T;

task body T is
begin
Put Line
("Task T will delay for 4 seconds...");
delay 4.0;

Put Line
(continues on next page)

15.2. Protected objects 155

Introduction to Ada

(continued from previous page)

("Task T will set Obj...");
Obj.Set (5);

Put Line
("Task T has just set Obj...");
end T;
begin
Put Line
("Main application will get Obj...");
0bj.Get (N);

Put Line

("Main application has retrieved Obj...");
Put Line

("Number is: " & Integer'Image (N));

end Show Protected Objects Entries;

Code block metadata

Project: Courses.Intro To Ada.Tasking.Show Protected Objects Entries
MD5: c1134445a96700b871fb76c4d6342359

Runtime output

Task T will delay for 4 seconds...
Main application will get Obj...

Task T will set 0Obj...

Task T has just set Obj...

Main application has retrieved 0Obj...
Number is: 5

As we see by running it, the main application waits until the protected object is set (by the
callto Obj .Set in task T) before it reads the information (via Obj.Get). Because a 4-second
delay has been added in task T, the main application is also delayed by 4 seconds. Only
after this delay does task T set the object and release the barrier in 0bj.Get so that the
main application can then resume processing (after the information is retrieved from the
protected object).

15.3 Task and protected types

In the previous examples, we defined single tasks and protected objects. We can, however,
generalize tasks and protected objects using type definitions. This allows us, for example,
to create multiple tasks based on just a single task type.

15.3.1 Task types

A task type is a generalization of a task. The declaration is similar to simple tasks: you
replace task with task type. The difference between simple tasks and task types is that
task types don't create actual tasks that automatically start. Instead, a task object decla-
ration is needed. This is exactly the way normal variables and types work: objects are only
created by variable definitions, not type definitions.

To illustrate this, we repeat our first example:

156 Chapter 15. Tasking

©W N U A W N e

R e
N = O

© @ N o U A W N e

i <
A W N B O

Introduction to Ada

Listing 16: show_simple_task.adb
with Ada.Text IO0; use Ada.Text IO;

procedure Show Simple Task is
task T;

task body T is
begin
Put Line ("In task T");
end T;
begin
Put Line ("In main");
end Show Simple Task;

Code block metadata

Project: Courses.Intro To Ada.Tasking.Show Simple Task
MD5: bl7d9b35b4b2b53bc59776749e1lbe219

Runtime output

In task T
In main

We now rewrite it by replacing task T with task type TT. We declare a task (A Task)
based on the task type TT after its definition:

Listing 17: show_simple_task type.adb
with Ada.Text I0; use Ada.Text IO;

procedure Show Simple Task Type is
task type TT;

task body TT is

begin
Put Line ("In task type TT");
end TT;
A Task : TT;
begin

Put Line ("In main");
end Show Simple Task Type;

Code block metadata

Project: Courses.Intro To Ada.Tasking.Show Simple Task Type
MD5: 24c26dcbbabf5c54f0a7d47c3c0da728

Runtime output

In task type TT
In main

We can extend this example and create an array of tasks. Since we're using the same
syntax as for variable declarations, we use a similar syntax for task types: array (<>) of
Task Type. Also, we can pass information to the individual tasks by defining a Start entry.
Here's the updated example:

15.3. Task and protected types 157

W @ N U A W N e

NN N N NN B B B B BB R el e
g F W N B O © ® N O U A W N B O

Introduction to Ada

Listing 18: show_task_type_array.adb
with Ada.Text IO0; use Ada.Text IO;

procedure Show Task Type Array is
task type TT is
entry Start (N : Integer);
end TT;

task body TT is

Task N : Integer;
begin

accept Start (N : Integer) do

Task N := N;
end Start;
Put Line ("In task T: "
& Integer'Image (Task N));

end TT;

My Tasks : array (1 .. 5) of TT;
begin
Put Line ("In main");

for I in My Tasks'Range loop
My Tasks (I).Start (I);
end loop;
end Show Task Type Array;

Code block metadata

Project: Courses.Intro To Ada.Tasking.Show Task Type Array
MD5: bba072dfc52fb2bfbef6e7b9f8191464

Runtime output

In main

In task T: 1

In task T: 2

In task T: 3

In task T: 4
T: 5

In task

In this example, we're declaring five tasks in the array My Tasks. We pass the array index
to the individual tasks in the entry point (Start). After the synchronization between the
individual subtasks and the main task, each subtask calls Put_Line concurrently.

15.3.2 Protected types

A protected type is a generalization of a protected object. The declaration is similar to
that for protected objects: you replace protected with protected type. Like task types,
protected types require an object declaration to create actual objects. Again, this is sim-
ilar to variable declarations and allows for creating arrays (or other composite objects) of
protected objects.

We can reuse a previous example and rewrite it to use a protected type:

Listing 19: show_protected_object type.adb
with Ada.Text IO; use Ada.Text IO;

procedure Show Protected Object Type is
(continues on next page)

158 Chapter 15. Tasking

© ©® N o U A

Introduction to Ada

(continued from previous page)

protected type P_Obj_Type is
procedure Set (V : Integer);
function Get return Integer;

private
Local : Integer := 0;

end P _Obj Type;

protected body P Obj Type is
procedure Set (V : Integer) is
begin
Local :=V;
end Set;

function Get return Integer is
begin
return Local;
end Get;
end P _Obj Type;

Obj : P_0bj Type;
begin
0bj.Set (5);
Put Line ("Number is:
& Integer'Image (Obj.Get));
end Show Protected Object Type;

Code block metadata

Project: Courses.Intro To Ada.Tasking.Show Protected Object Type
MD5: c50321e55afef0d72f263fee0669e55f

Runtime output

Number is: 5

In this example, instead of directly defining the protected object Obj, we first define a
protected type P_0bj Type and then declare Obj as an object of that protected type. Note
that the main application hasn't changed: we still use Obj.Set and Obj.Get to access the
protected object, just like in the original example.

15.3. Task and protected types 159

Introduction to Ada

160 Chapter 15. Tasking

© ©® N o U A W N R

e e
o 0 A W N H O

CHAPTER
SIXTEEN

DESIGN BY CONTRACTS

Contracts are used in programming to codify expectations. Parameter modes of a subpro-
gram can be viewed as a simple form of contracts. When the specification of subprogram Op
declares a parameter using in mode, the caller of Op knows that the in argument won't be
changed by Op. In other words, the caller expects that Op doesn't modify the argument it's
providing, but just reads the information stored in the argument. Constraints and subtypes
are other examples of contracts. In general, these specifications improve the consistency
of the application.

Design-by-contract programming refers to techniques that include pre- and postconditions,
subtype predicates, and type invariants. We study those topics in this chapter.

16.1 Pre- and postconditions

Pre- and postconditions provide expectations regarding input and output parameters of
subprograms and return value of functions. If we say that certain requirements must be met
before calling a subprogram Op, those are preconditions. Similarly, if certain requirements
must be met after a call to the subprogram 0Op, those are postconditions. We can think
of preconditions and postconditions as promises between the subprogram caller and the
callee: a precondition is a promise from the caller to the callee, and a postcondition is a
promise in the other direction.

Pre- and postconditions are specified using an aspect clause in the subprogram declara-
tion. Awith Pre => <condition> clause specifies a precondition and a with Post =>
<condition> clause specifies a postcondition.

The following code shows an example of preconditions:

Listing 1: show_simple_precondition.adb

procedure Show Simple Precondition is

procedure DB Entry (Name : String;
Age : Natural)
with Pre => Name'lLength > 0
is
begin
-- Missing implementation
null;
end DB Entry;
begin
DB Entry ("John", 30);

-- Precondition will fail!

DB Entry ("", 21);
end Show Simple Precondition;

Code block metadata

l61

© ©® N o U A W N R

P e L <
© @ N o U A W N B O

Introduction to Ada

Project: Courses.Intro To Ada.Contracts.Show Simple Precondition
MD5: 87b6e080555603111801a0fcd2469acd

Runtime output

raised ADA.ASSERTIONS.ASSERTION ERROR : failed precondition from show simple
~precondition.adb:5

In this example, we want to prevent the name field in our database from containing an
empty string. We implement this requirement by using a precondition requiring that the
length of the string used for the Name parameter of the DB_Entry procedure is greater than
zero. If the DB_Entry procedure is called with an empty string for the Name parameter, the
call will fail because the precondition is not met.

©® In the GNAT toolchain

GNAT handles pre- and postconditions by generating runtime assertions for them. By
default, however, assertions aren't enabled. Therefore, in order to check pre- and post-
conditions at runtime, you need to enable assertions by using the -gnata switch.

Before we get to our next example, let's briefly discuss quantified expressions, which are
quite useful in concisely writing pre- and postconditions. Quantified expressions return a
Boolean value indicating whether elements of an array or container match the expected
condition. They have the form: (for all I in A'Range => <condition on A(I)>, where
Ais an array and I is an index. Quantified expressions using for all check whether the
condition is true for every element. For example:

(for all I in A'Range => A (I) = 0)

This quantified expression is only true when all elements of the array A have a value of zero.

Another kind of quantified expressions uses for some. The form looks similar: (for some
I in A'Range => <condition on A(I)>. However, in this case the qualified expression
tests whether the condition is true only on some elements (hence the name) instead of all
elements.

We illustrate postconditions using the following example:

Listing 2: show_simple_postcondition.adb
with Ada.Text IO; use Ada.Text IO;

procedure Show Simple Postcondition is
type Int 8 is range -2 ** 7 ., 2 *k 7 - 1;

type Int_8 Array is
array (Integer range <>) of Int 8;

function Square (A : Int 8) return Int 8 is
(A * A)
with Post => (if abs A in 0 | 1
then Square'Result = abs A
else Square'Result > A);

procedure Square (A : in out Int 8 Array)
with Post => (for all I in A'Range =>
A (I) = A'0Old (I) *
A'Old (I))
(continues on next page)

162 Chapter 16. Design by contracts

20
21
22
23
24
25
26
27

29
30
31
32
33
34
35
36
37
38

40

1
2
3

Introduction to Ada

(continued from previous page)
is
begin
for V of A loop
V := Square (V);
end loop;
end Square;

V : Int 8 Array := (-2, -1, 0, 1, 10, 11);
begin
for E of V loop
Put _Line ("Original: "
& Int 8'Image (E));
end loop;
New Line;

Square (V);
for E of V loop
Put Line ("Square: "
& Int 8'Image (E));
end loop;
end Show Simple Postcondition;

Code block metadata

Project: Courses.Intro To Ada.Contracts.Show Simple Postcondition
MD5: b9bae9fe0@9cefcbe6769ad9cd6739e2a

Runtime output

Original: -2
Original: -1
Original: ©
Original: 1

Original: 10
Original: 11

Square: 4
Square: 1
Square: 0
Square: 1
Square: 100
Square: 121

We declare a signed 8-bit type Int 8 and an array of that type (Int 8 Array). We want to
ensure each element of the array is squared after calling the procedure Square for an object
of the Int 8 Array type. We do this with a postcondition using a for all expression. This
postcondition also uses the '0ld attribute to refer to the original value of the parameter
(before the call).

We also want to ensure that the result of calls to the Square function for the Int 8 type are
greater than the input to that call. To do that, we write a postcondition using the 'Result
attribute of the function and comparing it to the input value.

We can use both pre- and postconditions in the declaration of a single subprogram. For
example:

Listing 3: show_simple_contract.adb
with Ada.Text IO; use Ada.Text IO;

procedure Show Simple Contract is
(continues on next page)

16.1. Pre- and postconditions 163

© ® N o U A

11
12
13
14
15
16
17

19
20
21
22
23
24
25
26
27
28

Introduction to Ada

(continued from previous page)
type Int_8 is range -2 ** 7 .. 2 *¢ 7 - 1;

function Square (A : Int 8) return Int 8 is
(A * A)
with
Pre => (Integer'Size >= Int 8'Size * 2
and Integer (A) *
Integer (A) <=
Integer (Int 8'Last)),
Post => (if abs A in 0 | 1
then Square'Result = abs A
else Square'Result > A);

V : Int 8;
begin
V := Square (11);
Put Line ("Square of 11 is
& Int _8'Image (V));

-- Precondition will fail...
V := Square (12);
Put Line ("Square of 12 is "
& Int 8'Image (V));
end Show Simple Contract;

Code block metadata

Project: Courses.Intro To Ada.Contracts.Show Simple Contract
MD5: 1d928dd100704907c858562155f90ee?2

Runtime output

Square of 11 is 121

raised ADA.ASSERTIONS.ASSERTION ERROR : failed precondition from show simple
~contract.adb:10

In this example, we want to ensure that the input value of calls to the Square function for
the Int 8 type won't cause overflow in that function. We do this by converting the input
value to the Integer type, which is used for the temporary calculation, and check if the
result is in the appropriate range for the Int 8 type. We have the same postcondition in
this example as in the previous one.

16.2 Predicates

Predicates specify expectations regarding types. They're similar to pre- and postconditions,
but apply to types instead of subprograms. Their conditions are checked for each object of a
given type, which allows verifying that an object of type T is conformant to the requirements
of its type.

There are two kinds of predicates: static and dynamic. In simple terms, static predicates
are used to check objects at compile-time, while dynamic predicates are used for checks
at run time. Normally, static predicates are used for scalar types and dynamic predicates
for the more complex types.

Static and dynamic predicates are specified using the following clauses, respectively:
* with Static Predicate => <property>

* with Dynamic Predicate => <property>

164 Chapter 16. Design by contracts

© @ N U A W N R

U oy LU LU U LU LR A R A BN A R B BN DWW WW W W W WW WNNNDNNNNWNNNEREBRBRHBR B B B B B
© ® N o 0 A W N H O © ® N O 00 B W N P O OV ® N 60 0 A W NP O © ©® N 00 U & WNRO O G N o 00 Ao W N B O

Introduction to Ada

Let's use the following example to illustrate dynamic predicates:

Listing 4: show_dynamic_predicate_courses.adb

with Ada.Calendar; use Ada.Calendar;

with Ada.Containers.Vectors;
with Ada.Strings.Unbounded;
use Ada.Strings.Unbounded;
procedure Show Dynamic Predicate Courses is
package Courses is
type Course_Container is private;
type Course is record
Name : Unbounded String;
Start Date : Time;
End Date : Time;
end record
with Dynamic_ Predicate =>
Course.Start Date <= Course.End Date;
procedure Add (CC : in out Course_ Container;
c : Course);
private
package Course_Vectors is new
Ada.Containers.\Vectors
(Index Type => Natural,
Element Type => Course);
type Course_Container is record
V : Course Vectors.Vector;
end record;
end Courses;
package body Courses is
procedure Add (CC : in out Course Container;
cC : Course) 1is
begin
CC.V.Append (C);
end Add;
end Courses;
use Courses;
CC : Course Container;
begin
Add (CC,
Course' (
Name =

To _Unbounded String
("Intro to Photography"),
Start Date =>
Time Of (2018, 5, 1),
End Date =>
Time Of (2018, 5, 10)));

-- This should trigger an error in the
-- dynamic predicate check
Add (CC,

Course’ (

(continues on next page)

16.2. Predicates

60
61
62
63
64
65
66
67
68

Introduction to Ada

(continued from previous page)

Name =>

To_Unbounded String

("Intro to Video Recording"),

Start Date =>

Time Of (2019, 5, 1),
End Date =>

Time Of (2018, 5, 10)));

end Show Dynamic Predicate Courses;

Code block metadata

Project: Courses.Intro To Ada.Contracts.Show Dynamic Predicate Courses
MD5: 8bd6539e72995fececfcdf9666ffdO4f

Runtime output

raised ADA.ASSERTIONS.ASSERTION ERROR : Dynamic Predicate failed at show dynamic
~predicate courses.adb:59

In this example, the package Courses defines a type Course and a type Course_Container,
an object of which contains all courses. We want to ensure that the dates of each course
are consistent, specifically that the start date is no later than the end date. To enforce this
rule, we declare a dynamic predicate for the Course type that performs the check for each
object. The predicate uses the type name where a variable of that type would normally be
used: this is a reference to the instance of the object being tested.

Note that the example above makes use of unbounded strings and dates. Both types are
available in Ada's standard library. Please refer to the following sections for more informa-
tion about:

* the unbounded string type (Unbounded String): Unbounded Strings (page 243) sec-
tion;

* dates and times: Dates & Times (page 227) section.

Static predicates, as mentioned above, are mostly used for scalar types and checked during
compilation. They're particularly useful for representing non-contiguous elements of an
enumeration. A classic example is a list of week days:

type Week is (Mon, Tue, Wed, Thu, Fri, Sat, Sun);

We can easily create a sub-list of work days in the week by specifying a subtype with a
range based on Week. For example:

subtype Work_Week is Week range Mon .. Fri;

Ranges in Ada can only be specified as contiguous lists: they don't allow us to pick specific
days. However, we may want to create a list containing just the first, middle and last day
of the work week. To do that, we use a static predicate:

subtype Check_Days is Work Week
with Static Predicate =>
Check Days in Mon | Wed | Fri;

Let's look at a complete example:

166 Chapter 16. Design by contracts

© @ N o U A W N e

U UL LU LU U VLA R A DR B A B A DN DA W W W W W W W W W WNNNNNNNNNN®RER®HR B B B B B B
© ® N 6 0 A W N B O O ® N 00 00 R W N R O O ® N O U B~ WNRPL O W ® N O A WN B O O ® N o U A W N BB O

Introduction to Ada

Listing 5: show_predicates.adb
with Ada.Text IO; use Ada.Text IO;

procedure Show Predicates is

type Week is (Mon, Tue, Wed, Thu,
Fri, Sat, Sun);

subtype Work_Week is Week range Mon .. Fri;

subtype Test_Days is Work Week
with Static Predicate =>
Test Days in Mon | Wed | Fri;

type Tests_Week is array (Week) of Natural
with Dynamic Predicate =>
(for all I in Tests Week'Range =>
(case I is

when Test Days =>
Tests Week (I) > 0,

when others =>
Tests Week (I) = 0));

Num Tests : Tests Week :=
(Mon => 3, Tue => 0,
Wed => 4, Thu => 0,
Fri => 2, Sat => 0,
Sun => 0);

procedure Display Tests (N : Tests Week) is
begin
for I in Test Days loop
Put Line ("# tests on "
& Test Days'Image (I)
& " ="
& Integer'Image (N (I)));
end loop;
end Display Tests;

begin
Display Tests (Num Tests);

-- Assigning non-conformant values to

-- Individual elements of the Tests Week
-- type does not trigger a predicate

-- check:

Num_Tests (Tue) := 2;

-- However, assignments with the "complete"
-- Tests Week type trigger a predicate
-- check. For example:

-- Num Tests := (others => 0);

-- Also, calling any subprogram with
-- parameters of Tests Week type
-- triggers a predicate check. Therefore,
-- the following line will fail:
Display Tests (Num Tests);
end Show Predicates;

Code block metadata

16.2. Predicates

167

Introduction to Ada

Project: Courses.Intro To Ada.Contracts.Show Predicates
MD5: 126c47033fc67fc8b6d716479205e752

Runtime output

tests on MON => 3
tests on WED => 4
tests on FRI => 2

raised ADA.ASSERTIONS.ASSERTION ERROR : Dynamic Predicate failed at show
~predicates.adb:58

Here we have an application that wants to perform tests only on three days of the work
week. These days are specified in the Test Days subtype. We want to track the number
of tests that occur each day. We declare the type Tests Week as an array, an object of
which will contain the number of tests done each day. According to our requirements,
these tests should happen only in the aforementioned three days; on other days, no tests
should be performed. This requirement is implemented with a dynamic predicate of the
type Tests Week. Finally, the actual information about these tests is stored in the array
Num Tests, which is an instance of the Tests Week type.

The dynamic predicate of the Tests Week type is verified during the initialization of
Num Tests. If we have a non-conformant value there, the check will fail. However, as
we can see in our example, individual assignments to elements of the array do not trigger
a check. We can't check for consistency at this point because the initialization of the a
complex data structure (such as arrays or records) may not be performed with a single as-
signment. However, as soon as the object is passed as an argument to a subprogram, the
dynamic predicate is checked because the subprogram requires the object to be consistent.
This happens in the last call to Display Tests in our example. Here, the predicate check
fails because the previous assignment has a non-conformant value.

16.3 Type invariants

Type invariants are another way of specifying expectations regarding types. While predi-
cates are used for non-private types, type invariants are used exclusively to define expec-
tations about private types. If a type T from a package P has a type invariant, the results
of operations on objects of type T are always consistent with that invariant.

Type invariants are specified with a with Type Invariant => <property> clause. Like
predicates, the property defines a condition that allows us to check if an object of type T
is conformant to its requirements. In this sense, type invariants can be viewed as a sort of
predicate for private types. However, there are some differences in terms of checks. The
following table summarizes the differences:

Element Subprogram parameter checks Assignment checks
Predi- On all in and out parameters On assighments and ex-
cates plicit initializations

Type in- On out parameters returned from subprograms On all initializations
variants declared in the same public scope

We could rewrite our previous example and replace dynamic predicates by type invariants.
It would look like this:

168 Chapter 16. Design by contracts

© @ N U A W N e

o o U u U U U U U U U A A B D B B A DDA DWW W W W W W W W WNNNDNNNNNINNERERBR®BRB B B B B
H O © ® N 6 0 A W N B O © ® N 00 00 B W N RFP O © ® N O 00 & W N P O ©®W ® N 60 0 & WN B O © ® N 6 U A W N B O

Introduction to Ada

Listing 6: show_type_invariant.adb
with Ada.Text I0; use Ada.Text I0;
with Ada.Calendar; use Ada.Calendar;

with Ada.Containers.Vectors;

with Ada.Strings.Unbounded;
use Ada.Strings.Unbounded;

procedure Show Type Invariant is

package Courses is
type Course is private
with Type Invariant => Check (Course);

type Course_Container is private;

procedure Add (CC : in out Course Container;
c : Course);

function Init
(Name : String;
Start Date, End Date : Time)
return Course;

function Check (C : Course)
return Boolean;

private
type Course is record
Name : Unbounded String;
Start Date : Time;
End Date : Time;

end record;

function Check (C : Course)
return Boolean is
(C.Start_Date <= C.End Date);

package Course Vectors is new
Ada.Containers.Vectors

(Index Type => Natural,

Element Type => Course);

type Course_Container is record
V : Course Vectors.Vector;
end record;
end Courses;

package body Courses is
procedure Add (CC : in out Course Container;

€ ¢ Course) 1is
begin
CC.V.Append (C);
end Add;

function Init
(Name : String;
Start Date, End Date : Time)
return Course is

begin
return

(continues on next page)

16.3. Type invariants

169

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90

Introduction to Ada

Course' (Name =
To_Unbounded String (Name),
Start Date => Start Date,
End Date => End Date);
end Init;
end Courses;

use Courses;

CC : Course Container;

begin
Add (CC,
Init (Name =>
"Intro to Photography",
Start Date =>
Time Of (2018, 5, 1),
End Date =>
Time Of (2018, 5, 10)));
-- This should trigger an error in the
-- type-invariant check
Add (CC,

Init (Name =
"Intro to Video Recording",
Start Date =>
Time Of (2019, 5, 1),
End Date =>
Time Of (2018, 5, 10)));
end Show Type Invariant;

Code block metadata

Project: Courses.Intro To Ada.Contracts.Show Type Invariant
MD5: c6ef863da94285f927dd106645af8650

Runtime output

raised ADA.ASSERTIONS.ASSERTION ERROR
~adb:13

(continued from previous page)

: failed invariant from show type invariant.

The major difference is that the Course type was a visible (public) type of the Courses
package in the previous example, but in this example is a private type.

170

Chapter 16. Design by contracts

©® N O U A W N R

CHAPTER
SEVENTEEN

INTERFACING WITH C

Ada allows us to interface with code in many languages, including C and C++. This section
discusses how to interface with C.

17.1 Multi-language project

By default, when using gprbuild we only compile Ada source files. To compile C files as
well, we need to modify the project file used by gprbuild. We use the Languages entry, as
in the following example:

project Multilang is
for Languages use ("ada", "c");

for Source Dirs use ("src");
for Main use ("main.adb");
for Object Dir use "obj";

end Multilang;

17.2 Type convention

To interface with data types declared in a C application, you specify the Convention aspect
on the corresponding Ada type declaration. In the following example, we interface with the
C_Enum enumeration declared in a C source file:

Listing 1: show _c_enum.adb

procedure Show C Enum is

type C_Enum is (A, B, ()
with Convention => C;
-- Use C convention for C Enum
begin
null;
end Show C Enum;

Code block metadata

Project: Courses.Intro To Ada.Interfacing With C.Ada C Enum
MD5: al4d7d981fd7d6d806cf3c55f35e19c8

To interface with C's built-in types, we use the Interfaces.C package, which contains most
of the type definitions we need. For example:

171

W @ N U A W N e

e e
U A W N B O

N o U A W N &

Introduction to Ada

Listing 2: show_c_struct.adb

with Interfaces.C; use Interfaces.C;
procedure Show C Struct is

type c_struct is record

a : int;

b : long;

C : unsigned;
d : double;

end record
with Convention => C;

begin
null;
end Show C Struct;

Code block metadata

Project: Courses.Intro To Ada.Interfacing With C.Ada C Struct
MD5: dda4d3f8e4ddf5c5138a990a9a8ac427

Here, we're interfacing with a C struct (C_Struct) and using the corresponding data types
in C (int, long, unsigned and double). This is the declaration in C:

Listing 3: c_struct.h

struct c_struct

{ .
int a;
long b;
unsigned C;
double d;
+;

Code block metadata

Project: Courses.Intro To Ada.Interfacing With C.Ada C Struct
MD5: 58709b6a9%eea2606d7ecOaacaa749ff

17.3 Foreign subprograms

17.3.1 Calling C subprograms in Ada

We use a similar approach when interfacing with subprograms written in C. Consider the
following declaration in the C header file:

Listing 4: my_func.h

int my func (int a);

Code block metadata

Project: Courses.Intro To Ada.Interfacing With C.Ada C Func
MD5: 37b9d7bab668f7ec83c2b27ee33637937

Here's the corresponding C definition:

172 Chapter 17. Interfacing with C

o U A W N

© ® N o U A W N R

e e e
©® N o U A W N R O

© ©® N o U A W N K

e
2 W N = O

Introduction to Ada

Listing 5: my_func.c

#include "my func.h"

int my func (int a)

{
}

return a * 2;

Code block metadata

Project: Courses.Intro To Ada.Interfacing With C.Ada C Func
MD5: 284b1639cb393fcl4ed196d78429f3ba

We can interface this code in Ada using the Import aspect. For example:

Listing 6: show_c_func.adb

with Interfaces.C; use Interfaces.C;
with Ada.Text I0; use Ada.Text IO0;

procedure Show C Func is

function my func (a : int) return int

with
Import => True,
Convention = C;

-- Imports function 'my func' from C.
-- You can now call it from Ada.

V : int;
begin

V :=my func (2);

Put Line ("Result is " & int'Image (V));
end Show C Func;

Code block metadata

Project: Courses.Intro To Ada.Interfacing With C.Ada C Func
MD5: 6c5d85cldebdeaat42946eacf413dfd2

If you want, you can use a different subprogram name in the Ada code. For example, we

could call the C function Get Value:

Listing 7: show_c_func.adb

with Interfaces.C; use Interfaces.(C;
with Ada.Text I0; use Ada.Text I0;

procedure Show C Func is

function Get Value (a : int) return int

with
Import => True,
Convention = (C,

External Name => "my func";

-- Imports function 'my func' from C and
-- renames it to 'Get Value'

(continues on next page)

17.3.

Foreign subprograms 173

15
16
17
18
19

© ©® N o U A W N K

e
= o

©® N O U A W N R

Introduction to Ada

(continued from previous page)
V : int;
begin
V := Get Value (2);
Put Line ("Result is " & int'Image (V));
end Show C Func;
Code block metadata

Project: Courses.Intro To Ada.Interfacing With C.Ada C Func
MD5: 856b4d99dfaa6946fb45971254fd2f97

17.3.2 Calling Ada subprograms in C

You can also call Ada subprograms from C applications. You do this with the Export aspect.
For example:

Listing 8: c_api.ads
with Interfaces.C; use Interfaces.C;

package C_API is

function My Func (a : int) return int

with
Export => True,
Convention = C,

External Name => "my func";

end C API;

Code block metadata

Project: Courses.Intro To Ada.Interfacing With C.C Ada Func
MD5: 0Oaad4ec29fc551e710900e2ee7d96bc9

This is the corresponding body that implements that function:
Listing 9: c_api.adb
package body C_API is
function My Func (a : int) return int is
begin
return a * 2;

end My Func;

end C API;

Code block metadata

Project: Courses.Intro To Ada.Interfacing With C.C Ada Func
MD5: 2b999ab431bbclee223a654ad84b8248

On the C side, we do the same as we would if the function were written in C: simply declare
it using the extern keyword. For example:

Listing 10: main.c

#include <stdio. h>

(continues on next page)

174 Chapter 17. Interfacing with C

© © N o u &~ W

10
11
12

W @ N U A W N e

-
o

Introduction to Ada

(continued from previous page)
extern int my func (int a);

int main (int argc, char **argv) {
int v = my func(2);
printf("Result is %d\n", v);

return 0;

}

Code block metadata

Project: Courses.Intro To Ada.Interfacing With C.C _Ada Func
MD5: 69301036be9belbed45895c2a86bc352

17.4 Foreign variables

17.4.1 Using C global variables in Ada

To use global variables from C code, we use the same method as subprograms: we specify
the Import and Convention aspects for each variable we want to import.

Let's reuse an example from the previous section. We'll add a global variable (func_cnt)
to count the number of times the function (my func) is called:

Listing 11: test.h

extern int func_cnt;
int my func (int a);

Code block metadata

Project: Courses.Intro To Ada.Interfacing With C.Ada C Vars
MD5: 11ba8f7a72ce7058571994870a02b052

The variable is declared in the C file and incremented in my_ func:

Listing 12: test.c
#include "test.h"
int func_cnt = 0;
int my func (int a)
{

func_cnt++;

return a * 2;

}

Code block metadata

Project: Courses.Intro To Ada.Interfacing With C.Ada C Vars
MD5: 23631537cb877a03d1243c94cb7b48e8

In the Ada application, we just reference the foreign variable:

17.4. Foreign variables 175

Introduction to Ada

Listing 13: show_c_func.adb

with Interfaces.C; use Interfaces.C;

1

> with Ada.Text I0; wuse Ada.Text IO;
3

4« procedure Show C Func is

5

6 function my func (a : int) return int
7 with

8 Import => True,

9 Convention => C;

10

11 V : int;

12

13 func_cnt : int

14 with

15 Import => True,

16 Convention = C;

17 -- We can access the func _cnt variable
18 -- from test.c

19

20 begin

21 V :=my func (1);

22 V :=my func (2);

23 V :=my func (3);

24

25 Put Line ("Result is "

26 & int'Image (V));

27

28 Put Line ("Function was called "
29 & int'Image (func_cnt)
30 & " times");

;1 end Show C Func;

Code block metadata

Project: Courses.Intro To Ada.Interfacing With C.Ada C Vars
MD5: cf64a9dfbc6be853bal9729fe55f0ba4d

As we see by running the application, the value of the counter is the number of times
my func was called.

We can use the External Name aspect to give a different name for the variable in the Ada
application in the same way we do for subprograms.

17.4.2 Using Ada variables in C

You can also use variables declared in Ada files in C applications. In the same way as we
did for subprograms, you do this with the Export aspect.

Let's reuse a past example and add a counter, as in the previous example, but this time
have the counter incremented in Ada code:
Listing 14: c_api.ads

with Interfaces.C; use Interfaces.C;

1

2

3 package C_API is

4

5 func_cnt : int := 0
6 with

(continues on next page)

176 Chapter 17. Interfacing with C

W @ N U A W N e

© O N o U A W N e

[T N B T S S ~ B B < R
P O © ® W o U A W N = O

Introduction to Ada

(continued from previous page)
Export => True,
Convention => C;

function My Func (a2 : int) return int

with
Export => True,
Convention = (C,

External Name => "my func";
end C API;

Code block metadata

Project: Courses.Intro To Ada.Interfacing With C.C Ada Vars
MD5: fc118cddd797b669d2c68e57f90f69b2

The variable is then incremented in My Func:
Listing 15: c_api.adb
package body C API is
function My Func (a : int) return int is
begin
func _cnt := func _cnt + 1;
return a * 2;
end My Func;
end C API;
Code block metadata

Project: Courses.Intro To Ada.Interfacing With C.C Ada Vars
MD5: adff5f3088da8b0dd853f1fb8ble204f

In the C application, we just need to declare the variable and use it:

Listing 16: main.c
#include <stdio.h>
extern int my func (int a);
extern int func_cnt;
int main (int argc, char **argv) {
int v;
v = my_ func(1l)

Y, my func(2);
v = my func(3);

printf("Result is %d\n", v);

printf("Function was called %d times\n",
func_cnt);

return 0;

}

Code block metadata

17.4. Foreign variables 177

© ©® N o U A W N R

e <
A W N = O

Introduction to Ada

Project: Courses.Intro To Ada.Interfacing With C.C Ada Vars
MD5: 07fb3fbadb8ed4c0543fbfd7b5ef5c57

Again, by running the application, we see that the value from the counter is the number of

times that my func was called.

17.5 Generating bindings

In the examples above, we manually added aspects to our Ada code to correspond to the C
source-code we're interfacing with. This is called creating a binding. We can automate this
process by using the Ada spec dump compiler option: -fdump-ada-spec. We illustrate this

by revisiting our previous example.

This was our C header file:

Listing 17: test.h

extern int func cnt;
int my func (int a);

Code block metadata

Project: Courses.Intro To Ada.Interfacing With C.C Binds
MD5: 11ba8f7a72ce7058571994870a02b052

To create Ada bindings, we'll call the compiler like this:

gcc -c -fdump-ada-spec -C ./test.h
The result is an Ada spec file called test h.ads:

Listing 18: test_h.ads

pragma Ada 2005;
pragma Style Checks (0ff);

with Interfaces.C; use Interfaces.C;
package test_h is

func_cnt : aliased int; -- ./test.h:3
pragma Import (C, func _cnt, "func cnt");

function my func (argl : int) return int; -- ./test.h:5
pragma Import (C, my func, "my func");

end test h;

Code block metadata

Project: Courses.Intro To Ada.Interfacing With C.C Binds
MD5: 8dl8aeae72dba3a9ab4f9f3943fab839

Now we simply refer to this test h package in our Ada application:

Listing 19: show_c_func.adb

with Interfaces.C; use Interfaces.C;
with Ada.Text I0; use Ada.Text I0;

(continues on next page)

178 Chapter 17.

Interfacing with C

© © N o u &~ W

oA W N e

A W N =

Introduction to Ada

(continued from previous page)
with test h; use test h;

procedure Show C Func is

V : int;

begin
V :=my func (1);
V :=my func (2);
V :=my func (3);

Put Line ("Result is "
& int'Image (V));

Put Line ("Function was called "
& int'Image (func_cnt)
& " times");
end Show C Func;
Code block metadata

Project: Courses.Intro To Ada.Interfacing With C.C Binds
MD5: 8a07aae87b9f36c3fce84b75e8388933

You can specify the name of the parent unit for the bindings you're creating as the operand
to fdump-ada-spec:

gcc -c -fdump-ada-spec -fada-spec-parent=Ext C Code -C ./test.h
This creates the file ext ¢ code-test h.ads:

Listing 20: ext_c_code-test_h.ads
package Ext _C Code.test h is

-- automatic generated bindings...

end Ext C Code.test h;

Code block metadata

Project: Courses.Intro To Ada.Interfacing With C.C Binds 2
MD5: 3bd4087edffl45a70d2a6db8543859ad

17.5.1 Adapting bindings

The compiler does the best it can when creating bindings for a C header file. However,
sometimes it has to guess about the translation and the generated bindings don't always
match our expectations. For example, this can happen when creating bindings for functions
that have pointers as arguments. In this case, the compiler may use System.Address as
the type of one or more pointers. Although this approach works fine (as we'll see later),
this is usually not how a human would interpret the C header file. The following example
illustrates this issue.

Let's start with this C header file:

Listing 21: test.h

struct test;
struct test * test create(void);

(continues on next page)

17.5. Generating bindings 179

© @ N o u

10
11
12
13
14
15

© ® N o U A W N R

AW W W W W W W W W W N NNNNNNNDNNN®KRERHRB B B B B BB
© © ® N o6 U A W N B © © ® N 0 U & W N B O © ©® N 0 0 & W N = O

Introduction to Ada

(continued from previous page)

void test destroy(struct test *t);
void test reset(struct test *t);

void test set name(struct test *t,
char *name) ;

void test set address(struct test *t,
char *address) ;

void test display(const struct test *t);

Code block metadata

Project: Courses.Intro To Ada.Interfacing With C.C Binds 3
MD5: af642d9ea995bf01f13f8ff41bb0f4f6

And the corresponding C implementation:

Listing 22: test.c

#include <stdlib. h>
#include <string.h>
#include <stdio. h>

#include "test.h"

struct test {
char name[80];
char address[120];
I

static size t
strlcpy_stat(char *dst,
const char *src,
size t dstsize)
size_t len = strlen(src);
if (dstsize) {
size_ t bl = (len < dstsize-1 ?
len : dstsize-1);
((char*)memcpy(dst, src, bl))[bl] = 0;

}

return len;
}
struct test * test create(void)
{

return malloc (sizeof (struct test));
}
void test destroy(struct test *t)
{

if (t !'= NULL) {

free(t);

}
}
void test reset(struct test *t)
{

t->name[0] = '\0';

(continues on next page)

180 Chapter 17. Interfacing with C

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

© ©® N o U A W N K

I N s T e O < =
B O © ® N o U & W N ~ O

Introduction to Ada

}

(continued from previous page)
t->address[0] = '\0';

void test set name(struct test *t,

{

}

char *name)

strilcpy_stat(t->name,
name,
sizeof(t->name));

void test set address(struct test *t,

{

}

char *address)

strlcpy stat(t->address,
address,
sizeof(t->address));

void test display(const struct test *t)

{

}

printf(“Name: %s\n", t->name);
printf("Address: %s\n", t->address);

Code block metadata

Project: Courses.Intro To Ada.Interfacing With C.C Binds 3
MD5: 32652eb76a2d92212609680d64e5687d3

Next, we'll create our bindings:

gcc -c -fdump-ada-spec -C ./test.h

This creates the following specification in test h.ads:

Listing 23: test h.ads

pragma Ada 2005;
pragma Style Checks (0ff);

with Interfaces.C; use Interfaces.C;
with System;
with Interfaces.C.Strings;

package test _h is

-- Skipped empty struct test

function test create return System.Address; -- ./test.h:5
pragma Import (C, test create, "test create");

procedure test destroy (argl : System.Address); -- ./test.h:7
pragma Import (C, test destroy, "test destroy");

procedure test reset (argl : System.Address); -- ./test.h:9
pragma Import (C, test reset, "test reset");

procedure test set name (argl : System.Address; arg2 : Interfaces.C.Strings.

~chars ptr); -- ./test.h:11

pragma Import (C, test set name, "test set name");
(continues on next page)

17.5. Generating bindings 181

©W @ N U A W N e

NN NN NN NNNN B B B B R R E e e e
© ® N o U B W N B O L ® N O U A~ W N B O

Introduction to Ada

(continued from previous page)

procedure test set address (argl : System.Address; arg2 : Interfaces.C.Strings.
~chars ptr); -- ./test.h:13
pragma Import (C, test set address, "test set address");

procedure test display (argl : System.Address); -- ./test.h:15
pragma Import (C, test display, "test display");

end test h;

Code block metadata

Project: Courses.Intro To Ada.Interfacing With C.C Binds 3
MD5: 3bf8f01b94fd28594e4121a6a36afdf7

As we can see, the binding generator completely ignores the declaration struct test and
all references to the test struct are replaced by addresses (System.Address). Neverthe-
less, these bindings are good enough to allow us to create a test application in Ada:

Listing 24: show_automatic_c_struct_bindings.adb
with Ada.Text IO0; use Ada.Text IO;

with Interfaces.C;
use Interfaces.(C;

with Interfaces.C.Strings;
use Interfaces.C.Strings;

with test h; use test h;
with System;

procedure Show Automatic C Struct Bindings is

: constant chars ptr :
New String ("John Doe");
Address : constant chars ptr :
New String ("Small Town");

T : System.Address := test create;

begin
test reset (T);
test _set name (T, Name);
test set address (T, Address);

test display (T);
test destroy (T);
end Show Automatic C Struct Bindings;

Code block metadata

Project: Courses.Intro To Ada.Interfacing With C.C Binds 3
MD5: 99d64fb14d9c869d140dd2fb7d3888d7

We can successfully bind our C code with Ada using the automatically-generated bindings,
but they aren't ideal. Instead, we would prefer Ada bindings that match our (human) inter-
pretation of the C header file. This requires manual analysis of the header file. The good
news is that we can use the automatic generated bindings as a starting point and adapt
them to our needs. For example, we can:

182 Chapter 17. Interfacing with C

© ©® N o U A W N R

WON N N NN NNNNNKRB B B B B2 2 B B e
S © ® N o U A W N B O © ©® N O 0B W N B O

© @ N o U A W N e

e e < e
U A W N F O

Introduction to Ada

1. Define a Test type based on System.Address and use it in all relevant functions.

2. Remove the test prefix in all operations on the Test type.

This is the resulting specification:

Listing 25: adapted_test_h.ads
with System;

with Interfaces.C; use Interfaces.C;
with Interfaces.C.Strings;

package adapted test h is
type Test is new System.Address;

function Create return Test;
pragma Import (C, Create, "test create");

procedure Destroy (T : Test);
pragma Import (C, Destroy, "test destroy");

procedure Reset (T : Test);
pragma Import (C, Reset, "test reset");

procedure Set Name (T : Test;
Name : Interfaces.C.Strings.chars ptr);
pragma Import (C, Set Name, "test set name");

procedure Set Address (T : Test;

- ./test.h:11

Address : Interfaces.C.Strings.chars ptr);

pragma Import (C, Set Address, "test set address");

procedure Display (T : Test); ~-- ./test.h:15
pragma Import (C, Display, "test display");

end adapted test h;

Code block metadata

Project: Courses.Intro To Ada.Interfacing With C.C Binds 3
MD5: 5cc875elb01af839141e5e623f6c5b7a

And this is the corresponding Ada body:

Listing 26: show_adapted_c_struct bindings.adb

with Interfaces.(C;
use Interfaces.(C;

with Interfaces.C.Strings;
use Interfaces.C.Strings;

with adapted test h; use adapted test h;
with System;

procedure Show Adapted C Struct Bindings is

: constant chars ptr :
New String ("John Doe");
Address : constant chars ptr :

(continues on next page)

17.5. Generating bindings

183

16
17
18
19
20
21
22
23
24
25
26
27

Introduction to Ada

New String ("Small Town");
T : Test := Create;

begin
Reset (T);
Set Name (T, Name);
Set Address (T, Address);

Display (T);

Destroy (T);
end Show Adapted C Struct Bindings;

Code block metadata

(continued from previous page)

Project: Courses.Intro To Ada.Interfacing With C.C Binds 3

MD5: 626d07b080Tbbd2bf1d5f9140b64955¢

Now we can use the Test type and its operations in a clean, readable way.

184

Chapter 17.

Interfacing with C

CHAPTER
EIGHTEEN

OBJECT-ORIENTED PROGRAMMING

Object-oriented programming (OOP) is a large and ill-defined concept in programming lan-
guages and one that tends to encompass many different meanings because different lan-
guages often implement their own vision of it, with similarities and differences from the
implementations in other languages.

However, one model mostly "won" the battle of what object-oriented means, if only by sheer
popularity. It's the model used in the Java programming language, which is very similar to
the one used by C++. Here are some defining characteristics:

* Type derivation and extension: Most object oriented languages allow the user to add
fields to derived types.

* Subtyping: Objects of a type derived from a base type can, in some instances, be
substituted for objects of the base type.

* Runtime polymorphism: Calling a subprogram, usually called a method, attached to
an object type can dispatch at runtime depending on the exact type of the object.

* Encapsulation: Objects can hide some of their data.

* Extensibility: People from the "outside" of your package, or even your whole library,
can derive from your object types and define their own behaviors.

Ada dates from before object-oriented programming was as popular as it is today. Some of
the mechanisms and concepts from the above list were in the earliest version of Ada even
before what we would call OOP was added:

* As we saw, encapsulation is not implemented at the type level in Ada, but instead at
the package level.

* Subtyping can be implemented using, well, subtypes, which have a full and permis-
sive static substitutability model. The substitution will fail at runtime if the dynamic
constraints of the subtype are not fulfilled.

* Runtime polymorphism can be implemented using variant records.

However, this lists leaves out type extensions, if you don't consider variant records, and
extensibility.

The 1995 revision of Ada added a feature filling the gaps, which allowed people to program
following the object-oriented paradigm in an easier fashion. This feature is called tagged

types.

185

N o U A W N &

o U A W N K

Introduction to Ada

O Note

It's possible to program in Ada without ever creating tagged types. If that's your prefered
style of programming or you have no specific use for tagged types, feel free to not use
them, as is the case for many features of Ada.

However, they can be the best way to express solutions to certain problems and they
may be the best way to solve your problem. If that's the case, read on!

18.1 Derived types

Before presenting tagged types, we should discuss a topic we have brushed on, but not
really covered, up to now:

You can create one or more new types from every type in Ada. Type derivation is built into
the language.

Listing 1: newtypes.ads

package Newtypes is
type Point is record
X, Y : Integer;
end record;

type New_Point is new Point;
end Newtypes;

Code block metadata

Project: Courses.Intro To Ada.Object Oriented Programming.Newtypes
MD5: 0d45096755b4bfb08ba8db19echba3f57

Type derivation is useful to enforce strong typing because the type system treats the two
types as incompatible.

But the benefits are not limited to that: you can inherit things from the type you derive
from. You not only inherit the representation of the data, but you can also inherit behavior.

When you inherit a type you also inherit what are called primitive operations. A primitive
operation (or just a primitive) is a subprogram attached to a type. Ada defines primitives
as subprograms defined in the same scope as the type.

A Attention

A subprogram will only become a primitive of the type if:
1. The subprogram is declared in the same scope as the type and

2. The type and the subprogram are declared in a package

Listing 2: primitives.adb
with Ada.Text I0; use Ada.Text IO;

procedure Primitives is
package Week is
type Days is (Monday, Tuesday, Wednesday,
Thursday, Friday,

(continues on next page)

186 Chapter 18. Object-oriented programming

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

Introduction to Ada

(continued from previous page)
Saturday, Sunday);

-- Print Day is a primitive
-- of the type Days
procedure Print Day (D : Days);
end Week;

package body Week is
procedure Print Day (D : Days) is
begin
Put Line (Days'Image (D));
end Print Day;
end Week;

use Week;
type Weekend_Days is new
Days range Saturday .. Sunday;

-- A procedure Print Day is automatically
-- 1nherited here. It is as if the procedure

-- procedure Print Day (D : Weekend Days);
-- has been declared with the same body

Sat : Weekend Days := Saturday;
begin

Print Day (Sat);
end Primitives;

Code block metadata

Project: Courses.Intro To Ada.Object Oriented Programming.Primitives
MD5: eblb0eb66f03a4al7bd9686ecdel2e2e

Runtime output

SATURDAY

This kind of inheritance can be very useful, and is not limited to record types (you can use
it on discrete types, as in the example above), but it's only superficially similar to object-
oriented inheritance:

* Records can't be extended using this mechanism alone. You also can't specify a new
representation for the new type: it will always have the same representation as the
base type.

* There's no facility for dynamic dispatch or polymorphism. Objects are of a fixed, static
type.

There are other differences, but it's not useful to list them all here. Just remember that this
is a kind of inheritance you can use if you only want to statically inherit behavior without
duplicating code or using composition, but a kind you can't use if you want any dynamic
features that are usually associated with OOP.

18.2 Tagged types

The 1995 revision of the Ada language introduced tagged types to fullfil the need for an
unified solution that allows programming in an object-oriented style similar to the one de-
scribed at the beginning of this chapter.

18.2. Tagged types 187

© @ N U A W N e

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

©W @ N U A W N e

Introduction to Ada

Tagged types are very similar to normal records except that some functionality is added:

» Types have a tag, stored inside each object, that identifies the runtime type?° of that
object.

* Primitives can dispatch. A primitive on a tagged type is what you would call a method
in Java or C++. If you derive a base type and override a primitive of it, you can often
call it on an object with the result that which primitive is called depends on the exact
runtime type of the object.

» Subtyping rules are introduced allowing a tagged type derived from a base type to be
statically compatible with the base type.

Let's see our first tagged type declarations:

Listing 3: p.ads

package P is
type My Class is tagged null record;
-- Just like a regular record, but
-- with tagged qualifier

-- Methods are outside of the type
-- definition:

procedure Foo (Self : in out My Class);

-- If you define a procedure taking a

-- My Class argument in the same package,
-- it will be a method.

-- Here's how you derive a tagged type:

type Derived is new My Class with record

A : Integer;

-- You can add fields in derived types.
end record;

overriding

procedure Foo (Self : in out Derived);

-- The "overriding" qualifier is optional,
-- but if it is present, it must be valid.

Listing 4: p.adb
with Ada.Text I0; use Ada.Text IO;

package body P is
procedure Foo (Self : in out My Class) is
begin
Put Line ("In My Class.Foo");
end Foo;

procedure Foo (Self : in out Derived) is
begin
Put Line ("In Derived.Foo, A ="
& Integer'Image (Self.A));
end Foo;
end P;

Code block metadata

20 https://en.wikipedia.org/wiki/Run-time_type_information

188 Chapter 18. Object-oriented programming

https://en.wikipedia.org/wiki/Run-time_type_information

©W @ N U A W N e

S N e
N o u A W N B O

© ©® N o U A W N R

=R e
N P O

Introduction to Ada

Project: Courses.Intro To Ada.Object Oriented Programming.Tagged Types
MD5: 45baaad66al047358addb574d0fad0bbc

18.3 Classwide types

To remain consistent with the rest of the language, a new notation needed to be introduced
to say "This object is of this type or any descendant derives tagged type".

In Ada, we call this the classwide type. It's used in OOP as soon as you need polymorphism.
For example, you can't do the following:

Listing 5: main.adb

with P; use P;
procedure Main is

01 : My Class;
-- Declaring an object of type My Class

02 : Derived := (A => 12);
-- Declaring an object of type Derived

03 : My Class := 02;
-- INVALID: Trying to assign a value
-- of type derived to a variable of
-- type My Class.

begin
null;

end Main;

Code block metadata

Project: Courses.Intro To Ada.Object Oriented Programming.Tagged Types
MD5: c87ad8bb686ch1763740750846258357

Build output

main.adb:11:21: error: expected type "My Class" defined at p.ads:2
main.adb:11:21: error: found type "Derived" defined at p.ads:16
gprbuild: *** compilation phase failed

This is because an object of a type T is exactly of the type T, whether T is tagged or not.
What you want to say as a programmer is "l want O3 to be able to hold an object of type
My Class or any type descending from My Class". Here's how you do that:

Listing 6: main.adb

with P; use P;

procedure Main is
01 : My Class;
-- Declare an object of type My Class

02 : Derived := (A => 12);
-- Declare an object of type Derived

03 : My Class'Class := 02;
-- Now valid: My Class'Class designates
-- the classwide type for My Class,
(continues on next page)

18.3. Classwide types 189

13
14
15
16
17
18

©W @ N U A W N e

I R R N T <
S © ® W o U A W N = O

Introduction to Ada

(continued from previous page)
-- which is the set of all types
-- descending from My Class (including
-- My Class).
begin
null;
end Main;

Code block metadata

Project: Courses.Intro To Ada.Object Oriented Programming.Tagged Types
MD5: 35412176a248015a26e507164ce526af

A Attention

Because an object of a classwide type can be the size of any descendant of its base type,
it has an unknown size. It's therefore an indefinite type, with the expected restrictions:

* |t can't be stored as a field/component of a record

* An object of a classwide type needs to be initialized immediately (you can't specify
the constraints of such a type in any way other than by initializing it).

18.4 Dispatching operations

We saw that you can override operations in types derived from another tagged type. The
eventual goal of OOP is to make a dispatching call: a call to a primitive (method) that
depends on the exact type of the object.

But, if you think carefully about it, a variable of type My Class always contains an object
of exactly that type. If you want to have a variable that can contain a My Class or any
derived type, it has to be of type My Class'Class.

In other words, to make a dispatching call, you must first have an object that can be either
of a type or any type derived from this type, namely an object of a classwide type.

Listing 7: main.adb

with P; use P;

procedure Main is
01 : My Class;
-- Declare an object of type My Class

02 : Derived := (A => 12);
-- Declare an object of type Derived

03 : My Class'Class := 02;

04 : My Class'Class := 01;
begin
Foo (01);
-- Non dispatching: Calls My Class.Foo
Foo (02);
-- Non dispatching: Calls Derived.Foo
Foo (03);
-- Dispatching: Calls Derived.Foo
Foo (04);
(continues on next page)

190 Chapter 18. Object-oriented programming

21

22

© @ N U A W N e

e e N e <
©® N o U A W N B O

Introduction to Ada

(continued from previous page)

-- Dispatching: Calls My Class.Foo
end Main;

Code block metadata

Project: Courses.Intro To Ada.Object Oriented Programming.Tagged Types
MD5: 7631f823b0dd9e5474f6bb2dc35af2a2

Runtime output

In My Class.Foo
In Derived.Foo, A
In Derived.Foo, A
In My Class.Foo

12
12

© Attention

You can convert an object of type Derived to an object of type My Class. This is called
a view conversion in Ada parlance and is useful, for example, if you want to call a parent
method.

In that case, the object really is converted to a My Class object, which means its tag is
changed. Since tagged objects are always passed by reference, you can use this kind of
conversion to modify the state of an object: changes to converted object will affect the
original one.

Listing 8: main.adb

with P; use P;

procedure Main is
01 : Derived := (A => 12);
-- Declare an object of type Derived

02 : My Class := My Class (01);

03 : My Class'Class := 02;
begin
Foo (01);
-- Non dispatching: Calls Derived.Foo
Foo (02);
-- Non dispatching: Calls My Class.Foo

Foo (03);
-- Dispatching: Calls My Class.Foo
end Main;

Code block metadata

Project: Courses.Intro To Ada.Object Oriented Programming.Tagged Types
MD5: b92112b05201ff14789baca258fabchbc

Runtime output

In Derived.Foo, A = 12
In My Class.Foo
In My Class.Foo

18.4. Dispatching operations 191

© @ N U A W N e

NONON R R R B HE B e Bl e
N B O © ® N O U A W N = O

© O N o U A W N e

10

12

Introduction to Ada

18.5 Dot notation

You can also call primitives of tagged types with a notation that's more familiar to object ori-
ented programmers. Given the Foo primitive above, you can also write the above program
this way:

Listing 9: main.adb
with P; use P;
procedure Main is

01 : My Class;
-- Declare an object of type My Class

02 : Derived := (A => 12);
-- Declare an object of type Derived

03 : My Class'Class :

02;
04 : My Class'Class := 01;

01.Foo;
-- Non dispatching: Calls My Class.Foo
02.Foo;
-- Non dispatching: Calls Derived.Foo
03.Foo0;
-- Dispatching: Calls Derived.Foo
04.Foo;
-- Dispatching: Calls My Class.Foo

end Main;

Code block metadata

Project: Courses.Intro To Ada.Object Oriented Programming.Tagged Types
MD5: 9c6ebdfec9ceeb986d92eb90ec9ff59b

Runtime output

In My Class.Foo
In Derived.Foo, A
In Derived.Foo, A
In My Class.Foo

12
12

If the dispatching parameter of a primitive is the first parameter, which is the case in our
examples, you can call the primitive using the dot notation. Any remaining parameter are
passed normally:

Listing 10: main.adb

with P; use P;

procedure Main is
package Extend is
type D2 is new Derived with null record;

procedure Bar (Self : in out D2;
Val : Integer);
end Extend;

package body Extend is
procedure Bar (Self : in out D2;

(continues on next page)

192 Chapter 18. Object-oriented programming

13
14
15
16
17
18
19
20

22
23
24
25

N o U A W N e

oA W N R

Introduction to Ada

(continued from previous page)

Val : Integer) is
begin
Self.A := Self.A + Val;
end Bar;
end Extend;
use Extend;

Obj : D2 := (A => 15);
begin

Obj.Bar (2);

0Obj.Foo;
end Main;

Code block metadata

Project: Courses.Intro To Ada.Object Oriented Programming.Tagged Types
MD5: fec4f5cc4213ccl11708dcc276e870c2

Runtime output

In Derived.Foo, A = 17

18.6 Private & Limited

We've seen previously (in the Privacy (page 109) chapter) that types can be declared limited
or private. These encapsulation techniques can also be applied to tagged types, as we'll
see in this section.

This is an example of a tagged private type:

Listing 11: p.ads

package P is
type T is tagged private;
private
type T is tagged record
E : Integer;
end record;
end P;

Code block metadata

Project: Courses.Intro To Ada.Object Oriented Programming.Tagged Private Types
MD5: 4cd4bcdla54d5f6407a500558b5da417

This is an example of a tagged limited type:

Listing 12: p.ads

package P is
type T is tagged limited record
E : Integer;
end record;
end P;

Code block metadata

Project: Courses.Intro To Ada.Object Oriented Programming.Tagged Limited Types
MD5: 13228777133aa6db97dalc29f732459c

18.6. Private & Limited 193

©® N o U A W N R W W N U A W N e

W N U A W N e

T N e i
©® N o U A W N B O

Introduction to Ada

Naturally, you can combine both limited and private types and declare a tagged limited
private type:

Listing 13: p.ads

package P is
type T is tagged limited private;

procedure Init (A : in out T);
private
type T is tagged limited record
E : Integer;
end record;
end P;

Listing 14: p.adb
package body P is

procedure Init (A : in out T) is
begin

A.E := 0;
end Init;

end P;

Listing 15: main.adb

with P; use P;

procedure Main is
T1, T2 : T;
begin
T1l.Init;
T2.Init;

-- The following line doesn't work
-- because type T is private:

-- TI1.E := 0;

-- The following line doesn't work
-- because type T is limited:

-- T2 :=T1;
end Main;

Code block metadata

Project: Courses.Intro To Ada.Object Oriented Programming.Tagged Limited Private
~Types
MD5: 68240374505bcaf7aad4ebaed3b9127b

Note that the code in the Main procedure above presents two assignments that trigger
compilation errors because type T is limited private. In fact, you cannot:

* assign to T1.E directly because type T is private;

* assign T1 to T2 because type T is limited.

In this case, there's no distinction between tagged and non-tagged types: these compilation
errors would also occur for non-tagged types.

194 Chapter 18. Object-oriented programming

© @ N U A W N e

© ©® N o U A W N K

R L N i < =
N o 0 A W N B O

® N o U A W N e

Introduction to Ada

18.7 Classwide access types

In this section, we'll discuss an useful pattern for object-oriented programming in Ada: class-
wide access type. Let's start with an example where we declare a tagged type T and a
derived type T_New:

Listing 16: p.ads

package P is
type T is tagged null record;

procedure Show (Dummy : T);
type T_New is new T with null record;

procedure Show (Dummy : T New);
end P;

Listing 17: p.adb
with Ada.Text IO; use Ada.Text IO;

package body P is

procedure Show (Dummy : T) is
begin
Put_Line ("Using type "
& T'External Tag);
end Show;

procedure Show (Dummy : T New) is
begin
Put_Line ("Using type "
& T New'External Tag);
end Show;

end P;

Code block metadata

Project: Courses.Intro To Ada.Object Oriented Programming.Classwide Error
MD5: fd5cb99925d3c88536546aa0be8104b7

Note that we're using null records for both types T and T_New. Although these types don't
actually have any component, we can still use them to demonstrate dispatching. Also note
that the example above makes use of the 'External Tag attribute in the implementation
of the Show procedure to get a string for the corresponding tagged type.

As we've seen before, we must use a classwide type to create objects that can make dis-
patching calls. In other words, objects of type T'Class will dispatch. For example:

Listing 18: dispatching_example.adb

with P; use P;

procedure Dispatching Example is
T2 : T New;
: constant T'Class := T2;
begin
T Dispatch.Show;
end Dispatching Example;

18.7. Classwide access types 195

W W N U AW N e

=
= o

Introduction to Ada

Code block metadata

Project: Courses.Intro To Ada.Object Oriented Programming.Classwide Error
MD5: f8957b31c9c62db23759baad7b867a57

Runtime output

Using type P.T _NEW

A more useful application is to declare an array of objects that can dispatch. For example,
we'd like to declare an array T_Arr, loop over this array and dispatch according to the actual
type of each individual element:

for I in T Arr'Range loop
T Arr (I).Show;
-- Call Show procedure according
-- to actual type of T Arr (I)
end loop;

However, it's not possible to declare an array of type T'Class directly:

Listing 19: classwide_compilation_error.adb

with P; use P;

procedure Classwide Compilation Error is
T Arr : array (1 .. 2) of T'Class;

-- Compilation Error!
begin
for I in T Arr'Range loop
T Arr (I).Show;
end loop;
end Classwide Compilation Error;

Code block metadata

Project: Courses.Intro To Ada.Object Oriented Programming.Classwide Error
MD5: e86f6c6ee35dced8f330bf6177d178fd

Build output

classwide compilation_error.adb:4:32: error: unconstrained element type in array,
~declaration
gprbuild: *** compilation phase failed

In fact, it's impossible for the compiler to know which type would actually be used for each
element of the array. However, if we use dynamic allocation via access types, we can
allocate objects of different types for the individual elements of an array T_Arr. We do this
by using classwide access types, which have the following format:

type T_Class is access T'Class;

We can rewrite the previous example using the T _Class type. In this case, dynamically
allocated objects of this type will dispatch according to the actual type used during the
allocation. Also, let's introduce an Init procedure that won't be overridden for the derived
T New type. This is the adapted code:

Listing 20: p.ads

package P is
type T is tagged record
(continues on next page)

196 Chapter 18. Object-oriented programming

© © N o u &~ W

10
11
12
13
14
15
16

© ©® N o U A W N K

N N NN B B R R R e H B s e
W N B © © ® N o U0 & W N H O

©W @ N U A W N e

S N e e
N o U A W N B O

Introduction to Ada

E : Integer;
end record;

type T_Class is access T'Class;

procedure Init (A : in out T);

procedure Show (Dummy : T);

type T_New is new T with null record;

procedure Show (Dummy : T New);
end P;

Listing 21: p.adb

with Ada.Text IO; use Ada.Text IO;
package body P is

procedure Init (A : in out T) is

begin
Put Line ("Initializing type T...");
A.E := 0;

end Init;

procedure Show (Dummy : T) is
begin
Put_Line ("Using type "
& T'External Tag);
end Show;

procedure Show (Dummy : T New) is
begin
Put_Line ("Using type "
& T New'External Tag);
end Show;

end P;

Listing 22: main.adb
with Ada.Text IO0; use Ada.Text IO;
with P; use P;

procedure Main is
T Arr : array (1 .. 2) of T Class;

begin
T Arr (1) := new T;
T Arr (2) := new T_New;

for I in T Arr'Range loop
Put Line ("Element # "
& Integer'Image (I));

T Arr (I).Init;

T Arr (I).Show;

PUtiLine (" ___________ u);

(continued from previous page)

(continues on next page)

18.7. Classwide access types

197

18
19

Introduction to Ada

(continued from previous page)

end loop;
end Main;

Code block metadata

Project: Courses.Intro To Ada.Object Oriented Programming.Classwide Access
MD5: 97c05a8f911d0aBe39cOcc90fael84a7

Runtime output

Element # 1
Initializing type T...
Using type P.T

Element # 2
Initializing type T...
Using type P.T NEW

In this example, the first element (T_Arr (1)) is of type T, while the second element is
of type T _New. When running the example, the Init procedure of type T is called for both
elements of the T_Arr array, while the call to the Show procedure selects the corresponding
procedure according to the type of each element of T _Arr.

198 Chapter 18. Object-oriented programming

© ©® N o U A W N R

e
w N~ O

CHAPTER
NINETEEN

STANDARD LIBRARY: CONTAINERS

In previous chapters, we've used arrays as the standard way to group multiple objects of a
specific data type. In many cases, arrays are good enough for manipulating those objects.
However, there are situations that require more flexibility and more advanced operations.
For those cases, Ada provides support for containers — such as vectors and sets — in its
standard library.

We present an introduction to containers here. For a list of all containers available in Ada,
see Appendix B (page 267).

19.1 Vectors

In the following sections, we present a general overview of vectors, including instantiation,
initialization, and operations on vector elements and vectors.

19.1.1 Instantiation

Here's an example showing the instantiation and declaration of a vector V:

Listing 1: show_vector_inst.adb

with Ada.Containers.Vectors;
procedure Show Vector Inst is

package Integer Vectors is new
Ada.Containers.Vectors
(Index Type => Natural,
Element Type => Integer);

V : Integer_ Vectors.Vector;
begin

null;
end Show Vector Inst;

Code block metadata

Project: Courses.Intro To Ada.Standard Library.Show Vector Inst
MD5: 8b737842d2784f25502990f21elcf6de

Containers are based on generic packages, so we can't simply declare a vector as we would
declare an array of a specific type:

A : array (1 .. 10) of Integer;

Instead, we first need to instantiate one of those packages. We with the container pack-
age (Ada.Containers.Vectors in this case) and instantiate it to create an instance of the

199

© ©® N o U A W N R

I R R T e <
S © ® N o U A W N H O

Introduction to Ada

generic package for the desired type. Only then can we declare the vector using the type
from the instantiated package. This instantiation needs to be done for any container type
from the standard library.

In the instantiation of Integer Vectors, we indicate that the vector contains elements of
Integer type by specifying it as the Element Type. By setting Index Type to Natural, we
specify that the allowed range includes all natural numbers. We could have used a more
restrictive range if desired.

19.1.2 Initialization

One way to initialize a vector is from a concatenation of elements. We use the & operator,
as shown in the following example:

Listing 2: show_vector_init.adb

with Ada.Containers; use Ada.Containers;
with Ada.Containers.Vectors;

with Ada.Text IO; use Ada.Text IO;
procedure Show Vector Init is

package Integer Vectors is new
Ada.Containers.Vectors
(Index Type => Natural,
Element Type => Integer);

use Integer Vectors;

V : Vector := 20 & 10 & 0 & 13;
begin
Put_Line ("Vector has
& Count Type'Image (V.Length)
& " elements");
end Show Vector Init;

Code block metadata

Project: Courses.Intro To Ada.Standard Library.Show Vector Init
MD5: 0087b0al5e0c88b27ac36c3b27159al7

Runtime output

Vector has 4 elements

We specify use Integer Vectors, so we have direct access to the types and operations
from the instantiated package. Also, the example introduces another operation on the
vector: Length, which retrieves the number of elements in the vector. We can use the dot
notation because Vector is a tagged type, allowing us to write either V.Length or Length
(V).

19.1.3 Appending and prepending elements

You add elements to a vector using the Prepend and Append operations. As the names
suggest, these operations add elements to the beginning or end of a vector, respectively.
For example:

200 Chapter 19. Standard library: Containers

©W @ N U A W N e

W W W W w w N NNNNNNNNN-ERR B B B B B B B
0 R W N P O © ® W O U & W N KRB O © ® N 00 00 2 W N B O

Introduction to Ada

Listing 3: show_vector_append.adb

with Ada.Containers; use Ada.Containers;
with Ada.Containers.Vectors;

with Ada.Text IO; use Ada.Text IO;
procedure Show Vector Append is

package Integer Vectors is new
Ada.Containers.Vectors
(Index Type => Natural,
Element Type => Integer);

use Integer Vectors;

V : Vector;
begin
Put Line ("Appending some elements
& "to the vector...");

V.Append (20);

V.Append (10);

V.Append (0);

V.Append (13);

Put Line ("Finished appending.");

Put Line ("Prepending some elements"
& "to the vector...");

V.Prepend (30);

V.Prepend (40);

V.Prepend (100);

Put Line ("Finished prepending.");

Put Line ("Vector has "
& Count Type'Image (V.Length)
& " elements");
end Show Vector Append;

Code block metadata

Project: Courses.Intro_To Ada.Standard Library.Show Vector_ Append
MD5: f88d393ba9%96a7950f58d9f1lcOc74a021

Runtime output

Appending some elements to the vector...
Finished appending.

Prepending some elementsto the vector...
Finished prepending.

Vector has 7 elements

This example puts elements into the vector in the following sequence: (100, 40, 30, 20, 10,

0, 13).

The Reference Manual specifies that the worst-case complexity must be:
* O(log N) for the Append operation, and
* O(N log N) for the Prepend operation.

19.1. Vectors

201

Introduction to Ada

19.1.4 Accessing first and last elements

We access the first and last elements of a vector using the First Element and
Last Element functions. For example:

Listing 4: show_vector first last element.adb

with Ada.Containers; use Ada.Containers;

1

2> with Ada.Containers.Vectors;

3

4+ with Ada.Text IO; use Ada.Text IO;

5

¢ procedure Show Vector First Last Element is
7

8 package Integer_ Vectors is new

9 Ada.Containers.Vectors

10 (Index Type => Natural,

1 Element Type => Integer);

12

13 use Integer Vectors;

14

15 function Img (I : Integer) return String
16 renames Integer'Image;

17 function Img (I : Count Type) return String
18 renames Count Type'Image;

19

20 V : Vector := 20 & 10 & 0 & 13;

21 begin

22 Put Line ("Vector has "

23 & Img (V.Length)

24 & " elements");

25

26 -- Using V.First Element to

27 -- retrieve first element

28 Put Line ("First element is "

29 & Img (V.First Element));
30

31 -- Using V.Last Element to

32 -- retrieve last element

33 Put Line ("Last element is "

34 & Img (V.Last Element));

s end Show Vector First Last Element;

Code block metadata

Project: Courses.Intro To Ada.Standard Library.Show Vector First Last Element
MD5: 602255760d0017ced6b4115¢c845cd48d

Runtime output

Vector has 4 elements
First element is 20
Last element is 13

You can swap elements by calling the procedure Swap and retrieving a reference (a cursor)
to the first and last elements of the vector by calling First and Last. A cursor allows us to
iterate over a container and process individual elements from it.

With these operations, we're able to write code to swap the first and last elements of a
vector:

202 Chapter 19. Standard library: Containers

©W @ N U A W N e

NN NN NN NNNNRB B B BB R e e e e
© ® N o U B W N B O © ® N O U A~ W N B O

© ©® N o U A W N K

=
o

Introduction to Ada

Listing 5: show_vector _first_last element.adb

with Ada.Containers; use Ada.Containers;
with Ada.Containers.Vectors;

with Ada.Text IO0; use Ada.Text IO;
procedure Show Vector First Last Element is

package Integer Vectors is new
Ada.Containers.Vectors
(Index Type => Natural,
Element Type => Integer);

use Integer Vectors;

function Img (I : Integer) return String
renames Integer'Image;

V : Vector :=20 & 10 & 0 & 13;

begin
-- We use V.First and V.Last to retrieve
-- cursor for first and last elements.
-- We use V.Swap to swap elements.
V.Swap (V.First, V.Last);

Put Line ("First element is now
& Img (V.First Element));
Put Line ("Last element is now "
& Img (V.Last Element));
end Show Vector First Last Element;

Code block metadata

Project: Courses.Intro To Ada.Standard Library.Show Vector First Last Element
MD5: 1a@cObf28bb661b3f328473ac3c2eb54

Runtime output

First element is now 13
Last element is now 20

19.1.5 Iterating

The easiest way to iterate over a container is to use a for E of Our_Container loop. This
gives us a reference (E) to the element at the current position. We can then use E directly.
For example:

Listing 6: show_vector _iteration.adb

with Ada.Containers.Vectors;
with Ada.Text IO0; use Ada.Text IO;
procedure Show Vector Iteration is

package Integer_ Vectors is new
Ada.Containers.Vectors
(Index Type => Natural,
Element Type => Integer);
(continues on next page)

19.1. Vectors 203

© ©® N o U A W N e

Boe e
N = O

Introduction to Ada

(continued from previous page)

use Integer Vectors;

function Img (I : Integer) return String
renames Integer'Image;

V : Vector := 20 & 10 & 0 & 13;
begin
Put Line ("Vector elements are: ");

-- Using for ... of loop to iterate:

for E of V loop
Put Line ("- " & Img (E));
end loop;

end Show Vector Iteration;

Code block metadata

Project: Courses.Intro To Ada.Standard Library.Show Vector Iteration
MD5: 4fc9a939aa822097d3a937646d3e2910

Runtime output

Vector elements are:
- 20
- 10
-0
- 13

This code displays each element from the vector V.

Because we're given a reference, we can display not only the value of an element but also
modify it. For example, we could easily write a loop to add one to each element of vector
V:

for E of V loop
E:=E+ 1;
end loop;

We can also use indices to access vector elements. The formatis similar to a loop over array
elements: we use a for I in <range> loop. The range is provided by V.First Index and
V.Last Index. We can access the current element by using it as an array index: V (I).
For example:

Listing 7: show_vector_index_iteration.adb
with Ada.Containers.Vectors;
with Ada.Text IO; use Ada.Text IO;
procedure Show Vector Index Iteration is
package Integer Vectors is new
Ada.Containers.Vectors
(Index Type => Natural,
Element Type => Integer);

use Integer Vectors;
(continues on next page)

204 Chapter 19. Standard library: Containers

13
14

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

W @ N U A W N e

-
o

Introduction to Ada

(continued from previous page)

V : Vector :=20 & 10 & 0 & 13;
begin
Put Line ("Vector elements are: ");

-- Using indices in a "for I in ..." loop
-- to iterate:

for I in V.First Index .. V.Last Index loop
-- Displaying current index I
Put ("- ["
& Extended Index'Image (I)
& II] II);
Put (Integer'Image (V (I)));

-- We could also use the V.Element (I)
-- function to retrieve the element at
-- the current index I

New Line;
end loop;

end Show Vector Index Iteration;

Code block metadata

Project: Courses.Intro To Ada.Standard Library.Show Vector Index Iteration
MD5: f5600bbcc53d6d6887a771b1505676€9

Runtime output

Vector elements are:

- [0] 20
- [11 10
-[2] o

- [31 13

Here, in addition to displaying the vector elements, we're also displaying each index, I, just
like what we can do for array indices. Also, we can access the element by using either the
short form V (I) or the longer form V.Element (I) butnotV.I.

As mentioned in the previous section, you can use cursors to iterate over containers. For
this, use the function Iterate, which retrieves a cursor for each position in the vector. The
corresponding loop has the format for C in V.Iterate loop. Like the previous example
using indices, you can again access the current element by using the cursor as an array
index: V (C). For example:

Listing 8: show_vector _cursor _iteration.adb

with Ada.Containers.Vectors;
with Ada.Text IO; use Ada.Text IO;
procedure Show Vector Cursor Iteration is

package Integer Vectors is new
Ada.Containers.Vectors
(Index Type => Natural,
Element Type => Integer);
(continues on next page)

19.1. Vectors 205

11

13
14

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

Introduction to Ada

(continued from previous page)

use Integer Vectors;

V : Vector := 20 & 10 & 0 & 13;
begin
Put Line ("Vector elements are: ");

-- Use a cursor to iterate in a loop:
for C in V.Iterate loop
-- Using To Index function to retrieve
-- the index for the cursor position
Put ("- ["
& Extended Index'Image (To Index (C))
& "1 ");

Put (Integer'Image (V (C)));

-- We could use Element (C) to retrieve
-- the vector element for the cursor
-- position

New Line;
end loop;

-- Alternatively, we could iterate with a
-- while-loop:

-- declare

- - C : Cursor := V.First;

-- begin

-- while C /= No Element loop
-- some processing here. ..

- - C := Next (C);
- - end loop;
-- end;

end Show Vector Cursor Iteration;

Code block metadata

Project: Courses.Intro To Ada.Standard Library.Show Vector Cursor Iteration
MD5: de789bbd2el814aae3fb5213c99ac25c

Runtime output

Vector elements are:

- [0] 20
- [11 10
-[2] o

- [31 13

Instead of accessing an element in the loop usingV (C), we could also have used the longer
form Element (C). In this example, we're using the function To_Index to retrieve the index
corresponding to the current cursor.

As shown in the comments after the loop, we could also use a while ... loop to iterate
over the vector. In this case, we would start with a cursor for the first element (retrieved
by calling V.First) and then call Next (C) to retrieve a cursor for subsequent elements.
Next (C) returns No Element when the cursor reaches the end of the vector.

206 Chapter 19. Standard library: Containers

© ©® N o U A W N K

N ONON N NN NNNHB B B B B e e s e
® N o U A W N B O © ® N O U B~ W N F O

Introduction to Ada

You can directly modify the elements using a reference. This is what it looks like when using
both indices and cursors:

-- Modify vector elements using index

for I in V.First Index .. V.Last Index loop
V (I) :=V (I) + 1;

end loop;

-- Modify vector elements using cursor
for C in V.Iterate loop

V (C) :=V (C) + 1;
end loop;

The Reference Manual requires that the worst-case complexity for accessing an element be
O(log N).

Another way of modifying elements of a vector is using a process procedure, which takes
an individual element and does some processing on it. You can call Update Element and
pass both a cursor and an access to the process procedure. For example:

Listing 9: show vector_update.adb

with Ada.Containers.Vectors;
with Ada.Text IO0; use Ada.Text IO;
procedure Show Vector Update is

package Integer_ Vectors is new
Ada.Containers.Vectors
(Index Type => Natural,
Element Type => Integer);

use Integer Vectors;

procedure Add One (I : in out Integer) is
begin

I =1+ 1;
end Add One;

V : Vector := 20 & 10 & 12;
begin

-- Use V.Update Element to process elements

for C in V.Iterate loop
V.Update Element (C, Add One'Access);
end loop;

end Show Vector Update;

Code block metadata

Project: Courses.Intro To Ada.Standard Library.Show Vector Update
MD5: 5dcc3dd8020632a8ea2ce975ecd8f4da

19.1.6 Finding and changing elements

You can locate a specific element in a vector by retrieving its index. Find Index retrieves
the index of the first element matching the value you're looking for. Alternatively, you can
use Find to retrieve a cursor referencing that element. For example:

19.1. Vectors 207

W @ N U A W N e

WONON NN NNNNNNR B B 2 B B B oE e e
S © ® N o U B W N B O © ® N O U A~ W N B O

Introduction to Ada

Listing 10: show_find_vector_element.adb

with Ada.Containers.Vectors;
with Ada.Text IO; use Ada.Text IO;
procedure Show Find Vector Element is

package Integer Vectors is new
Ada.Containers.Vectors
(Index Type => Natural,
Element Type => Integer);

use Integer Vectors;

V : Vector := 20 & 10 & 0 & 13;
Idx : Extended Index;
C : Cursor;
begin
-- Using Find Index to retrieve the index
-- of element with value 10
Idx := V.Find _Index (10);
Put Line ("Index of element with value 10 is "
& Extended Index'Image (Idx));

-- Using Find to retrieve the cursor for
-- the element with value 13
C = V.Find (13);
Idx := To Index (C);
Put Line ("Index of element with value 13 is
& Extended Index'Image (Idx));
end Show Find Vector Element;

Code block metadata

Project: Courses.Intro To Ada.Standard Library.Show Find Vector Element
MD5: c3da0lcd66c8705a7cbccae8390d5f81

Runtime output

Index of element with value 10 is 1
Index of element with value 13 is 3

As we saw in the previous section, we can directly access vector elements by using either
an index or cursor. However, an exception is raised if we try to access an element with an
invalid index or cursor, so we must check whether the index or cursor is valid before using
it to access an element. In our example, Find Index or Find might not have found the
element in the vector. We check for this possibility by comparing the index to No _Index or
the cursor to No_Element. For example:

-- Modify vector element using index
if Idx /= No Index then

V (Idx) := 11;
end if;

-- Modify vector element using cursor
if C /= No Element then

V (C) := 14;
end if;
Instead of writing V. (C) := 14, we could use the longer form V.Replace Element (C,
14).

208 Chapter 19. Standard library: Containers

Introduction to Ada

19.1.7 Inserting elements

In the previous sections, we've seen examples of how to add elements to a vector:
* using the concatenation operator (&) at the vector declaration, or
* calling the Prepend and Append procedures
You may want to insert an element at a specific position, e.g. before a certain element in
the vector. You do this by calling Insert. For example:
Listing 11: show vector_insert.adb

with Ada.Containers; use Ada.Containers;
with Ada.Containers.Vectors;

with Ada.Text IO; use Ada.Text IO;

procedure Show Vector Insert is

W @ N U A W N e

U oA A A B A BN B DA B DWW OW W W W W W W WNNDNNNNNNNN®R®EBR®HBRB B B B B B B
© © ® W o U B W N B O © ® W O 00 A W N B O ©W ® N 0 U & WNRBP O © ® N O U A W N B O

package Integer Vectors is new
Ada.Containers.Vectors
(Index Type => Natural,
Element Type => Integer);

use Integer Vectors;

procedure Show Elements (V : Vector) is
begin
New Line;
Put_Line ("Vector has "
& Count Type'Image (V.Length)
& " elements");

if not V.Is Empty then
Put Line ("Vector elements are: ");
for E of V loop
Put Line ("- " & Integer'Image (E));
end loop;
end if;
end Show Elements;

V : Vector := 20 & 10 & 12;
C : Cursor;

begin

Show Elements (V);

New Line;
Put Line ("Adding element with value 9");
Put Line (" (before 10)...");

-- Using V.Insert to insert the element
-- 1into the vector
C := V.Find (10);
if C /= No Element then
V.Insert (C, 9);
end if;

Show Elements (V);

end Show Vector Insert;

19.1. Vectors

209

© ® N o U A W N R

Introduction to Ada

Code block metadata

Project: Courses.Intro_To Ada.Standard Library.Show Vector Insert
MD5: af49f390388896c51ab97541036fbcaf

Runtime output

Vector has 3 elements
Vector elements are:

- 20

- 10

- 12

Adding element with value 9
(before 10)...

Vector has 4 elements
Vector elements are:

- 20

-9

- 10

- 12

In this example, we're looking for an element with the value of 10. If we find it, we insert
an element with the value of 9 before it.

19.1.8 Removing elements

You can remove elements from a vector by passing either a valid index or cursor to the
Delete procedure. If we combine this with the functions Find Index and Find from the
previous section, we can write a program that searches for a specific element and deletes
it, if found:

Listing 12: show_remove_vector_element.adb

with Ada.Containers.Vectors;
with Ada.Text IO0; use Ada.Text IO;

procedure Show Remove Vector Element is
package Integer Vectors is new
Ada.Containers.Vectors
(Index Type => Natural,
Element Type => Integer);

use Integer Vectors;

V : Vector :=20 & 10 & 0 & 13 & 10 & 13;
Idx : Extended Index;
C : Cursor;

begin
-- Use Find Index to retrieve index of
-- the element with value 10
Idx := V.Find Index (10);

-- Checking whether index is valid
if Idx /= No Index then
-- Removing element using V.Delete
V.Delete (Idx);
end if;
(continues on next page)

210 Chapter 19. Standard library: Containers

26
27
28
29
30
31

33
34
35
36
37

©W @ N U A W N e

W W oW W W W WwWw NN NNNNNNNNRHE R B B B B B B
N o0 00 R W N B O VW ® N o0 U R WN R O © ©® N O U A WN B O

Introduction to Ada

(continued from previous page)

-- Use Find to retrieve cursor for
-- the element with value 13
C := V.Find (13);

-- Check whether index is valid

if C /= No Element then
-- Remove element using V.Delete
V.Delete (C);

end if;

end Show Remove Vector Element;

Code block metadata

Project: Courses.Intro To Ada.Standard Library.Show Remove Vector Element
MD5: 540d0dc5715e58926e9dc4600bd6ad5d

We can extend this approach to delete all elements matching a certain value. We just need
to keep searching for the element in a loop until we get an invalid index or cursor. For
example:

Listing 13: show_remove_vector_elements.adb

with Ada.Containers; use Ada.Containers;
with Ada.Containers.Vectors;

with Ada.Text IO0; use Ada.Text IO;
procedure Show Remove Vector Elements is

package Integer Vectors is new
Ada.Containers.Vectors
(Index Type => Natural,
Element Type => Integer);

use Integer Vectors;

procedure Show Elements (V : Vector) is
begin
New Line;
Put _Line ("Vector has "
& Count Type'Image (V.Length)
& " elements");

if not V.Is Empty then
Put Line ("Vector elements are: ");
for E of V loop
Put Line ("- " & Integer'Image (E));
end loop;
end if;
end Show Elements;

V : Vector :=20 & 10 & 0 & 13 & 10 & 14 & 13;
begin
Show Elements (V);

-- Remove elements using an index

declare
(continues on next page)

19.1. Vectors 211

38
39

a1
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

71

Introduction to Ada

: constant Integer := 10;
I : Extended Index;
begin
New Line;
Put_Line

("Removing all elements with value of "

& Integer'Image (E) & "...
loop
I :=V.Find Index (E);
exit when I = No Index;
V.Delete (I);
end loop;
end;

");

-- Remove elements using a cursor

declare
: constant Integer := 13;
C : Cursor;
begin
New Line;
Put Line

("Removing all elements with value of "

& Integer'Image (E) & "...
Lloop
C := V.Find (E);
exit when C = No Element;
V.Delete (C);
end loop;
end;

Show Elements (V);
end Show Remove Vector Elements;

Code block metadata

")

(continued from previous page)

Project: Courses.Intro To Ada.Standard Library.Show Remove Vector Elements
MD5: 6e364843b9638224bd9a36eb9d45e446

Runtime output

Vector has 7 elements
Vector elements are:

- 20

- 10

-0

- 13

- 10

- 14

- 13

Removing all elements with value of
Removing all elements with value of
Vector has 3 elements

Vector elements are:

- 20
-0

10...

13...

(continues on next page)

212

Chapter 19.

Standard library: Containers

W N U A W N e

WON NN NN NNNNNR B B 2R R e e e e
S © ® N o U B W N B O L ® N O U A~ W N B O

Introduction to Ada

(continued from previous page)
- 14

In this example, we remove all elements with the value 10 from the vector by retrieving
their index. Likewise, we remove all elements with the value 13 by retrieving their cursor.

19.1.9 Other Operations

We've seen some operations on vector elements. Here, we'll see operations on the vector
as a whole. The most prominent is the concatenation of multiple vectors, but we'll also see
operations on vectors, such as sorting and sorted merging operations, that view the vector
as a sequence of elements and operate on the vector considering the element's relations
to each other.

We do vector concatenation using the & operator on vectors. Let's consider two vectors V1
and V2. We can concatenate them by doingV := V1 & V2. V contains the resulting vector.

The generic package Generic Sorting is a child package of Ada.Containers.Vectors. It
contains sorting and merging operations. Because it's a generic package, you can't use it
directly, but have to instantiate it. In order to use these operations on a vector of integer
values (Integer Vectors, in our example), you need to instantiate it directly as a child of
Integer Vectors. The next example makes it clear how to do this.

After instantiating Generic Sorting, we make all the operations available to us with the
use statement. We can then call Sort to sort the vector and Merge to merge one vector
into another.

The following example presents code that manipulates three vectors (V1, V2, V3) using the
concatenation, sorting and merging operations:

Listing 14: show_vector_ops.adb

with Ada.Containers; use Ada.Containers;
with Ada.Containers.Vectors;

with Ada.Text IO0; use Ada.Text IO;
procedure Show Vector Ops is

package Integer Vectors is new
Ada.Containers.Vectors
(Index Type => Natural,
Element Type => Integer);

package Integer Vectors Sorting is
new Integer_Vectors.Generic_Sorting;

use Integer Vectors;
use Integer Vectors Sorting;

procedure Show Elements (V : Vector) is
begin
New Line;
Put Line ("Vector has
& Count Type'Image (V.Length)
& " elements");

if not V.Is Empty then
Put Line ("Vector elements are: ");
for E of V loop
Put Line ("- " & Integer'Image (E));
end loop;
(continues on next page)

19.1. Vectors 213

Introduction to Ada

end if;
end Show Elements;

vV, V1, V2, V3 : Vector;

begin
V1 := 10 & 12 & 18;
V2 := 11 & 13 & 19;
V3 := 15 & 19;
New Line;
Put Line ("---- V1 ----");
Show Elements (V1);
New Line;
Put Line ("---- V2 ----");
Show_Elements (V2);
New Line;
Put Line ("---- V3 ----");
Show Elements (V3);
New Line;
Put Line

(continued from previous page)

("Concatenating V1, V2 and V3 into V:");

V :=V1l & V2 & V3;
Show Elements (V);

New Line;
Put Line ("Sorting V:");

Sort (V);
Show Elements (V);

New Line;
Put _Line ("Merging V2 into V1:");

Merge (V1, V2);
Show Elements (V1);

end Show Vector Ops;

Code block metadata

Project: Courses.Intro To Ada.Standard Library.Show Vector Ops

MD5: 3301513e4e7fd2f28488966e5b24e448

Runtime output

R Vs

Vector has 3 elements
Vector elements are:

- 10
- 12
- 18
(continues on next page)
214 Chapter 19. Standard library: Containers

Introduction to Ada

UV s R

Vector has 3 elements
Vector elements are:

- 11

- 13

- 19

R Vi R

Vector has 2 elements
Vector elements are:

- 15

- 19

Concatenating V1, V2 and V3 into V:

Vector has 8 elements
Vector elements are:

- 10

- 12

- 18

- 11

- 13

- 19

- 15

- 19

Sorting V:

Vector has 8 elements
Vector elements are:

- 10

- 11

- 12

- 13

- 15

- 18

- 19

- 19

Merging V2 into V1:

Vector has 6 elements
Vector elements are:

- 10

- 11

- 12

- 13

- 18

- 19

(continued from previous page)

The Reference Manual requires that the worst-case complexity of a call to Sort be O(N?)

and the average complexity be better than O(N?2).

19.2 Sets

Sets are another class of containers. While vectors allow duplicated elements to be in-

serted, sets ensure that no duplicated elements exist.

19.2. Sets

215

© @ N U A W N e

e e e
o U A W N B O

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

Introduction to Ada

In the following sections, we'll see operations you can perform on sets. However, since
many of the operations on vectors are similar to the ones used for sets, we'll cover them
more quickly here. Please refer back to the section on vectors for a more detailed discus-
sion.

19.2.1 Initialization and iteration

To initialize a set, you can call the Insert procedure. However, if you do, you need to
ensure no duplicate elements are being inserted: if you try to insert a duplicate, you'll get
an exception. If you have less control over the elements to be inserted so that there may
be duplicates, you can use another option instead:

» aversion of Insert that returns a Boolean value indicating whether the insertion was
successful;

* the Include procedure, which silently ignores any attempt to insert a duplicated ele-
ment.

To iterate over a set, you can use a for E of S loop, as you saw for vectors. This gives
you a reference to each element in the set.

Let's see an example:

Listing 15: show_set_init.adb

with Ada.Containers; use Ada.Containers;
with Ada.Containers.Ordered Sets;

with Ada.Text I0; use Ada.Text IO;
procedure Show Set Init is

package Integer Sets is new
Ada.Containers.Ordered_Sets
(Element Type => Integer);

use Integer Sets;

S : Set;
-- Same as: S : Integer Sets.Set;
C : Cursor;
Ins : Boolean;

begin
S.Insert (2
S.Insert (1
S.Insert (0);
S.Insert (1
-- Calling S.Insert(0) now would raise
-- Constraint Error because this element
-- 1s already in the set. We instead call a
-- version of Insert that doesn't raise an
-- exception but instead returns a Boolean
-- Indicating the status

S.Insert (0, C, Ins);
if not Ins then
Put Line
("Error while inserting 0 into set");
end if;

-- We can also call S.Include instead
(continues on next page)

216 Chapter 19. Standard library: Containers

38
39
40
a1
42
43
44
45
46
47
48
49
50
51
52
53
54
55

U oA W N e

Introduction to Ada

(continued from previous page)

-- If the element is already present,
-- the set remains unchanged
S.Include (0);

S.Include (13);

S.Include (14);

Put Line ("Set has "
& Count _Type'Image (S.Length)
& " elements");

-- Iterate over set using for .. of loop

Put Line ("Elements:");
for E of S loop
Put Line ("- " & Integer'Image (E));
end loop;
end Show Set Init;

Code block metadata

Project: Courses.Intro To Ada.Standard Library.Show Set Init
MD5: b87f6729fea278396347248b95a30ch6

Runtime output

Error while inserting 0 into set
Set has 5 elements

Elements:

-0

- 10

- 13

- 14

- 20

19.2.2 Operations on elements

In this section, we briefly explore the following operations on sets:
* Delete and Exclude to remove elements;
* Contains and Find to verify the existence of elements.

To delete elements, you call the procedure Delete. However, analogously to the Insert
procedure above, Delete raises an exception if the element to be deleted isn't present in
the set. If you want to permit the case where an element might not exist, you can call
Exclude, which silently ignores any attempt to delete a non-existent element.

Contains returns a Boolean value indicating whether a value is contained in the set. Find
also looks for an element in a set, but returns a cursor to the element or No_Element if the
element doesn't exist. You can use either function to search for elements in a set.

Let's look at an example that makes use of these operations:

Listing 16: show_set_element_ops.adb

with Ada.Containers; use Ada.Containers;
with Ada.Containers.Ordered Sets;

with Ada.Text IO0; use Ada.Text IO;

(continues on next page)

19.2. Sets 217

© © N o

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

Introduction to Ada

procedure Show Set Element Ops is

package Integer Sets is new
Ada.Containers.Ordered_Sets
(Element Type => Integer);

use Integer Sets;

procedure Show Elements (S : Set) is
begin

New Line;

Put Line ("Set has "

(continued from previous page)

& Count _Type'Image (S.Length)

& " elements");
Put Line ("Elements:");
for E of S loop
Put Line ("- " & Integer'Image
end loop;
end Show Elements;

S : Set;
begin
S.Insert (20);
S.Insert (10);
S.Insert (0);
S.Insert (13)

S.Delete (13);

(E));

-- Calling S.Delete (13) again raises
-- Constraint Error because the element

-- 1s no longer present in the set,
-- 1t can't be deleted. We can call
-- V.Exclude instead:

S.Exclude (13);

if S.Contains (20) then

SO

Put_Line ("Found element 20 in set");

end if;

-- Alternatively, we could use S.Find

-- instead of S.Contains
if S.Find (0) /= No_Element then

Put_Line ("Found element 0 in set");

end if;

Show_Elements (S);
end Show Set Element Ops;

Code block metadata

Project: Courses.Intro To Ada.Standard Library.Show Set Element Ops

MD5: 77fb2aaba4221e337b0f90dd1a49c556

Runtime output

Found element 20 in set
Found element 0 in set

Set has 3 elements
Elements:

(continues on next page)

218

Chapter 19. Standard library: Containers

© ® N o U A W N R

e e e i
©® N o U0 A W N R O

Introduction to Ada

(continued from previous page)
-0
- 10
- 20

In addition to ordered sets used in the examples above, the standard library also offers
hashed sets. The Reference Manual requires the following average complexity of each
operation:

Operations Ordered Sets Hashed Sets

O((log N)?) or better O(log N)

* |Insert
e Include
* Replace
e Delete
e Exclude
* Find

Subprogram using cursor 0o(1)

19.2.3 Other Operations

The previous sections mostly dealt with operations on individual elements of a set. But
Ada also provides typical set operations: union, intersection, difference and symmetric
difference. In contrast to some vector operations we've seen before (e.g. Merge), here
you can use built-in operators, such as -. The following table lists the operations and its
associated operator:

Set Operation Operator
Union or
Intersection and
Difference =
Symmetric difference xor

The following example makes use of these operators:

Listing 17: show_set _ops.adb

with Ada.Containers; use Ada.Containers;
with Ada.Containers.Ordered Sets;

with Ada.Text IO0; use Ada.Text IO;
procedure Show Set Ops is

package Integer_Sets is new
Ada.Containers.Ordered Sets
(Element Type => Integer);
use Integer Sets;
procedure Show Elements (S : Set) is
begin
Put Line ("Elements:");
for E of S loop

Put Line ("- " & Integer'Image (E));

(continues on next page)

19.2. Sets

219

Introduction to Ada

end loop;
end Show Elements;

procedure Show Op (S : Set;
Op Name : String) is
begin
New Line;

Put _Line (Op_Name
& "(set #1, set #2) has "
& Count _Type'Image (S.Length)
& " elements");
end Show Op;

S1, S2, S3 : Set;

begin

Sl.Insert (0);
Sl.Insert (10);
Sl.Insert (13);

S2.Insert (0);
S2.Insert (10);
S2.Insert (14);

S3.Insert (0);
S3.Insert (10);

New Line;

Put Line ("---- Set #1 ----");
Show Elements (S1);

New Line;

Put Line ("---- Set #2 ----");
Show Elements (S2);

New Line;

Put Line ("---- Set #3 ----");

Show Elements (S3);

New Line;
if S3.Is Subset (S1) then

Put_Line ("S3 is a subset of S1");
else

Put Line ("S3 is not a subset of S1");
end if;

S3 := S1 and S2;
Show Op (S3, "Intersection");
Show Elements (S3);

S3 := S1 or S2;
Show Op (S3, "Union");
Show_Elements (S3);

S3 :=S1 - S2;
Show Op (S3, "Difference");
Show Elements (S3);

S3 := S1 xor S2;
Show Op (S3, "Symmetric difference");
Show Elements (S3);

(continued from previous page)

(continues on next page)

220 Chapter 19.

Standard library: Containers

80

Introduction to Ada

(continued from previous page)
end Show Set Ops;

Code block metadata

Project: Courses.Intro To Ada.Standard Library.Show Set Ops
MD5: be9086591fc643e53facaf2ffeabc26d

Runtime output

---- Set #1 ----
Elements:

-0

- 10

- 13

---- Set #2 ----
Elements:

-0

- 10

- 14

---- Set #3 ----
Elements:

-0

- 10

S3 is a subset of S1

Intersection(set #1, set #2) has 2 elements
Elements:

-0

- 10

Union(set #1, set #2) has 4 elements
Elements:

-0

- 10

- 13

- 14

Difference(set #1, set #2) has 1 elements
Elements:
- 13

Symmetric difference(set #1, set #2) has 2 elements
Elements:

- 13

- 14

19.3 Indefinite maps

The previous sections presented containers for elements of definite types. Although most
examples in those sections presented Integer types as element type of the containers,
containers can also be used with indefinite types, an example of which is the String type.
However, indefinite types require a different kind of containers designed specially for them.

We'll also be exploring a different class of containers: maps. They associate a key with a
specific value. An example of a map is the one-to-one association between a person and
their age. If we consider a person's name to be the key, the value is the person's age.

19.3. Indefinite maps 221

© ©® N o U A W N K

T L N e <
© N o U A W N = O

Introduction to Ada

19.3.1 Hashed maps

Hashed maps are maps that make use of a hash as a key. The hash itself is calculated by
a function you provide.

© In other languages

Hashed maps are similar to dictionaries in Python and hashes in Perl. One of the main
differences is that these scripting languages allow using different types for the values
contained in a single map, while in Ada, both the type of key and value are specified in
the package instantiation and remains constant for that specific map. You can't have a
map where two elements are of different types or two keys are of different types. If you
want to use multiple types, you must create a different map for each and use only one
type in each map.

When instantiating a hashed map from Ada.Containers.Indefinite Hashed Maps, we
specify following elements:

* Key Type: type of the key
* Element Type: type of the element
* Hash: hash function for the Key Type

* Equivalent Keys: an equality operator (e.g. =) that indicates whether two keys are
to be considered equal.

- If the type specified in Key Type has a standard operator, you can use it, which
you do by specifying that operator as the value of Equivalent Keys.

In the next example, we'll use a string as a key type. We'll use the Hash function provided
by the standard library for strings (in the Ada.Strings package) and the standard equality
operator.

You add elements to a hashed map by calling Insert. If an element is already contained
in @ map M, you can access it directly by using its key. For example, you can change the
value of an element by callingM ("My Key") := 10. If the key is not found, an exception
is raised. To verify if a key is available, use the function Contains (as we've seen above in
the section on sets).

Let's see an example:

Listing 18: show_hashed_map.adb

with Ada.Containers.Indefinite Hashed Maps;
with Ada.Strings.Hash;

with Ada.Text IO; use Ada.Text IO;
procedure Show Hashed Map is

package Integer Hashed Maps is new
Ada.Containers.Indefinite_Hashed_Maps

(Key Type => String,
Element Type => Integer,
Hash => Ada.Strings.Hash,

Equivalent Keys => "=");
use Integer Hashed Maps;
M : Map;

-- Same as:
(continues on next page)

222 Chapter 19. Standard library: Containers

N o U A W N e

Introduction to Ada

(continued from previous page)

-- M : Integer Hashed Maps.Map;
begin

M.Include ("Alice", 24);

M.Include ("John", 40);

M.Include ("Bob", 28);

if M.Contains ("Alice") then
Put Line ("Alice's age is "
& Integer'Image (M ("Alice")));
end if;

-- Update Alice's age
-- Key must already exist in M.
-- Otherwise an exception is raised.
M ("Alice") := 25;
New Line; Put Line ("Name & Age:");
for C in M.Iterate loop

Put Line (Key (C) & ": "

& Integer'Image (M (C)));
end loop;

end Show Hashed Map;

Code block metadata

Project: Courses.Intro To Ada.Standard Library.Show Hashed Map
MD5: 6117775bd9ce2b14661448b100117ded

Runtime output

Alice's age is 24

Name & Age:
John: 40
Bob: 28
Alice: 25

19.3.2 Ordered maps

Ordered maps share many features with hashed maps. The main differences are:

* A hash function isn't needed. Instead, you must provide an ordering function (< oper-
ator), which the ordered map will use to order elements and allow fast access, O(log
N), using a binary search.

- If the type specified in Key Type has a standard < operator, you can use it in a
similar way as we did for Equivalent Keys above for hashed maps.

Let's see an example:

Listing 19: show _ordered _map.adb

with Ada.Containers.Indefinite Ordered Maps;
with Ada.Text IO; use Ada.Text IO;
procedure Show Ordered Map is

package Integer Ordered_Maps is new
(continues on next page)

19.3. Indefinite maps 223

10
11
12
13
14

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

Introduction to Ada

(continued from previous page)
Ada.Containers.Indefinite_Ordered_Maps
(Key Type => String,
Element Type => Integer);

use Integer Ordered Maps;

M : Map;

begin
M.Include ("Alice", 24);
M.Include ("John", 40);
M.Include ("Bob", 28);

if M.Contains ("Alice") then
Put Line ("Alice's age is "
& Integer'Image (M ("Alice")));
end if;

-- Update Alice's age
-- Key must already exist in M
M ("Alice") := 25;
New Line; Put Line ("Name & Age:");
for C in M.Iterate loop
Put Line (Key (C) & ": "

& Integer'Image (M (C)));
end loop;

end Show Ordered Map;

Code block metadata

Project: Courses.Intro To Ada.Standard Library.Show Ordered Map
MD5: 3deb3c685e767cee271b06e87727b086

Runtime output

Alice's age is 24

Name & Age:
Alice: 25
Bob: 28
John: 40

You can see a great similarity between the examples above and from the previous section.
In fact, since both kinds of maps share many operations, we didn't need to make extensive
modifications when we changed our example to use ordered maps instead of hashed maps.
The main difference is seen when we run the examples: the output of a hashed map is
usually unordered, but the output of a ordered map is always ordered, as implied by its
name.

19.3.3 Complexity

Hashed maps are generally the fastest data structure available to you in Ada if you need to
associate heterogeneous keys to values and search for them quickly. In most cases, they
are slightly faster than ordered maps. So if you don't need ordering, use hashed maps.

The Reference Manual requires the following average complexity of operations:

224 Chapter 19. Standard library: Containers

Introduction to Ada

Operations

Ordered Maps

Hashed Maps

Insert
Include
Replace
Delete
Exclude
Find

Subprogram using cursor

O((log N)?) or better

O(log N)

19.3.

Indefinite maps

225

Introduction to Ada

226 Chapter 19. Standard library: Containers

© @ N U A W N e

=
= o

1
2

CHAPTER
TWENTY

STANDARD LIBRARY: DATES & TIMES

The standard library supports processing of dates and times using two approaches:
e Calendar approach, which is suitable for handling dates and times in general,

* Real-time approach, which is better suited for real-time applications that require en-
hanced precision — for example, by having access to an absolute clock and handling
time spans. Note that this approach only supports times, not dates.

The following sections present these two approaches.

20.1 Date and time handling

The Ada.Calendar package supports handling of dates and times. Let's look at a simple
example:

Listing 1: display_current time.adb

with Ada.Text I0; use Ada.Text I0;
with Ada.Calendar; use Ada.Calendar;

with Ada.Calendar.Formatting;
use Ada.Calendar.Formatting;

procedure Display Current Time is

Now : Time := Clock;
begin
Put Line ("Current time: " & Image (Now));

end Display Current Time;

Code block metadata

Project: Courses.Intro To Ada.Standard Library.Display Current Time
MD5: 4a88069b33ecf80314b0164a472ff606

Runtime output

Current time: 2025-01-31 21:20:31

This example displays the current date and time, which is retrieved by a call to the Clock
function. We call the function Image from the Ada.Calendar.Formatting package to get
a String for the current date and time. We could instead retrieve each component using
the Split function. For example:

Listing 2: display_current_year.adb

with Ada.Text I0; wuse Ada.Text I0;
with Ada.Calendar; use Ada.Calendar;
(continues on next page)

227

© © N o u &~ W

© ® N o U A W N R

Introduction to Ada

(continued from previous page)

procedure Display Current Year is

Now : Time := Clock;
Now _Year : Year_Number;
Now Month : Month_Number;
Now Day : Day Number;
Now Seconds : Day Duration;
begin

Split (Now,

Now Year,

Now Month,

Now Day,

Now Seconds);
Put Line ("Current year is: "
& Year Number'Image (Now Year));
Put Line ("Current month is: "
& Month_Number'Image (Now Month));
Put Line ("Current day is: "
& Day Number'Image (Now Day));
end Display Current Year;

Code block metadata

Project: Courses.Intro To Ada.Standard Library.Display Current Year
MD5: fdf298ee97f225261ce3839ebd833bbe

Runtime output

Current year 1is: 2025
Current month is: 1
Current day is: 31

Here, we're retrieving each element and displaying it separately.

20.1.1 Delaying using date

You can delay an application so that it restarts at a specific date and time. We saw some-
thing similar in the chapter on tasking. You do this using a delay until statement. For

example:

Listing 3: display_delay_next specific_time.adb

with Ada.Text I0; use Ada.Text I0;
with Ada.Calendar; use Ada.Calendar;

with Ada.Calendar.Formatting;
use Ada.Calendar.Formatting;

with Ada.Calendar.Time Zones;
use Ada.Calendar.Time Zones;

procedure Display Delay Next Specific Time is
TZ : Time Offset UTC Time Offset;

Next : Time 1=

Ada.Calendar.Formatting.Time Of

(Year => 2018,
Month = 5,
Day =1,

(continues on next page)

228 Chapter 20. Standard library: Dates & Times

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

© ® N o U A W N R

e i < e
U A W N B O

Introduction to Ada

(continued from previous page)

Hour => 15,
Minute = 0,
Second = 0,

Sub _Second => 0.0,
Leap_Second => False,
Time Zone = TZ);

-- Next = 2018-05-01 15:00:00.00
-- (local time-zone)

begin
Put Line ("Let's wait until...");
Put Line (Image (Next, True, TZ));

delay until Next;

Put Line ("Enough waiting!");
end Display Delay Next Specific Time;

Code block metadata

Project: Courses.Intro To Ada.Standard Library.Display Delay Next Specific Time
MD5: 36ec2bdce7cle8d107fae54ef9852d3f

Runtime output

Let's wait until...
2018-05-01 15:00:00.00
Enough waiting!

In this example, we specify the date and time by initializing Next using a call to Time Of,
a function taking the various components of a date (year, month, etc) and returning an
element of the Time type. Because the date specified is in the past, the delay until
statement won't produce any noticeable effect. However, if we passed a date in the future,
the program would wait until that specific date and time arrived.

Here we're converting the time to the local timezone. If we don't specify a timezone, Co-
ordinated Universal Time (abbreviated to UTC) is used by default. By retrieving the time
offset to UTC with a call to UTC_Time_ Offset from the Ada.Calendar.Time Zones package,
we can initialize TZ and use it in the call to Time Of. This is all we need do to make the
information provided to Time Of relative to the local time zone.

We could achieve a similar result by initializing Next with a String. We can do this with a
call to Value from the Ada.Calendar.Formatting package. This is the modified code:

Listing 4: display_delay_next specific_time.adb

with Ada.Text I0; use Ada.Text IO0;
with Ada.Calendar; use Ada.Calendar;

with Ada.Calendar.Formatting;
use Ada.Calendar.Formatting;

with Ada.Calendar.Time Zones;
use Ada.Calendar.Time Zones;

procedure Display Delay Next Specific Time is
TZ : Time Offset UTC Time Offset;

Next : Time :
Ada.Calendar.Formatting.Value

("2018-05-01 15:00:00.00", TZ);

(continues on next page)

20.1. Date and time handling 229

16
17
18
19
20
21
22
23
24
25

© ©® N o U A W N R

e L e <
® N o U A W N K O

Introduction to Ada

(continued from previous page)

-- Next = 2018-05-01 15:00:00.00
- - (local time-zone)

begin
Put Line ("Let's wait until...");
Put Line (Image (Next, True, TZ));

delay until Next;

Put Line ("Enough waiting!");
end Display Delay Next Specific Time;

Code block metadata

Project: Courses.Intro To Ada.Standard Library.Display Delay Next Specific_ Time
MD5: fdf6ad7fca303d4d7bd444c23ellc7bd

Runtime output

Let's wait until...
2018-05-01 15:00:00.00
Enough waiting!

In this example, we're again using TZ in the call to Value to adjust the input time to the
current time zone.

In the examples above, we were delaying to a specific date and time. Just like we saw in
the tasking chapter, we could instead specify the delay relative to the current time. For
example, we could delay by 5 seconds, using the current time:

Listing 5: display_delay next.adb

with Ada.Calendar; use Ada.Calendar;
with Ada.Text I0; use Ada.Text I0;

procedure Display Delay Next is

D : Duration := 5.0;
-- ~ seconds
Now : Time Clock;

Next : Time Now + D;
-- ~ use duration to
X specify next
= point in time
begin
Put Line ("Let's wait "
& Duration'Image (D)
& " seconds...");
delay until Next;
Put_Line ("Enough waiting!");
end Display Delay Next;

Code block metadata

Project: Courses.Intro To Ada.Standard Library.Display Delay Next
MD5: 58360d93388c3fe027c3d9d67389%efc7

Runtime output

Let's wait 5.000000000 seconds...
Enough waiting!

Here, we're specifying a duration of 5 seconds in D, adding it to the current time from Now,
and storing the sum in Next. We then use it in the delay until statement.

230 Chapter 20. Standard library: Dates & Times

© @ N U A W N e

e e
w N P o

W @ N U A W N &

Introduction to Ada

20.2 Real-time

In addition to Ada.Calendar, the standard library also supports time operations for real-time
applications. These are included in the Ada.Real Time package. This package also include
a Time type. However, in the Ada.Real Time package, the Time type is used to represent
an absolute clock and handle a time span. This contrasts with the Ada.Calendar, which
uses the Time type to represent dates and times.

In the previous section, we used the Time type from the Ada.Calendar and the delay until
statement to delay an application by 5 seconds. We could have used the Ada.Real Time
package instead. Let's modify that example:

Listing 6: display_delay _next real_time.adb

with Ada.Text I0; use Ada.Text IO;
with Ada.Real Time; use Ada.Real Time;

procedure Display Delay Next Real Time is

D : Time Span := Seconds (5);
Next : Time := Clock + D;
begin

Put Line ("Let's wait "
& Duration'Image (To Duration (D))
& " seconds...");
delay until Next;
Put Line ("Enough waiting!");
end Display Delay Next Real Time;

Code block metadata

Project: Courses.Intro To Ada.Standard Library.Display Delay Next Real Time
MD5: aB80e96c4ac7bd3ba7813f983b10ch038

Runtime output

Let's wait 5.000000000 seconds...
Enough waiting!

The main difference is that D is now a variable of type Time Span, defined in the Ada.
Real Time package. We call the function Seconds to initialize D, but could have gotten a
finer granularity by calling Nanoseconds instead. Also, we need to first convert D to the
Duration type using To Duration before we can display it.

20.2.1 Benchmarking

One interesting application using the Ada.Real Time package is benchmarking. We've
used that package before in a previous section when discussing tasking. Let's look at an
example of benchmarking:

Listing 7: display_benchmarking.adb

with Ada.Text I0; use Ada.Text IO;
with Ada.Real Time; use Ada.Real Time;

procedure Display Benchmarking is

procedure Computational Intensive App is
begin
delay 5.0;
end Computational Intensive App;
(continues on next page)

20.2. Real-time 231

© ® N o U A W N R

N N N N N B B BB R e e s s
A W N P O © ® N O 00 A W N B O

Introduction to Ada

(continued from previous page)

Start Time, Stop Time : Time;
Elapsed Time : Time_ Span;

begin
Start Time := Clock;

Computational Intensive App;

Stop Time =

= Clock;
Elapsed Time :=

C
Stop Time - Start Time;
Put Line ("Elapsed time: "
& Duration'Image
(To Duration (Elapsed Time))
& " seconds");
end Display Benchmarking;

Code block metadata

Project: Courses.Intro To Ada.Standard Library.Display Benchmarking
MD5: 4b20940cb613d3f634be5224f409efeb

Runtime output

Elapsed time: 5.074520467 seconds

This example defines a dummy Computational Intensive App implemented using a sim-
ple delay statement. We initialize Start_Time and Stop Time from the then-current clock
and calculate the elapsed time. By running this program, we see that the time is roughly 5
seconds, which is expected due to the delay statement.

A similar application is benchmarking of CPU time. We can implement this using the Exe-
cution Time package. Let's modify the previous example to measure CPU time:

Listing 8: display_benchmarking cpu_time.adb

with Ada.Text I0; use Ada.Text I0;
with Ada.Real Time; use Ada.Real Time;
with Ada.Execution Time; use Ada.Execution Time;

procedure Display Benchmarking CPU Time is
procedure Computational Intensive App is
begin
delay 5.0;
end Computational Intensive App;

Start Time, Stop Time : CPU Time;
Elapsed Time : Time Span;

begin
Start Time := Clock;

Computational Intensive App;

lock;
top Time - Start Time;

Stop Time = C
Elapsed Time := S

Put Line ("CPU time: "
& Duration'Image
(continues on next page)

232 Chapter 20. Standard library: Dates & Times

25
26
27

© ©® N o U A W N R

W W W W oWw W W W W N NNNNNNNNWN®KRERHRB B B B B B B
® N O 0 A W N P O © ® N 60 U & W N B O © ® N 6 U A W N B O

Introduction to Ada

(continued from previous page)
(To Duration (Elapsed Time))
& " seconds");
end Display Benchmarking CPU Time;

Code block metadata

Project: Courses.Intro To Ada.Standard Library.Display Benchmarking CPU Time
MD5: ba83ddbd05db523479be5692c4134901

Runtime output

CPU time: 0.000134883 seconds

In this example, Start _Time and Stop Time are of type CPU_Time instead of Time. How-
ever, we still call the Clock function to initialize both variables and calculate the elapsed
time in the same way as before. By running this program, we see that the CPU time is sig-
nificantly lower than the 5 seconds we've seen before. This is because the delay statement
doesn't require much CPU time. The results will be different if we change the implementa-
tion of Computational Intensive App to use a mathematical function in a long loop. For
example:

Listing 9: display_benchmarking_math.adb

with Ada.Text I0; use Ada.Text I0;
with Ada.Real Time; use Ada.Real Time;
with Ada.Execution Time; use Ada.Execution Time;

with Ada.Numerics.Generic Elementary Functions;
procedure Display Benchmarking Math is

procedure Computational Intensive App is
package Funcs is new
Ada.Numerics.Generic_Elementary_Functions
(Float Type => Long Long Float);
use Funcs;

X : Long_Long_Float;
begin
for I in 0 .. 1 000 000 loop
X := Tan (Arctan
(Tan (Arctan
(Tan (Arctan
(Tan (Arctan
(Tan (Arctan
(Tan (Arctan
(0.577)))0)))))));
end loop;
end Computational Intensive App;

procedure Benchm Elapsed Time is
Start _Time, Stop Time : Time;
Elapsed Time : Time Span;

begin
Start Time := Clock;

Computational Intensive App;

Clock;
Stop Time - Start Time;

Stop_Time
Elapsed Time :

(continues on next page)

20.2. Real-time 233

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

63
64
65
66

Introduction to Ada

Put Line ("Elapsed time: "
& Duration'Image

(continued from previous page)

(To Duration (Elapsed Time))

& " seconds");
end Benchm Elapsed Time;

procedure Benchm CPU Time is

Start Time, Stop Time : CPU Time;
Elapsed Time : Time_Span;

begin
Start Time := Clock;

Computational Intensive App;

Stop_Time Clock;

Elapsed Time :

Put _Line ("CPU time: "
& Duration'Image

Stop Time - Start Time;

(To_Duration (Elapsed Time))

& " seconds");
end Benchm CPU Time;
begin
Benchm Elapsed Time;
Benchm CPU Time;
end Display Benchmarking Math;

Code block metadata

Project: Courses.Intro To Ada.Standard Library.Display Benchmarking Math
MD5: 06fe96bf03321c248dd1ed843648cf0Ob

Runtime output

Elapsed time: 1.002245290 seconds
CPU time: 0.991657087 seconds

Now that our dummy Computational Intensive App involves mathematical operations
requiring significant CPU time, the measured elapsed and CPU time are much closer to

each other than before.

234

Chapter 20. Standard library: Dates & Times

CHAPTER
TWENTYONE

STANDARD LIBRARY: STRINGS

In previous chapters, we've seen source-code examples using the String type, which is a
fixed-length string type — essentialy, it's an array of characters. In many cases, this data
type is good enough to deal with textual information. However, there are situations that
require more advanced text processing. Ada offers alternative approaches for these cases:

* Bounded strings: similar to fixed-length strings, bounded strings have a maximum
length, which is set at its instantiation. However, bounded strings are not arrays of
characters. At any time, they can contain a string of varied length — provided this
length is below or equal to the maximum length.

* Unbounded strings: similar to bounded strings, unbounded strings can contain strings
of varied length. However, in addition to that, they don't require a maximum length
to be specified at the declaration of a string. In this sense, they are very flexible.

© For further reading...

Although we don't specify a maximum length for unbounded strings, the limit is defined
by the Reference Manual?!:

An object of type Unbounded String represents a String whose low bound is
1 and whose length can vary conceptually between 0 and Natural'lLast.

Therefore, the implicit maximum length is Natural'Last. In contrast, bounded strings
have an explicit maximum length that is specified when the Generic Bounded Length
package is instantiated (as we'll see later on (page 240)).

Another difference between bounded and unbounded strings is the strategy that is used
by the compiler to allocate memory for those strings. When using GNAT, bounded strings
are allocated on the stack, while unbounded strings are allocated on the heap.

The following sections present an overview of the different string types and common oper-
ations for string types.

21.1 String operations

Operations on standard (fixed-length) strings are available in the Ada.Strings.Fixed pack-
age. As mentioned previously, standard strings are arrays of elements of Character type
with a fixed-length. That's why this child package is called Fixed.

One of the simplest operations provided is counting the number of substrings available in
a string (Count) and finding their corresponding indices (Index). Let's look at an example:

21 http://www.ada-auth.org/standards/12rm/htm|/RM-A-4-5.htm|

235

http://www.ada-auth.org/standards/12rm/html/RM-A-4-5.html
http://www.ada-auth.org/standards/12rm/html/RM-A-4-5.html

W N U A W N e

—
o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

A W N R

Introduction to Ada

Listing 1: show_find_substring.adb

with Ada.Strings.Fixed; use Ada.Strings.Fixed;
with Ada.Text I0; use Ada.Text IO;

procedure Show Find Substring is

S : String := "Hello" & 3 * " World";
: constant String := "World";
Idx : Natural;
Cnt : Natural;
begin
Cnt := Ada.Strings.Fixed.Count
(Source =>§,
Pattern => P);

Put Line ("String: " & S);
Put Line ("Count for '" & P & "': "
& Natural'Image (Cnt));

Idx := 0;
for I in 1 .. Cnt loop
Idx := Index
(Source => S,
Pattern => P,
From = Idx + 1);

Put Line ("Found instance of '"
& P & "' at position: "
& Natural'Image (Idx));
end loop;

end Show Find Substring;

Code block metadata

Project: Courses.Intro To Ada.Standard Library.Show Find Substring
MD5: faa8373bf9aec9f9f5507cf55590b0cO

Runtime output

String: Hello World World World

Count for 'World': 3

Found instance of 'World' at position: 7
Found instance of 'World' at position: 13
Found instance of 'World' at position: 19

We initialize the string S using a multiplication. Writing "Hello" & 3 * "

World" creates

the string Hello World World World. We then call the function Count to get the number
of instances of the word World in S. Next we call the function Index in a loop to find the

index of each instance of World in S.

That example looked for instances of a specific substring. In the next example, we retrieve
all the words in the string. We do this using Find Token and specifying whitespaces as

separators. For example:

Listing 2: show_find_words.adb

with Ada.Strings; use Ada.Strings;

with Ada.Strings.Fixed; use Ada.Strings.Fixed;
with Ada.Strings.Maps; use Ada.Strings.Maps;
with Ada.Text I0; use Ada.Text IO;

(continues on next page)

236 Chapter 21. Standard library: Strings

© @ N o u

Introduction to Ada

(continued from previous page)

procedure Show Find Words is

S : String := "Hello" & 3 * " World";
F : Positive;
L : Natural;
I : Natural := 1;
: constant Character Set :=
To Set (' ');
begin

Put Line ("String: " & S);
Put Line ("String length: "
& Integer'Image (S'Length));

while I in S'Range loop

Find Token
(Source == S,
Set => Whitespace,
From = I,
Test => Qutside,
First = F,
Last = L);

exit when L = 0;

Put Line ("Found word instance at position "
& Natural'Image (F)
&II: III&S (F . L) &IIIII);

-- & "-" & F'Img & "-" & L'Img

I =L+ 1;
end loop;
end Show Find Words;

Code block metadata

Project: Courses.Intro To Ada.Standard Library.Show Find Words
MD5: e622f489af5901e5d31f314efc3324d2

Runtime output

String: Hello World World World

String length: 23

Found word instance at position 1: 'Hello'

Found word instance at position 7: 'World'

Found word instance at position 13: 'World'
Found word instance at position 19: 'World'

We pass a set of characters to be used as delimitators to the procedure Find Token. This
set is a member of the Character Set type from the Ada.Strings.Maps package. We call
the To_Set function (from the same package) to initialize the set to Whitespace and then
call Find_Token to loop over each valid index and find the starting index of each word. We
pass Outside to the Test parameter of the Find Token procedure to indicate that we're
looking for indices that are outside the Whitespace set, i.e. actual words. The First and
Last parameters of Find Token are output parameters that indicate the valid range of the
substring. We use this information to display the string (S (F .. L)).

The operations we've looked at so far read strings, but don't modify them. We next discuss
operations that change the content of strings:

21.1. String operations 237

W N U A W N e

AOA DWW W W W W W W W W N NNDNNNNNNNERERBR B B B B B B B
N B O © ® N o U A W N P © © ©® N 0 U & W N B O © ® N 060 00 & W N = O

Introduction to Ada

Operation Description

Insert Insert substring in a string
Overwrite Overwrite a string with a substring
Delete Delete a substring

Trim Remove whitespaces from a string

All these operations are available both as functions or procedures. Functions create a new
string but procedures perform the operations in place. The procedure will raise an excep-
tion if the constraints of the string are not satisfied. For example, if we have a string S
containing 10 characters, inserting a string with two characters (e.g. "!!") into it produces
a string containing 12 characters. Since it has a fixed length, we can't increase its size. One
possible solution in this case is to specify that truncation should be applied while inserting
the substring. This keeps the length of S fixed. Let's see an example that makes use of
both function and procedure versions of Insert, Overwrite, and Delete:

Listing 3: show_adapted_strings.adb

with Ada.Strings; use Ada.Strings;
with Ada.Strings.Fixed; use Ada.Strings.Fixed;
with Ada.Text IO; use Ada.Text IO;

procedure Show Adapted Strings is

S : String := "Hello World";
: constant String := "World";
: constant String := "Beautiful";

procedure Display Adapted String
(Source : String;
Before : Positive;
New Item : String;
Pattern : String)
is

S Ins In : String := Source;
S Ovr_In : String := Source;
S Del In : String := Source;

S Ins : String :=
Insert (Source,
Before,
New Item & " ");
S Ovr : String :=
Overwrite (Source,
Before,
New Item);
S Del : String :=
Trim (Delete (Source,
Before,
Before +
Pattern'Length - 1),
Ada.Strings.Right);

begin
Insert (S Ins In,
Before,
New Item,
Right);

Overwrite (S _Ovr In,
Before,
(continues on next page)

238 Chapter 21. Standard library: Strings

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

Introduction to Ada

(continued from previous page)

New Item,
Right);

Delete (S Del In,
Before,
Before + Pattern'Length - 1);

Put Line ("Original: '"
& Source & "'");

Put _Line ("Insert: t
&S Ins & "'");
Put Line ("Overwrite: '"
&S Ovr & "'");
Put Line ("Delete: tn
& S Del & "'");
Put Line ("Insert (in-place): '"
& S Ins In & "'");
Put_Line ("Overwrite (in-place):
&S Ovr In & "'");
Put Line ("Delete (in-place):
& S Del In & "'");
end Display Adapted String;

Idx : Natural;
begin
Idx := Index
(Source =>§,
Pattern => P);

if Idx > 0 then
Display Adapted String (S, Idx, N, P);
end if;
end Show Adapted Strings;

Code block metadata

Project: Courses.Intro To Ada.Standard Library.Show Adapted Strings
MD5: b31b6bc94d8bdbec717c6b6b2534bebb

Runtime output

Original: 'Hello World'

Insert: 'Hello Beautiful World'
Overwrite: 'Hello Beautiful'
Delete: 'Hello'

Insert (in-place): 'Hello Beaut'

Overwrite (in-place): 'Hello Beaut'
Delete (in-place): 'Hello !

In this example, we look for the index of the substring World and perform operations on
this substring within the outer string. The procedure Display Adapted String uses both
versions of the operations. For the procedural version of Insert and Overwrite, we apply
truncation to the right side of the string (Right). For the Delete procedure, we specify
the range of the substring, which is replaced by whitespaces. For the function version of
Delete, we also call Trim which trims the trailing whitespace.

21.1. String operations 239

© ©® N o U A W N R

N i e e o < =
B O © ® N o U B W N H O

Introduction to Ada

21.2 Limitation of fixed-length strings

Using fixed-length strings is usually good enough for strings that are initialized when they
are declared. However, as seen in the previous section, procedural operations on strings
cause difficulties when done on fixed-length strings because fixed-length strings are arrays
of characters. The following example shows how cumbersome the initialization of fixed-
length strings can be when it's not performed in the declaration:

Listing 4: show_char_array.adb
with Ada.Text I0; use Ada.Text IO;
procedure Show Char Array is

S : String (1 .. 15);
-- Strings are arrays of Character

begin
S := "Hello Do
-- Alternatively:
-- #1:
-- S(1..5) = "Hello";
-- S (6 .. S'Last) := (others == "' "');
-- #2:
o S:z (IHI, |e|’ IZI, Ill, |O|,
.- others => "' ');

Put Line ("String: " & S);
Put Line ("String Length: "
& Integer'Image (S'Length));
end Show Char Array;

Code block metadata

Project: Courses.Intro To Ada.Standard Library.Show Char Array
MD5: 9f3df03c9c5336184139cf2a22f2cb7e

Runtime output

String: Hello
String Length: 15

In this case, we can't simply write S := "Hello" because the resulting array of characters
for the Hello constant has a different length than the S string. Therefore, we need to
include trailing whitespaces to match the length of S. As shown in the example, we could
use an exact range for the initialization (S (1 .. 5)) or use an explicit array of individual
characters.

When strings are initialized or manipulated at run-time, it's usually better to use bounded
or unbounded strings. An important feature of these types is that they aren't arrays, so the
difficulties presented above don't apply. Let's start with bounded strings.

21.3 Bounded strings

Bounded strings are defined in the Ada.Strings.Bounded.Generic Bounded Length pack-
age. Because this is a generic package, you need to instantiate it and set the maximum
length of the bounded string. You can then declare bounded strings of the Bounded String
type.

Both bounded and fixed-length strings have a maximum length that they can hold. How-

240 Chapter 21. Standard library: Strings

W W N U A W N e

AOA DWW W W W W W WW W N NNDNNNNNNNEREBRBR B B B B B B B
N B O © ® N o U A W N P © © ® N 0 0 & W N B O © ® N oo 00 & W N = O

Introduction to Ada

ever, bounded strings are not arrays, so initializing them at run-time is much easier. For

example:
Listing 5: show_bounded_string.adb
with Ada.Strings; use Ada.Strings;
with Ada.Strings.Bounded;
with Ada.Text I0; use Ada.Text IO0;

procedure Show Bounded String is
package B_Str is new
Ada.Strings.Bounded.Generic_Bounded_Length
(Max => 15);
use B Str;

S1, S2 : Bounded String;

procedure Display String Info
(S : Bounded String)

is

begin
Put Line ("String: " & To_String (S));
Put_Line ("String Length: "

& Integer'Image (Length (S)));

-- String:
-- S'Length => ok
-- Bounded String:
-- S'Length => compilation error:
-- bounded strings are
- - not arrays!

Put _Line ("Max. Length: "
& Integer'Image (Max Length));
end Display String Info;

begin
S1 := To Bounded String ("Hello");
Display String Info (S1);

S2 := To Bounded String ("Hello World");
Display String Info (S2);

S1 := To_Bounded String
("Something longer to say here...",
Right);
Display String Info (S1);
end Show Bounded String;

Code block metadata

Project: Courses.Intro To Ada.Standard Library.Show Bounded String

MD5: a51fdeacfd43923145ee92bf5c72ecd6

Runtime output

String: Hello

String Length: 5

Max. Length: 15
String: Hello World
String Length: 11

Max. Length: 15
String: Something longe

(continues on next page)

21.3. Bounded strings

241

©W @ N U A W N e

NONONONNNNN B H BB R e el
N o0 A W N B O ©W ® N O U R W N BB O

Introduction to Ada

(continued from previous page)

String Length: 15
Max. Length: 15

By using bounded strings, we can easily assign to S1 and S2 multiple times during execu-
tion. We use the To_Bounded Stringand To_String functions to convert, in the respective
direction, between fixed-length and bounded strings. A call to To Bounded String raises
an exception if the length of the input string is greater than the maximum capacity of the
bounded string. To avoid this, we can use the truncation parameter (Right in our example).

Bounded strings are not arrays, so we can't use the 'Length attribute as we did for fixed-
length strings. Instead, we call the Length function, which returns the length of the bounded
string. The Max_Length constant represents the maximum length of the bounded string that
we set when we instantiated the package.

After initializing a bounded string, we can manipulate it. For example, we can append
a string to a bounded string using Append or concatenate bounded strings using the &
operator. Like so:

Listing 6: show_bounded_string op.adb

with Ada.Strings; use Ada.Strings;
with Ada.Strings.Bounded;
with Ada.Text IO; use Ada.Text IO;

procedure Show Bounded String Op is
package B_Str is new
Ada.Strings.Bounded.Generic_Bounded_Length
(Max => 30);
use B Str;

S1, S2 : Bounded String;

begin
S1 := To Bounded String ("Hello");
-- Alternatively:

-- A := Null Bounded String & "Hello";

Append (S1, " World");
-- Alternatively:
- - Append (A, " World", Right);

Put Line ("String: " & To_String (S1));

S2 := To Bounded String ("Hello!");

S1 :=S1& " " & S2;

Put Line ("String: " & To_String (S1));
end Show Bounded String Op;

Code block metadata

Project: Courses.Intro To Ada.Standard Library.Show Bounded String Op
MD5: c7c6a840c314a9cd9f75aac082a63159

Runtime output

String: Hello World
String: Hello World Hello!

We can initialize a bounded string with an empty string using the Null Bounded String
constant. Also, we can use the Append procedure and specify the truncation mode like we
do with the To_Bounded String function.

242 Chapter 21. Standard library: Strings

©W @ N U A W N &

e e <
U A W N B O

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

Introduction to Ada

21.4 Unbounded strings

Unbounded strings are defined in the Ada.Strings.Unbounded package. This is not a
generic package, so we don't need to instantiate it before using the Unbounded String
type. As you may recall from the previous section, bounded strings require a package
instantiation.

Unbounded strings are similar to bounded strings. The main difference is that they can
hold strings of any size and adjust according to the input string: if we assign, e.g., a 10-
character string to an unbounded string and later assign a 50-character string, internal
operations in the container ensure that memory is allocated to store the new string. In
most cases, developers don't need to worry about these operations. Also, no truncation is
necessary.

Initialization of unbounded strings is very similar to bounded strings. Let's look at an ex-
ample:

Listing 7: show_unbounded_string.adb

with Ada.Text IO0; use Ada.Text IO;
with Ada.Strings; use Ada.Strings;

with Ada.Strings.Unbounded;
use Ada.Strings.Unbounded;

procedure Show Unbounded String is
S1, S2 : Unbounded String;

procedure Display String Info
(S : Unbounded String)
is
begin
Put Line ("String: " & To _String (S));
Put _Line ("String Length: "
& Integer'Image (Length (S)));
end Display String Info;
begin
S1 := To Unbounded String ("Hello");
-- Alternatively:

-- A := Null Unbounded String & "Hello";
Display String Info (S1);

S2 := To _Unbounded String ("Hello World");
Display String Info (S2);

S1 := To_Unbounded String
("Something longer to say here...");
Display String Info (S1);
end Show _Unbounded String;

Code block metadata

Project: Courses.Intro To Ada.Standard Library.Show Unbounded String
MD5: 904402992c96eb393b875d1b7cf49clb

Runtime output

String: Hello
String Length: 5
String: Hello World
(continues on next page)

21.4. Unbounded strings 243

W @ N U A W N e

T e e
©® N o U A W N B O

Introduction to Ada

(continued from previous page)
String Length: 11
String: Something longer to say here...
String Length: 31

Like bounded strings, we can assign to S1 and S2 multiple times during execution and use
the To Unbounded String and To String functions to convert back-and-forth between
fixed-length strings and unbounded strings. However, in this case, truncation is not needed.

And, just like for bounded strings, you can use the Append procedure and the & operator for
unbounded strings. For example:

Listing 8: show_unbounded_string_op.adb
with Ada.Text IO; use Ada.Text IO;

with Ada.Strings.Unbounded;
use Ada.Strings.Unbounded;

procedure Show Unbounded String Op is
S1, S2 : Unbounded String :=
Null Unbounded String;

begin
S1 := S1 & "Hello";
S2 :=S2 & "Hello!";

Append (S1, " World");
Put Line ("String: " & To_String (S1));

S1 :=S1& " " & S2;
Put Line ("String: " & To_String (S1));
end Show Unbounded String Op;

Code block metadata

Project: Courses.Intro To Ada.Standard Library.Show Unbounded String Op
MD5: 806e24a6dd0bc87e76173a22e42ba390

Runtime output

String: Hello World
String: Hello World Hello!

In this example, we're concatenating the unbounded S1 and S2 strings with the "Hello"
and "Hello!" strings, respectively. Also, we're using the Append procedure, just like we did
with bounded strings.

244 Chapter 21. Standard library: Strings

N o U A W N &

CHAPTER
TWENTYTWO

STANDARD LIBRARY: FILES AND STREAMS

Ada provides different approaches for file input/output (1/0):

Text I/0, which supports file I/O in text format, including the display of information on
the console.

Sequential 1/0, which supports file 1/0O in binary format written in a sequential fashion
for a specific data type.

Direct I/0, which supports file I/O in binary format for a specific data type, but also
supporting access to any position of a file.

Stream I/0O, which supports I/0 of information for multiple data types, including objects
of unbounded types, using files in binary format.

This table presents a summary of the features we've just seen:

File /O option Format Random access Data types

Text I/O text string type
Sequential I/O binary single type
Direct 1/O binary v single type
Stream 1/O binary v multiple types

In the following sections, we discuss details about these I/O approaches.

22.1 Text 1/0

In most parts of this course, we used the Put_Line procedure to display information on the
console. However, this procedure also accepts a File_Type parameter. For example, you
can select between standard output and standard error by setting this parameter explicitly:

Listing 1: show std_text out.adb

with Ada.Text IO; use Ada.Text IO;

procedure Show Std Text Out is
begin
Put Line (Standard Output, "Hello World #1");
Put Line (Standard Error, "Hello World #2");
end Show Std Text Out;

Code block metadata

Project: Courses.Intro To Ada.Standard Library.Show Std Text Out

MD5:

4d75bd2906226897244e3d2a611c9725

Runtime output

245

© ©® N o U A W N R

T e e i =
©® N o U A W N R O

©® N O U A W N R

Introduction to Ada

Hello World #1
Hello World #2

You can also use this parameter to write information to any text file. To create a new file for
writing, use the Create procedure, which initializes a File_Type element that you can later
pass to Put Line (instead of, e.g., Standard Output). After you finish writing information,
you can close the file by calling the Close procedure.

You use a similar method to read information from a text file. However, when opening the
file, you must specify that it's an input file (In_File) instead of an output file. Also, instead
of calling the Put_Line procedure, you call the Get Line function to read information from
the file.

Let's see an example that writes information into a new text file and then reads it back from
the same file:

Listing 2: show_simple_text file_io.adb
with Ada.Text IO0; use Ada.Text IO;

procedure Show Simple Text File IO is

F : File_Type;

: constant String := "simple.txt";

begin

Create (F, Out File, File Name);

Put Line (F, "Hello World #1");

Put Line (F, "Hello World #2");

Put Line (F, "Hello World #3");

Close (F);

Open (F, In File, File Name);
while not End Of File (F) loop
Put Line (Get Line (F));
end loop;
Close (F);
end Show Simple Text File IO;

Code block metadata

Project: Courses.Intro To Ada.Standard Library.Show Simple Text File IO
MD5: 7461e946eefl8c93219fadce3afbblea

Runtime output

Hello World #1
Hello World #2
Hello World #3

In addition to the Create and Close procedures, the standard library also includes a Reset
procedure, which, as the name implies, resets (erases) all the information from the file. For
example:

Listing 3: show_text file reset.adb
with Ada.Text IO0; use Ada.Text IO;

procedure Show Text File Reset is
F : File_Type;
: constant String := "simple.txt";
begin
Create (F, Out File, File Name);
Put Line (F, "Hello World #1");
(continues on next page)

246 Chapter 22. Standard library: Files and streams

10
11
12
13
14
15
16
17
18

© ® N o U A W N R

D T S T R N ~ T I R
S © ® N o u B W N B O

Introduction to Ada

(continued from previous page)
Reset (F);
Put Line (F, "Hello World #2");
Close (F);

Open (F, In File, File Name);
while not End Of File (F) loop
Put Line (Get Line (F));
end loop;
Close (F);
end Show Text File Reset;

Code block metadata

Project: Courses.Intro To Ada.Standard Library.Show Text File Reset
MD5: 5e5498f03b2c829513af062c5959fc93

Runtime output

Hello World #2

By running this program, we notice that, although we've written the first string ("Hello
World #1") to the file, it has been erased because of the call to Reset.

In addition to opening a file for reading or writing, you can also open an existing file and
append to it. Do this by calling the Open procedure with the Append File option.

When calling the Open procedure, an exception is raised if the specified file isn't found.
Therefore, you should handle exceptions in that context. The following example deletes a
file and then tries to open the same file for reading:

Listing 4: show_text file_input_except.adb
with Ada.Text IO; use Ada.Text IO;

procedure Show Text File Input Except is
F : File_Type;
: constant String := "simple.txt";
begin
-- Open output file and delete it
Create (F, Out File, File Name);
Delete (F);

-- Try to open deleted file
Open (F, In File, File Name);
Close (F);
exception
when Name Error =>
Put Line ("File does not exist");
when others =>
Put Line
("Error while processing input file");
end Show Text File Input Except;

Code block metadata

Project: Courses.Intro To Ada.Standard Library.Show Text File Input Except
MD5: c8d257091831c48d10b6e70e34b4261b

Runtime output

File does not exist

22.1. Textl/O 247

W N U A W N e

WONON NN NNNNNNR B B 2 o2 op e e e e
S © ® N o U A W N B O © ® N O U A~ W N B O

Introduction to Ada

In this example, we create the file by calling Create and then delete it by calling Delete.
After the call to Delete, we can no longer use the File_Type element. After deleting the
file, we try to open the non-existent file, which raises a Name_Error exception.

22.2 Sequential 1/0

The previous section presented details about text file /0. Here, we discuss doing file I/O in
binary format. The first package we'll explore is the Ada.Sequential I0 package. Because
this package is a generic package, you need to instantiate it for the data type you want to
use for file I/0. Once you've done that, you can use the same procedures we've seen in the
previous section: Create, Open, Close, Reset and Delete. However, instead of calling the
Get Line and Put Line procedures, you'd call the Read and Write procedures.

In the following example, we instantiate the Ada.Sequential IO package for floating-point
types:

Listing 5: show_seq float_io.adb

with Ada.Text I0;
with Ada.Sequential I0;

procedure Show Seq Float IO is
package Float_IO is
new Ada.Sequential IO (Float);
use Float IO;

F : Float I0.File_Type;
: constant String :=
“float file.bin";

begin
Create (F, Out File, File Name);
Write (F, 1.5);
Write (F, 2.4);
Write (F, 6.7);
Close (F);
declare
Value : Float;
begin
Open (F, In File, File Name);
while not End O0f File (F) loop
Read (F, Value);
Ada.Text I0.Put Line
(Float'Image (Value));
end loop;
Close (F);
end;

end Show Seq Float I0;

Code block metadata

Project: Courses.Intro To Ada.Standard Library.Show Seq Float IO
MD5: 27aa5daf92cba5df23fdc55¢c3578aa34

Runtime output

1.50000E+00
2.40000E+00
6.70000E+00

We use the same approach to read and write complex information. The following example

248 Chapter 22. Standard library: Files and streams

© @ N U A W N R

AR DA W W OW W W W W WWWNNNDNNNNNNNR®BRBR B B B B B B B
N B O O ® N o U A W N P O © ® N 0 U & WN RO © ® N 6 00 o W N B O

43

Introduction to Ada

uses a record that includes a Boolean and a floating-point value:

Listing 6: show_seq_rec_io.adb

with Ada.Text I0;
with Ada.Sequential I0;

procedure Show Seq Rec IO is
type Num_Info is record
Valid : Boolean := False;
Value : Float;
end record;

procedure Put Line (N : Num Info) is
begin
if N.Valid then
Ada.Text I0.Put Line
(" (ok, !
& Float'Image (N.value) & ")");
else
Ada.Text I0.Put Line
("(not ok, -----------)")
end if;
end Put Line;

package Num Info IO is new
Ada.Sequential IO (Num Info);
use Num_Info IO;

F : Num Info IO.File_Type;
: constant String :=
"float file.bin";

begin
Create (F, Out File, File Name);
Write (F, (True, 1.5));
Write (F, (False, 2.4));
Write (F, (True, 6.7));
Close (F);
declare
Value : Num Info;
begin

Open (F, In _File, File Name);

while not End O0f File (F) loop
Read (F, Value);
Put Line (Value);

end loop;

Close (F);

end;
end Show Seq Rec I0;

Code block metadata

Project: Courses.Intro To Ada.Standard Library.Show Seq Rec IO
MD5: a88b1428cc50745dce0509087e74adb7

Runtime output

(ok, 1.50000E+00)
(not ok, -----------)
(ok, 6.70000E+00)

As the example shows, we can use the same approach we used for floating-point types to

22.2. Sequential 1/0

249

© ©® N o U A W N R

NN NN NN NNNNB B B B 2 s e e e e
© ® N o U B W N B O © ® N 0 0 A W N B O

Introduction to Ada

perform file I/O for this record. Once we instantiate the Ada.Sequential I0 package for
the record type, file I/O operations are performed the same way.

22.3 Direct 1/O

Direct 1/O is available in the Ada.Direct I0 package. This mechanism is similar to the
sequential I/O approach just presented, but allows us to access any position in the file. The
package instantiation and most operations are very similar to sequential I/0. To rewrite
the Show Seq Float IO application presented in the previous section to use the Ada.
Direct IO package, we just need to replace the instances of the Ada.Sequential IO pack-
age by the Ada.Direct IO package. This is the new source code:

Listing 7: show_dir_float io.adb

with Ada.Text I0;
with Ada.Direct I0;

procedure Show Dir Float IO is
package Float IO is new Ada.Direct IO (Float);
use Float IO;

F : Float I0.File_Type;
: constant String :=
“float file.bin";

begin
Create (F, Out File, File Name);
Write (F, 1.5);
Write (F, 2.4);
Write (F, 6.7);
Close (F);
declare
Value : Float;
begin
Open (F, In File, File Name);
while not End O0f File (F) loop
Read (F, Value);
Ada.Text I0.Put Line
(Float'Image (Value));
end loop;
Close (F);
end;

end Show Dir Float I0;

Code block metadata

Project: Courses.Intro To Ada.Standard Library.Show Dir Float IO
MD5: e4e5855976ded44153a821eb90dcbb206

Runtime output

1.50000E+00
2.40000E+00
6.70000E+00

Unlike sequential 1/0, direct I/O allows you to access any position in the file. However, it
doesn't offer an option to append information to a file. Instead, it provides an Inout File
mode allowing reading and writing to a file via the same File_Type element.

To access any position in the file, call the Set Index procedure to set the new position /
index. You can use the Index function to retrieve the current index. Let's see an example:

250 Chapter 22. Standard library: Files and streams

W @ N U A W N e

W W oW NN NN NNNNNN®K®EBRB B B B B B B B
N B ©O © ® N 0 U & W N P O © ® N O U1 & W N B O

33

Introduction to Ada

Listing 8: show_dir_float_in_out file.adb

with Ada.Text I0;
with Ada.Direct I0;

procedure Show Dir Float In Out File is
package Float_IO is new Ada.Direct_IO (Float);
use Float IO;

F : Float I0.File_Type;

: constant String :=

"float file.bin";
begin

-- Open file for input / output
Create (F, Inout File, File Name);
Write (F, 1.5);
Write (F, 2.4);
Write (F, 6.7);

-- Set index to previous position
-- and overwrite value

Set Index (F, Index (F) - 1);
Write (F, 7.7);

declare
Value : Float;

begin
-- Set index to start of file
Set Index (F, 1);

while not End O0f File (F) loop
Read (F, Value);
Ada.Text IO.Put Line

(Float'Image (Value));
end loop;
Close (F);
end;
end Show Dir Float In Out File;

Code block metadata

Project: Courses.Intro To Ada.Standard Library.Show Dir Float In Out File

MD5: 17b83al6ab8fa30f07cf8aObd54078al

Runtime output

1.50000E+00
2.40000E+00
7.70000E+00

By running this example, we see that the file contains 7.7, rather than the previous 6.7 that
we wrote. We overwrote the value by changing the index to the previous position before

doing another write.

In this example we used the Inout File mode. Using that mode, we just changed the
index back to the initial position before reading from the file (Set Index (F, 1)) instead

of closing the file and reopening it for reading.

22.3. Directl1/0O

251

©W @ N U A W N e

WONON NN NNNNNNR B B 2 BB H e e e
S © ® N o U B W N B O L ® N O U A~ W N B O

31

Introduction to Ada

22.4 Stream 1/0

All the previous approaches for file I/O in binary format (sequential and direct I/O) are spe-
cific for a single data type (the one we instantiate them with). You can use these approaches
to write objects of a single data type that may be an array or record (potentially with many
fields), but if you need to create and process files that include different data types, or any
objects of an unbounded type, these approaches are not sufficient. Instead, you should use
stream 1/0.

Stream 1/O shares some similarities with the previous approaches. We still use the Create,
Open and Close procedures. However, instead of accessing the file directly via a File_Type
element, you use a Stream Access element. To read and write information, you use the
'Read or 'Write attributes of the data types you're reading or writing.

Let's look at a version of the Show Dir Float IO procedure from the previous section that
makes use of stream 1/O instead of direct 1/O:

Listing 9: show_float_stream.adb
with Ada.Text I0;

with Ada.Streams.Stream I0;
use Ada.Streams.Stream IO;

procedure Show Float Stream is
F : File Type;
S : Stream Access;
: constant String :=
"float file.bin";
begin
Create (F, Out File, File Name);
S := Stream (F);

Float'Write (S, 1.5);
Float'Write (S, 2.4);
Float'Write (S, 6.7);

Close (F);

declare
Value : Float;

begin
Open (F, In File, File Name);
S := Stream (F);

while not End O0f File (F) loop
Float'Read (S, Value);
Ada.Text I0.Put Line

(Float'Image (Value));
end loop;
Close (F);
end;
end Show Float Stream;

Code block metadata

Project: Courses.Intro To Ada.Standard Library.Show Float Stream
MD5: 34ccf04b0821074a332019ac0e38bb3e

Runtime output

252 Chapter 22. Standard library: Files and streams

W @ N U A W N &

AR W W OW W W W W W W W N NNDNNNNNNNRBER B B B B B B
H O © ® N o U A W N B O © ® N 0 U A W N R O © ® N 0 U & W N B O

Introduction to Ada

1.50000E+00
2.40000E+00
6.70000E+00

After the call to Create, we retrieve the corresponding Stream Access element by calling
the Stream function. We then use this stream to write information to the file via the 'Write
attribute of the Float type. After closing the file and reopening it for reading, we again
retrieve the corresponding Stream Access element and processed to read information from
the file via the 'Read attribute of the Float type.

You can use streams to create and process files containing different data types within the
same file. You can also read and write unbounded data types such as strings. However,
when using unbounded data types you must call the 'Input and 'Output attributes of the
unbounded data type: these attributes write information about bounds or discriminants in
addition to the object's actual data.

The following example shows file I/0 that mixes both strings of different lengths and floating-
point values:

Listing 10: show_string_stream.adb
with Ada.Text I0;

with Ada.Streams.Stream I0;
use Ada.Streams.Stream IO;

procedure Show String Stream is
F : File Type;
S : Stream Access;
: constant String :=
"float file.bin";

procedure Qutput (S : Stream Access;
FV : Float;
SV : String) is
begin
String'Output (S, SV);
Float'OQutput (S, FV);
end Output;

procedure Input Display (S : Stream Access) is

SV : String := String'Input (S);
FV : Float := Float'Input (S);
begin
Ada.Text I0.Put Line (Float'Image (FV)

& n R n & SV);
end Input Display;

begin
Create (F, Out File, File Name);
S := Stream (F);

Qutput (S, 1.5, "Hi!!l");

OQutput (S, 2.4, "Hello world!");

Output (S, 6.7, "Something longer here...");
Close (F);

Open (F, In File, File Name);
S := Stream (F);

while not End Of File (F) loop
(continues on next page)

22.4. Stream I/O 253

42
43
44
45
46

Introduction to Ada

(continued from previous page)
Input Display (S);
end loop;
Close (F);

end Show String Stream;

Code block metadata

Project: Courses.Intro To Ada.Standard Library.Show String Stream
MD5: 3ae8276ada5f24cab49994e368e0fa34

Runtime output

1.50000E+00 --- Hi!!
2.40000E+00 --- Hello world!
6.70000E+00 --- Something longer here...

When you use Stream 1/O, no information is written into the file indicating the type of the
data that you wrote. If a file contains data from different types, you must reference types
in the same order when reading a file as when you wrote it. If not, the information you get
will be corrupted. Unfortunately, strong data typing doesn't help you in this case. Writing
simple procedures for file I/O (as in the example above) may help ensuring that the file
format is consistent.

Like direct /0O, stream I/O support also allows you to access any location in the file. However,
when doing so, you need to be extremely careful that the position of the new index is
consistent with the data types you're expecting.

254 Chapter 22. Standard library: Files and streams

© ©® N o U A W N R

W W W W w NN NNNNNNNNREB B B B B B B B B
A W N B O O ® N 60 U A W N P O © ®©® N 0 U A W N F O

CHAPTER
TWENTYTHREE

STANDARD LIBRARY: NUMERICS

The standard library provides support for common numeric operations on floating-point
types as well as on complex types and matrices. In the sections below, we present a brief
introduction to these numeric operations.

23.1 Elementary Functions

The Ada.Numerics.Elementary Functions package provides common operations for
floating-point types, such as square root, logarithm, and the trigonometric functions (e.qg.,
sin, cos). For example:

Listing 1: show_elem_math.adb

with Ada.Text I0; use Ada.Text IO0;
with Ada.Numerics; use Ada.Numerics;

with Ada.Numerics.Elementary Functions;
use Ada.Numerics.Elementary Functions;

procedure Show Elem Math is

X : Float;
begin
X 1= 2.0;

Put Line ("Square root of "
& Float'Image (X)
& n iS n
& Float'Image (Sqrt (X)));

X 1= e;
Put Line ("Natural log of "
& Float'Image (X)
& n iS n
& Float'Image (Log (X)));

X 1= 10.0 ** 6.0;

Put Line ("Log 10 of "
& Float'Image (X)
& n iS n

& Float'Image (Log (X, 10.0)));

X 1=2.0 * 8.0;

Put Line ("Log 2 of "
& Float'Image (X)
& n iS n

& Float'Image (Log (X, 2.0)));

(continues on next page)

255

36
37
38
39
40

42
43
44
45

© N U A W N e

=
= o

Introduction to Ada

(continued from previous page)
Put Line ("Cos of "
& Float'Image (X)
& n is n
& Float'Image (Cos (X)));

X = -1.0;

Put Line ("Arccos of "
& Float'Image (X)
& " is "

& Float'Image (Arccos (X)));
end Show Elem Math;

Code block metadata

Project: Courses.Intro To Ada.Standard Library.Show Elem Math
MD5: 17511d7e17cd98d4b6e49ad302d6dch6

Runtime output

Square root of 2.00000E+00 is 1.41421E+00
Natural log of 2.71828E+00 is 1.00000E+00
Log 10 of 1.00000E+06 is 6.00000E+00
Log 2 of 2.56000E+02 is 8.00000E+00
Cos of 3.14159E+00 is -1.00000E+00
Arccos of -1.00000E+00 is 3.14159E+00

Here we use the standard e and Pi constants from the Ada.Numerics package.

The Ada.Numerics.Elementary Functions package provides operations for the Float
type. Similar packages are available for Long_Float and Long_Long_Float types.
For example, the Ada.Numerics.Long Elementary Functions package offers the
same set of operations for the Long Float type. In addition, the Ada.Numerics.
Generic Elementary Functions package is a generic version of the package that you
can instantiate for custom floating-point types. In fact, the Elementary Functions pack-
age can be defined as follows:

package Elementary Functions is new
Ada.Numerics.Generic_Elementary_Functions (Float);

23.2 Random Number Generation

The Ada.Numerics.Float Random package provides a simple random number generator
for the range between 0.0 and 1.0. To use it, declare a generator G, which you pass to
Random. For example:

Listing 2: show_float random_num.adb
with Ada.Text I0; use Ada.Text I0;

with Ada.Numerics.Float Random;
use Ada.Numerics.Float Random;

procedure Show Float Random Num is
G : Generator;
X : Uniformly Distributed;
begin
Reset (G);

(continues on next page)

256 Chapter 23. Standard library: Numerics

12
13
14
15
16
17
18
19
20
21

23

W @ N U A W N e

Introduction to Ada

(continued from previous page)

Put Line ("Some random numbers between
& Float'Image
(Uniformly Distributed'First)
& " and "
& Float'Image
(Uniformly Distributed'Last)
& ")
for I in 1 .. 15 loop
X := Random (G);
Put Line (Float'Image (X));
end loop;
end Show Float Random Num;

Code block metadata

Project: Courses.Intro To Ada.Standard Library.Show Float Random Num
MD5: cf38ab00e27bad4309010e678113dd36

Runtime output

Some random numbers between 0.00000E+00 and 1.00000E+00:
.59367E-01
.20831E-01
.81514E-01
.86831E-01
.16754E-02
.62375E-01
.89140E-01
.04822E-01
.33643E-01
.09636E-01
.71306E-01
.87713E-01
.26051E-01
.43591E-02
.45188E-01

VO NONNPUWONO WNAN

The standard library also includes a random number generator for discrete numbers, which
is part of the Ada.Numerics.Discrete Random package. Since it's a generic package, you
have to instantiate it for the desired discrete type. This allows you to specify a range for
the generator. In the following example, we create an application that displays random
integers between 1 and 10:

Listing 3: show_discrete_random_num.adb
with Ada.Text I0; use Ada.Text I0;
with Ada.Numerics.Discrete Random;
procedure Show Discrete Random Num is

subtype Random_Range is Integer range 1 .. 10;

package R is new
Ada.Numerics.Discrete_Random (Random_Range);
use R;

G : Generator;

X : Random Range;
begin

Reset (G);

(continues on next page)

23.2. Random Number Generation 257

17
18
19
20
21
22
23
24
25
26
27

U A W N e

Introduction to Ada

(continued from previous page)

Put Line ("Some random numbers between
& Integer'Image (Random Range'First)

& " and "
& Integer'Image (Random Range'last)
& n : n) ;

for I in 1 .. 15 loop
X := Random (G);
Put Line (Integer'Image (X));
end loop;
end Show Discrete Random_ Num;

Code block metadata

Project: Courses.Intro To Ada.Standard Library.Show Discrete Random Num
MD5: 892f6525477f9a2c56188885de011fba

Runtime output

Some random numbers between 1 and 10:

(<)

uobhrphr,bhbwWoOOoONPRRERERRAD

Here, package Ris instantiated with the Random _Range type, which has a constrained range
between 1 and 10. This allows us to control the range used for the random numbers.
We could easily modify the application to display random integers between 0 and 20 by
changing the specification of the Random Range type. We can also use floating-point or
fixed-point types.

23.3 Complex Types

The Ada.Numerics.Complex Types package provides support for complex number
types and the Ada.Numerics.Complex Elementary Functions package provides sup-
port for common operations on complex number types, similar to the Ada.Numerics.
Elementary Functions package. Finally, you can use the Ada.Text I0.Complex IO pack-
age to perform 1/O operations on complex numbers. In the following example, we declare
variables of the Complex type and initialize them using an aggregate:

Listing 4: show_elem_math.adb

with Ada.Text I0; wuse Ada.Text IO0;
with Ada.Numerics; use Ada.Numerics;

with Ada.Numerics.Complex Types;
use Ada.Numerics.Complex Types;
(continues on next page)

258 Chapter 23. Standard library: Numerics

© © N o

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

Introduction to Ada

with Ada.Numerics.Complex Elementary Functions;
use Ada.Numerics.Complex Elementary Functions;

with Ada.Text IO0.Complex IO;
procedure Show Elem Math is
package C IO is new
Ada.Text_IO0.Complex_IO (Complex Types);
use C I0;

X, Y : Complex;
R, Th : Float;

begin
X = (2.0, -1.0);
Y := (3.0, 4.0);
Put (X);
Put (" * ");
Put (Y),
Put (" is ");
Put (X * Y)
New Line;
New Line;
R :=3.0;
Th := Pi / 2.0;
X := Compose From Polar (R, Th);
-- Alternatively:
- X =R*Exp ((0.0, Th));
-- X :=R * e * Complex' (0.0, Th);

Put ("Polar form: "
& Float'Image (R) & " * e¥*(i * "
& Float'Image (Th) & ")");

New Line;

Put ("Modulus of ");

Put (X)

Put (" is ");

Put (Float'Image (abs (X)));
New Line;

Put ("Argument of ");

Put (X)

Put (" is ");

Put (Float'Image (Argument (X)));
New Line;

New Line;

Put ('

Put (X

Put (" is ");
Put (Sqrt (X));
New Line;

end Show Elem Math;

'Sqrt of ");
)

Code block metadata

Project: Courses.Intro To Ada.Standard Library.

(continued from previous page)

Show Elem Math

(continues on next page)

23.3. Complex Types

259

Introduction to Ada

(continued from previous page)
MD5: 24fd48ab69aeac28286e6ec8065899c5

Runtime output

(2.00000E+00,-1.00000E+00) * (3.00000E+00, 4.00000E+00) is (1.00000E+01, 5.
~00000E+00)

Polar form: 3.00000E+00 * e**(i * 1.57080E+00)
Modulus of (-1.31134E-07, 3.00000E+00) is 3.00000E+00
Argument of (-1.31134E-07, 3.00000E+00) is 1.57080E+00

Sqrt of (-1.31134E-07, 3.00000E+00) is (1.22474E+00, 1.22474E+00)

As we can see from this example, all the common operators, such as * and +, are available
for complex types. You also have typical operations on complex numbers, such as Argument
and Exp. In addition to initializing complex numbers in the cartesian form using aggregates,
you can do so from the polar form by calling the Compose From Polar function.

The Ada.Numerics.Complex Types and Ada.Numerics.Complex Elementary Functions
packages provide operations for the Float type. Similar packages are avail-
able for Long_Float and Long_Long_ Float types. In addition, the Ada.Numerics.
Generic Complex Types and Ada.Numerics.Generic Complex Elementary Functions
packages are generic versions that you can instantiate for custom or pre-defined floating-
point types. For example:

with Ada.Numerics.Generic_Complex Types;
with Ada.Numerics.Generic_ Complex Elementary Functions;
with Ada.Text I0.Complex IO;

procedure Show Elem Math is

package Complex_Types is new
Ada.Numerics.Generic_Complex_Types (Float);
use Complex Types;

package Elementary Functions is new
Ada.Numerics.Generic_Complex_Elementary Functions
(Complex_Types);
use Elementary Functions;

package C_IO0 is new Ada.Text_IO.Complex_IO
(Complex_Types);
use C IO;

X, Y : Complex;
R, Th : Float;

23.4 Vector and Matrix Manipulation

The Ada.Numerics.Real Arrays package provides support for vectors and matrices. It
includes common matrix operations such as inverse, determinant, eigenvalues in addition
to simpler operators such as matrix addition and multiplication. You can declare vectors
and matrices using the Real Vector and Real Matrix types, respectively.

The following example uses some of the operations from the Ada.Numerics.Real Arrays
package:

260 Chapter 23. Standard library: Numerics

W @ N U A W N e

o U U U VU U L U U LU A BN B B DA B A DN DWW W W W W W W W WNNNNNNNNNNRHERB B B B B B B
S © ® N o 0 A W N P O © ® N O 00 B W N H O © ® 9N 66 00 & W N P O © ® N 0 00 & WN P O © ©®© N 00 0 & WN B O

Introduction to Ada

Listing 5: show_matrix.adb

with Ada.Text I0; use Ada.Text I0;

with Ada.Numerics.Real Arrays;
use Ada.Numerics.Real Arrays;

procedure Show Matrix is

procedure Put Vector (V : Real Vector) is
begin

Put (" (");

for I in V'Range loop

Put (Float'Image (V (I)) & " ");

end loop;

Put Line (")");
end Put Vector;

procedure Put Matrix (M : Real Matrix) is
begin
for I in M'Range (1) loop
Put (" (");
for J in M'Range (2) loop
Put (Float'Image (M (I, J)) & " ");
end loop;
Put Line (")");
end loop;
end Put Matrix;

V1 : Real Vector := (1.0, 3.0);
V2 : Real Vector := (75.0, 11.0);
M1 : Real Matrix :=
((1.0, 5.0, 1.0),
(2.0, 2.0, 1.0));
M2 : Real Matrix :=
((31.0, 11.0, 10.0),
(34.0, 16.0, 11.0),
(32.0, 12.0, 10.0),
(31.0, 13.0, 10.0));
M3 : Real Matrix := ((1.0, 2.0),
(2.0, 3.0));
begin

Put Line ("V1")
Put Vector (V1)
Put Line ("V2")
Put Vector (V2);
Put Line ("V1 * V2 =");
Put Line (" "
& Float'Image (V1 * V2));
Put Line ("V1 * V2 =");
Put Matrix (V1 * V2);
New Line;

’
’
’

Put Line ("M1");

Put Matrix (M1);

Put Line ("M2");

Put Matrix (M2);

Put _Line ("M2 * Transpose(M1l) =");
Put Matrix (M2 * Transpose (M1));
New Line;

(continues on next page)

23.4. Vector and Matrix Manipulation

261

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

Introduction to Ada

Put Line ("M3");
Put Matrix (M3);

Put Line ("Inverse (M3) =
Put Matrix (Inverse (M3))
Put Line ("abs Inverse (M
Put Matrix (abs Inverse (
Put Line ("Determinant (M

Put Line (" "

& Float'Image (Determinant (M3)));

")

3)
M3
3)

Put Line ("Solve (M3, V1) ="
Put Vector (Solve (M3, V1));
Put Line ("Eigenvalues (M3) =");
Put Vector (Eigenvalues (M3));

New Line;
end Show Matrix;

Code block metadata

Project: Courses.Intro To Ada.Standard Library.Show Matrix
c9df45a742a42bd47e03fbf2d0282238

MD5:

Runtime output

V1

(1.00000E+00
V2

(7.50000E+01
V1 * V2 =

1.08000E+02
V1l * V2 =

(7.50000E+01

(2.25000E+02

M1

(1.00000E+00

(2.00000E+00
M2
3.10000E+01
3.40000E+01
3.20000E+01
3.10000E+01
M2 * Transpose(M1)
9.60000E+01
1.25000E+02
1.02000E+02
1.06000E+02

—_—~ e~~~

(
(
(
(

M3
(1.00000E+00
(2.00000E+00
Inverse (M3) =
(-3.00000E+00

abs Inverse (M3) =

(3.00000E+00 2.
1.

(2.00000E+00
Determinant (M3) =

-1.00000E+00
Solve (M3, V1) =

(3.00000E+00 -1.

Eigenvalues (M3) =

=

N U1

CORFROIl FRPFRFRRFRRF

N

2.
(2.00000E+00 -1.

.00000E+00

.10000E+01

.10000E+01
.30000E+01

.00000E+00
.00000E+00

.10000E+01
.60000E+01
.20000E+01
.30000E+01

.40000E+01
.11000E+02
.80000E+01
.80000E+01

.00000E+00
.00000E+00

000OOE+00
0000OE+00

000OOE+00
000OOE+00

0000OE+00

));
:")'

~— — — ~—

) .

’

=

Nl

)

’
’

.00000E+00
.00000E+00

.00000E+01
.10000E+01
.00000E+01
.00000E+01

~_— — — ~—

(continued from previous page)

(continues on next page)

262

Chapter 23. Standard library: Numerics

Introduction to Ada

(continued from previous page)
(4.23607E+00 -2.36068E-01)

Matrix dimensions are automatically determined from the aggregate used for initialization
when you don't specify them. You can, however, also use explicit ranges. For example:

M1 : Real Matrix (1 .. 2, 1 .. 3) :=
((1.0, 5.0, 1.0),
(2.0, 2.0, 1.0));

The Ada.Numerics.Real Arrays package implements operations for the Float type. Sim-
ilar packages are available for Long_Float and Long_Long_Float types. In addition, the
Ada.Numerics.Generic Real Arrays package is a generic version that you can instantiate
with custom floating-point types. For example, the Real Arrays package can be defined
as follows:

package Real Arrays is new
Ada.Numerics.Generic_Real_Arrays (Float);

23.4. Vector and Matrix Manipulation 263

Introduction to Ada

264 Chapter 23. Standard library: Numerics

CHAPTER
TWENTYFOUR

APPENDICES

24.1 Appendix A: Generic Formal Types

The following tables contain examples of available formal types for generics:

Formal type

Actual type

Incomplete type

Format: type T;

Discrete type

Format: type T is (<>);

Range type

Format: type T is range <>;

Modular type

Format: type T is mod <>;
Floating-point type

Format: type T is digits <>;

Binary fixed-point type

Format: type T is delta <>;

Decimal fixed-point type

Format: type T is delta <> digits <>;
Definite nonlimited private type

Format: type T is private;
Nonlimited Private type with discriminant
Format: type T (D : DT) is private;
Access type

Format: type A is access T;

Definite derived type

Format: type T is new B;

Limited private type

Format: type T is limited private;
Incomplete tagged type

Format: type T is tagged;

Definite tagged private type

Format: type T is tagged private;
Definite tagged limited private type
Format: type T is tagged limited pri-
vate;

Definite abstract tagged private type
Format: type T is abstract tagged
private;

Any type

Any integer, modular or enumeration type
Any signed integer type

Any modular type

Any floating-point type

Any binary fixed-point type

Any decimal fixed-point type

Any nonlimited, definite type

Any nonlimited type with discriminant
Any access type for type T

Any concrete type derived from base type
iny definite type, limited or not

Any concrete, definite, tagged type

Any concrete, definite, tagged type

Any concrete definite tagged type, limited
or not

Any nonlimited, definite tagged type, ab-
stract or concrete

continues on next page

265

Introduction to Ada

Table 1 - continued from previous page

Formal type

Actual type

Definite abstract tagged limited private
type

Format: type T is abstract tagged
limited private;
Definite derived tagged type

Format: type T is new B with private;
Definite abstract derived tagged type
Format: type T is abstract new B with
private;

Array type

Format: type A is array (R) of T;
Interface type

Format: type T is interface;

Limited interface type

Format: type T is limited interface;
Task interface type

Format: type T is task interface;
Synchronized interface type

Format: type T is synchronized in-
terface;

Protected interface type

Format: type T is protected inter-
face;

Derived interface type

Format: type T is new B and I with
private;

Derived type with multiple interfaces
Format: type T is new B and Il and
I2 with private;
Abstract derived interface type

Format: type T is abstract new B and
I with private;

Limited derived interface type

Format: type T is limited new B and
I with private;

Abstract limited derived interface type
Format: type T is abstract limited
new B and I with private;
Synchronized interface type

Format: type T is synchronized new
SI with private;

Abstract synchronized interface type
Format: type T is abstract synchro-
nized new SI with private;

Any definite tagged type, limited or not, ab-
stract or concrete

Any concrete tagged type derived from
base type B

Any tagged type derived from base type B
abstract or concrete

Any array type with range R containing el-
ements of type T

Any interface type T

Any limited interface type T

Any task interface type T

Any synchronized interface type T
Any protected interface type T
Any type T derived from base type B and

interface |

Any type T derived from base type B and
interfaces I1 and 12

Any type T derived from abstract base type
B and interface |

Any type T derived from limited base type
B and limited interface |

Any type T derived from abstract limited
base type B and limited interface |

Any type T derived from synchronized in-
terface SI

Any type T derived from synchronized in-
terface SI

24.1.1 Indefinite version

Many of the examples above can be used for formal indefinite types:

266

Chapter 24. Appendices

Introduction to Ada

Formal type

Actual type

Indefinite incomplete type

Format: type T (<>);

Indefinite nonlimited private type

Format: type T (<>) is private;

Indefinite limited private type

Format: type T (<>) is limited private;
Incomplete indefinite tagged private type
Format: type T (<>) is tagged;

Indefinite tagged private type

Format: type T (<>) is tagged private;
Indefinite tagged limited private type

Format: type T (<>) is tagged limited pri-
vate;

Indefinite abstract tagged private type

Format: type T (<>) is abstract tagged
private;

Indefinite abstract tagged limited private type
Format: type T (<>) is abstract tagged
limited private;

Indefinite derived tagged type

Format: type T (<>) is new B with private;
Indefinite abstract derived tagged type

Format: type T (<>) is abstract new B with
private;

Any type

Any nonlimited type indefinite or def-
inite

Any type, limited or not, indefinite or
definite

Any concrete tagged type, indefinite
or definite

Any concrete, nonlimited tagged
type, indefinite or definite

Any concrete tagged type, limited or
not, indefinite or definite

Any nonlimited tagged type, indefi-
nite or definite, abstract or concrete

Any tagged type, limited or not, in-
definite or definite abstract or con-
Crete

Any tagged type derived from base
type B, indefinite or definite

Any tagged type derived from base
type B, indefinite or definite abstract
or concrete

The same examples could also contain discriminants. In this case, (<>) is replaced by a
list of discriminants, e.g.: (D: DT).

24.2 Appendix B: Containers

The following table shows all containers available in Ada, including their versions (standard,
bounded, unbounded, indefinite):

Cate- Container Std Bounded Un- Indefi-
gory bounded nite
Vector Vectors Y Y Y
List Doubly Linked Lists Y Y Y
Map Hashed Maps Y Y Y
Map Ordered Maps Y Y Y
Set Hashed Sets Y Y Y
Set Ordered Sets Y Y Y
Tree Multiway Trees Y Y Y
Generic Holders Y
Queue Synchronized Queue Interfaces Y

Queue Synchronized Queues Y Y

Queue Priority Queues Y Y

O Note

To get the correct container name, replace the whitespace by in the names above. (For
example, Hashed Maps becomes Hashed Maps.)

24.2. Appendix B: Containers 267

Introduction to Ada

The following table presents the prefixing applied to the container name that depends on
its version. As indicated in the table, the standard version does not have a prefix associated
with it.

Version Naming prefix

Std

Bounded Bounded
Unbounded Unbounded
Indefinite Indefinite

268 Chapter 24. Appendices

	Introduction
	History
	Ada today
	Philosophy
	SPARK

	Imperative language
	Hello world
	Imperative language - If/Then/Else
	Imperative language - Loops
	For loops
	Bare loops
	While loops

	Imperative language - Case statement
	Imperative language - Declarative regions
	Imperative language - conditional expressions
	If expressions
	Case expressions

	Subprograms
	Subprograms
	Subprogram calls
	Nested subprograms
	Function calls

	Parameter modes
	Subprogram calls
	In parameters
	In out parameters
	Out parameters
	Forward declaration of subprograms

	Renaming

	Modular programming
	Packages
	Using a package
	Package body
	Child packages
	Child of a child package
	Multiple children
	Visibility

	Renaming

	Strongly typed language
	What is a type?
	Integers
	Operational semantics

	Unsigned types
	Enumerations
	Floating-point types
	Basic properties
	Precision of floating-point types
	Range of floating-point types

	Strong typing
	Derived types
	Subtypes
	Subtypes as type aliases

	Records
	Record type declaration
	Aggregates
	Component selection
	Renaming

	Arrays
	Array type declaration
	Indexing
	Simpler array declarations
	Range attribute
	Unconstrained arrays
	Predefined array type: String
	Restrictions
	Returning unconstrained arrays
	Declaring arrays (2)
	Array slices
	Renaming

	More about types
	Aggregates: A primer
	Overloading and qualified expressions
	Character types

	Access types (pointers)
	Overview
	Allocation (by type)
	Dereferencing
	Other features
	Mutually recursive types

	More about records
	Dynamically sized record types
	Records with discriminant
	Variant records

	Fixed-point types
	Decimal fixed-point types
	Ordinary fixed-point types

	Privacy
	Basic encapsulation
	Abstract data types
	Limited types
	Child packages & privacy

	Generics
	Introduction
	Formal type declaration
	Formal object declaration
	Generic body definition
	Generic instantiation
	Generic packages
	Formal subprograms
	Example: I/O instances
	Example: ADTs
	Example: Swap
	Example: Reversing
	Example: Test application

	Exceptions
	Exception declaration
	Raising an exception
	Handling an exception
	Predefined exceptions

	Tasking
	Tasks
	Simple task
	Simple synchronization
	Delay
	Synchronization: rendezvous
	Select loop
	Cycling tasks

	Protected objects
	Simple object
	Entries

	Task and protected types
	Task types
	Protected types

	Design by contracts
	Pre- and postconditions
	Predicates
	Type invariants

	Interfacing with C
	Multi-language project
	Type convention
	Foreign subprograms
	Calling C subprograms in Ada
	Calling Ada subprograms in C

	Foreign variables
	Using C global variables in Ada
	Using Ada variables in C

	Generating bindings
	Adapting bindings

	Object-oriented programming
	Derived types
	Tagged types
	Classwide types
	Dispatching operations
	Dot notation
	Private & Limited
	Classwide access types

	Standard library: Containers
	Vectors
	Instantiation
	Initialization
	Appending and prepending elements
	Accessing first and last elements
	Iterating
	Finding and changing elements
	Inserting elements
	Removing elements
	Other Operations

	Sets
	Initialization and iteration
	Operations on elements
	Other Operations

	Indefinite maps
	Hashed maps
	Ordered maps
	Complexity

	Standard library: Dates & Times
	Date and time handling
	Delaying using date

	Real-time
	Benchmarking

	Standard library: Strings
	String operations
	Limitation of fixed-length strings
	Bounded strings
	Unbounded strings

	Standard library: Files and streams
	Text I/O
	Sequential I/O
	Direct I/O
	Stream I/O

	Standard library: Numerics
	Elementary Functions
	Random Number Generation
	Complex Types
	Vector and Matrix Manipulation

	Appendices
	Appendix A: Generic Formal Types
	Indefinite version

	Appendix B: Containers

