# data.table way this stuff feels faster than dplyr but isn't very FP when using := methods # alternatively, use the .() aka list() feature and create a new table. Still faster than dplyr or plyr # https://mran.microsoft.com/web/packages/data.table/vignettes/datatable-intro.html library(data.table) # for fread and other data.table functions library(tidyverse) # for as_tibble to feed into ggplot library(lubridate) # for round_date library(fasttime) # for fastPOSIXct # SQL for dtCLE01=fread("c:/kewoo/eai/CLE.Identity.d20171204.csv") # -- iQ420349 Confirm Thuy's hypothesis # SELECT [transactiontype] # ,[transactionid] # ,CASE when COUNT(time_stamp) = 1 then 1 else 0 END one_is_timeout # ,CASE when COUNT(time_stamp) = 1 # then 0.000755 # else DATEDIFF(MS, min(time_stamp), max([TIME_STAMP])) # END duration_ms # ,min([TIME_STAMP]) start # -- ,min([transactiondata]) min_td # ,max([time_stamp]) endt # -- ,max([transactiondata]) # ,[componentname] # ,correlationid # -- use "with (nolock)" to prevent table locking # FROM [HAWK_Log_Archive].[dbo].[PR_LOG] with (nolock) # -- Refer to timestamp format for time-level granularity # where transactionid in ( SELECT [transactionid] # FROM [HAWK_Log_Archive].[dbo].[PR_LOG] with (nolock) # where TIME_STAMP >= '20171204 20:00:00:00' and TIME_STAMP < '20171204 23:35:00:00' # and componentname like 'Identity%' # ) # and status in ('Start','End') # group by transactionid,transactiontype,applicationid,componentname,correlationid # order by start dtCLE01=fread("c:/kewoo/eai/CLE.Identity.d20171204.csv") AESTDiff <- 36000 interval.length <- "1 seconds" # exploratory str(dtCLE01) nrow(dtCLE01) names(dtCLE01) dtCLE01[,.(TIME_STAMP, APPLICATIONID)] # end exploration tb01.tx.times.all <-dtCLE01[, list(transactionid, componentname, startPct = round_date(fastPOSIXct(start)-AESTDiff, interval.length), endtPct = round_date(fastPOSIXct(endt)-AESTDiff, interval.length)) ] tb01.expandedIntervals <- tb01.tx.times.all[, list(intervals = seq(startPct, endtPct, by=1)), by = transactionid ][, list(txCount = .N), by = intervals] ggplot() + geom_line(data=tb01.expandedIntervals, aes(x=intervals,y=txCount), color='blue') # FOR FILTERED TIME RANGE start.AEST <- fastPOSIXct("2017-12-04 21:17:00")-36000 end.AEST <- fastPOSIXct("2017-12-04 21:32:00")-36000 tb01.tx.times.filtered <- tb01.tx.times.all[startPct > start.AEST & endtPct < end.AEST] tb01.expandedIntervals <- tb01.tx.times.filtered[, list(intervals = seq(startPct, endtPct, by=1)), by = transactionid ][, list(txCount = .N), by = intervals] ggplot() + geom_line(data=tb01.expandedIntervals, aes(x=intervals,y=txCount), color='blue') # SQL for dtER=fread("c:/kewoo/eai/EXCEPTIONREC.identity.d20171204.csv") # -- iQ420349 Confirm Thuy's hypothesis # # # # -- GENERIC EXCEPTIONREC SQL # SELECT [TIME_STAMP] # ,[COMPONENTNAME] # ,[TRANSACTIONTYPE] # ,[STATUS] # ,[transactionid] # ,[correlationid] # ,[transactiondata] # ,[stacktrace] # ,[message] # ,[custom] # -- use "with (nolock)" to prevent table locking # FROM [HAWK_Log_Archive].[dbo].[PR_EXCEPTIONREC] with (nolock) # -- Refer to timestamp format for time-level granularity # where TIME_STAMP >= '20171204 20:00:00:00' and TIME_STAMP < '20171204 23:35:00:00' # and componentname like 'Identity%' # -- and transactionid = '9f2c6007-9c29-4d7f-8244-386c80881990' # order by TIME_STAMP dtER=fread("c:/kewoo/eai/EXCEPTIONREC.identity.d20171204.csv") tb02.tx.times.all <-dtER[, list(transactionid, COMPONENTNAME, endtPct = round_date(fastPOSIXct(TIME_STAMP)-AESTDiff, interval.length))] tb02.txCounts <- tb02.tx.times.all[, list(txCount = .N), by = endtPct] ggplot() + geom_line(data=tb01.expandedIntervals, aes(x=intervals,y=txCount), color='blue') + geom_line(data=tb02.txCounts, aes(x=endtPct,y=txCount), color='red') # 20171215: The reason there's a drop in txCount during a service interruption # is because startPct == endPct caused by the group by in the original extracting SQL # Solution is to extract actual endPct from EXCEPTIONREC joining via transactionid # first, take outer join dtOJ <- tb02.tx.times.all[tb01.tx.times.all, on = "transactionid"] # second, populate blank (NA) startPct values with i.startPct dtOJ[is.na(endtPct), endtPct := i.endtPct] dtOJ.expandedIntervals <- dtOJ[, list(intervals = seq(startPct, endtPct, by=1)), by = transactionid ][, list(txCount = .N), by = intervals] ggplot() + geom_line(data=dtOJ.expandedIntervals, aes(x=intervals,y=txCount), color='blue') + geom_line(data=tb02.txCounts, aes(x=endtPct,y=txCount), color='red')