# data.table way this stuff feels faster than dplyr but isn't very FP when using := methods # alternatively, use the .() aka list() feature and create a new table. Still faster than dplyr or plyr # https://mran.microsoft.com/web/packages/data.table/vignettes/datatable-intro.html library(data.table) # for fread and other data.table functions library(tidyverse) # for as_tibble to feed into ggplot library(lubridate) # for round_date library(fasttime) # for fastPOSIXct # dt01=fread("C:/kewoo/eai/d20171024.0930-1055.allEAI.csv") dt01=fread("C:/kewoo/eai/d201711115.0830-1200.allEAI.csv") # 20171109: chain data.tables, split over multiple lines # show transaction flight behaviours over time # fastPOSIXct assumes GMT, so subtract 36000 (10 hours as seconds) from time AESTDiff <- 36000 nineAM.AEST <- fastPOSIXct("2017-11-15 09:00:00")-36000 tenAM.AEST <- fastPOSIXct("2017-11-15 10:00:00")-36000 start.AEST <- fastPOSIXct("2017-11-15 09:15:00")-36000 end.AEST <- fastPOSIXct("2017-11-15 09:45:00")-36000 interval.length <- "10 seconds" interval.length <- "1 seconds" tb01.tx.times.all <-dt01[, list(transactionid, componentname, startPct = round_date(fastPOSIXct(start)-AESTDiff, interval.length), endtPct = round_date(fastPOSIXct(endt)-AESTDiff, interval.length)) ] # tb01.tx.times <- tb01.tx.times.all[startPct > nineAM.AEST & endtPct < tenAM.AEST] tb01.tx.times <- tb01.tx.times.all[startPct > start.AEST & endtPct < end.AEST] tb01.allEAI <- tb01.tx.times[, list(intervals = seq(startPct, endtPct, by=1)), by = transactionid ][, list(txCount = .N), by = intervals] %>% as_tibble() tb01.AC <- tb01.tx.times[componentname %like% 'AcurityConnector', list(intervals = seq(startPct, endtPct, by=1)), by = transactionid ][, list(txCount = .N), by = intervals] %>% as_tibble() # I think casting defaults to as.POSIXct which takes >20sec to run # using fastPOSIXct takes ~2sec to run # avg_durations <- dt01[start > nineAM.AEST & endt-AESTDiff < tenAM.AEST, avg_durations <- dt01[fastPOSIXct(start)-AESTDiff > start.AEST & fastPOSIXct(endt)-AESTDiff < end.AEST, list(intervals = round_date(fastPOSIXct(start)-AESTDiff, interval.length), duration_ms) ][,.(avgs = mean(duration_ms/100)), by=intervals] %>% as_tibble() ggplot() + geom_line(data=tb01.AC, aes(x=intervals,y=txCount), color='blue') + geom_line(data=tb01.allEAI, aes(x=intervals,y=txCount), color='red') + geom_line(data=avg_durations, aes(x=intervals,y=avgs), color='green') dt01[, list(transactionid, startPct = round_date(as.POSIXct(start), "10 seconds"), endtPct = round_date(as.POSIXct(endt), "10 seconds")) ] ## 22 secs dt01[componentname %like% 'AcurityConnector', list(transactionid, startPct = round_date(fastPOSIXct(start)-36000, "10 seconds"), endtPct = round_date(fastPOSIXct(endt)-36000, "10 seconds")) ] ## 2 secs