#include "fconv.h" static int quorem(Bigint *, Bigint *); /* dtoa for IEEE arithmetic (dmg): convert double to ASCII string. * * Inspired by "How to Print Floating-Point Numbers Accurately" by * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 92-101]. * * Modifications: * 1. Rather than iterating, we use a simple numeric overestimate * to determine k = floor(log10(d)). We scale relevant * quantities using O(log2(k)) rather than O(k) multiplications. * 2. For some modes > 2 (corresponding to ecvt and fcvt), we don't * try to generate digits strictly left to right. Instead, we * compute with fewer bits and propagate the carry if necessary * when rounding the final digit up. This is often faster. * 3. Under the assumption that input will be rounded nearest, * mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22. * That is, we allow equality in stopping tests when the * round-nearest rule will give the same floating-point value * as would satisfaction of the stopping test with strict * inequality. * 4. We remove common factors of powers of 2 from relevant * quantities. * 5. When converting floating-point integers less than 1e16, * we use floating-point arithmetic rather than resorting * to multiple-precision integers. * 6. When asked to produce fewer than 15 digits, we first try * to get by with floating-point arithmetic; we resort to * multiple-precision integer arithmetic only if we cannot * guarantee that the floating-point calculation has given * the correctly rounded result. For k requested digits and * "uniformly" distributed input, the probability is * something like 10^(k-15) that we must resort to the long * calculation. */ char * _dtoa(double darg, int mode, int ndigits, int *decpt, int *sign, char **rve) { /* Arguments ndigits, decpt, sign are similar to those of ecvt and fcvt; trailing zeros are suppressed from the returned string. If not null, *rve is set to point to the end of the return value. If d is +-Infinity or NaN, then *decpt is set to 9999. mode: 0 ==> shortest string that yields d when read in and rounded to nearest. 2 ==> max(1,ndigits) significant digits. This gives a return value similar to that of ecvt, except that trailing zeros are suppressed. 3 ==> through ndigits past the decimal point. This gives a return value similar to that from fcvt, except that trailing zeros are suppressed, and ndigits can be negative. Sufficient space is allocated to the return value to hold the suppressed trailing zeros. */ int bbits, b2, b5, be, dig, i, ieps, ilim, ilim0, ilim1, j, j1, k, k0, k_check, leftright, m2, m5, s2, s5, spec_case; long L; int denorm; unsigned long x; Bigint *b, *b1, *delta, *mlo, *mhi, *S; double ds; Dul d2, eps; char *s, *s0; static Bigint *result; static int result_k; Dul d; d.d = darg; if(result){ result->k = result_k; result->maxwds = 1 << result_k; Bfree(result); result = 0; } if(word0(d) & Sign_bit){ /* set sign for everything, including 0's and NaNs */ *sign = 1; word0(d) &= ~Sign_bit; /* clear sign bit */ }else *sign = 0; if((word0(d) & Exp_mask) == Exp_mask){ /* Infinity or NaN */ *decpt = 9999; s = !word1(d) && !(word0(d) & 0xfffff) ? "Infinity" : "NaN"; if (rve) *rve = s[3] ? s + 8 : s + 3; return s; } if(!d.d){ *decpt = 1; s = "0"; if (rve) *rve = s + 1; return s; } b = d2b(d.d, &be, &bbits); i = (int)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1)); if(Sudden_Underflow) { d2.d = d.d; word0(d2) &= Frac_mask1; word0(d2) |= Exp_11; i -= Bias; }else{ if(i){ d2.d = d.d; word0(d2) &= Frac_mask1; word0(d2) |= Exp_11; i -= Bias; if(!Sudden_Underflow) denorm = 0; }else{ /* d is denormalized */ i = bbits + be + (Bias + (P-1) - 1); x = i > 32 ? word0(d) << 64 - i | word1(d) >> i - 32 : word1(d) << 32 - i; d2.d = x; word0(d2) -= 31*Exp_msk1; /* adjust exponent */ i -= (Bias + (P-1) - 1) + 1; if(!Sudden_Underflow) denorm = 1; } } /* log(x) ~=~ log(1.5) + (x-1.5)/1.5 * log10(x) = log(x) / log(10) * ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10)) * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2) * * This suggests computing an approximation k to log10(d) by * * k = (i - Bias)*0.301029995663981 * + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 ); * * We want k to be too large rather than too small. * The error in the first-order Taylor series approximation * is in our favor, so we just round up the constant enough * to compensate for any error in the multiplication of * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077, * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14, * adding 1e-13 to the constant term more than suffices. * Hence we adjust the constant term to 0.1760912590558. * (We could get a more accurate k by invoking log10, * but this is probably not worthwhile.) */ ds = (d2.d-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981; k = (int)ds; if(ds < 0. && ds != k) k--; /* want k = floor(ds) */ k_check = 1; if(k >= 0 && k <= Ten_pmax){ if (d.d < tens[k]) k--; k_check = 0; } j = bbits - i - 1; if(j >= 0){ b2 = 0; s2 = j; }else{ b2 = -j; s2 = 0; } if(k >= 0){ b5 = 0; s5 = k; s2 += k; }else{ b2 -= k; b5 = -k; s5 = 0; } if (mode != 2 && mode != 3) mode = 0; switch(mode){ default: case 0: leftright = 1; ilim = ilim1 = -1; i = 18; ndigits = 0; break; case 2: leftright = 0; if (ndigits <= 0) ndigits = 1; ilim = ilim1 = i = ndigits; break; case 3: leftright = 0; i = ndigits + k + 1; ilim = i; ilim1 = i - 1; if(i <= 0) i = 1; } j = sizeof(unsigned long); for(result_k = 0; sizeof(Bigint) - sizeof(unsigned long) + j <= i; j <<= 1) result_k++; result = Balloc(result_k); s = s0 = (char *)result; if(ilim >= 0 && ilim <= Quick_max){ /* Try to get by with floating-point arithmetic. */ i = 0; d2.d = d.d; k0 = k; ilim0 = ilim; ieps = 2; /* conservative */ if(k > 0){ ds = tens[k&0xf]; j = k >> 4; if(j & Bletch){ /* prevent overflows */ j &= Bletch - 1; d.d /= bigtens[n_bigtens-1]; ieps++; } for(; j; j >>= 1, i++) if(j & 1){ ieps++; ds *= bigtens[i]; } d.d /= ds; }else if(j1 = -k){ d.d *= tens[j1 & 0xf]; for(j = j1 >> 4; j; j >>= 1, i++) if(j & 1){ ieps++; d.d *= bigtens[i]; } } if(k_check && d.d < 1. && ilim > 0){ if (ilim1 <= 0) goto fast_failed; ilim = ilim1; k--; d.d *= 10.; ieps++; } eps.d = ieps*d.d + 7.; word0(eps) -= (P-1)*Exp_msk1; if(ilim == 0){ S = mhi = 0; d.d -= 5.; if (d.d > eps.d) goto one_digit; if (d.d < -eps.d) goto no_digits; goto fast_failed; } if(leftright){ /* Use Steele & White method of only * generating digits needed. */ eps.d = 0.5/tens[ilim-1] - eps.d; for(i = 0;;){ L = d.d; d.d -= L; *s++ = '0' + (int)L; if(d.d < eps.d) goto ret1; if(1. - d.d < eps.d) goto bump_up; if(++i >= ilim) break; eps.d *= 10.; d.d *= 10.; } }else{ /* Generate ilim digits, then fix them up. */ eps.d *= tens[ilim-1]; for(i = 1;; i++, d.d *= 10.){ L = d.d; d.d -= L; *s++ = '0' + (int)L; if(i == ilim){ if (d.d > 0.5 + eps.d) goto bump_up; else if(d.d < 0.5 - eps.d){ while(*--s == '0'); s++; goto ret1; } break; } } } fast_failed: s = s0; d.d = d2.d; k = k0; ilim = ilim0; } /* Do we have a "small" integer? */ if(be >= 0 && k <= Int_max){ /* Yes. */ ds = tens[k]; if(ndigits < 0 && ilim <= 0){ S = mhi = 0; if (ilim < 0 || d.d <= 5*ds) goto no_digits; goto one_digit; } for(i = 1;; i++){ L = d.d / ds; d.d -= L*ds; if(Check_FLT_ROUNDS){ /* If FLT_ROUNDS == 2, L will usually be high by 1 */ if(d.d < 0){ L--; d.d += ds; } } *s++ = '0' + (int)L; if(i == ilim){ d.d += d.d; if(d.d > ds || d.d == ds && L & 1){ bump_up: while(*--s == '9') if (s == s0){ k++; *s = '0'; break; } ++*s++; } break; } if(!(d.d *= 10.)) break; } goto ret1; } m2 = b2; m5 = b5; mhi = mlo = 0; if(leftright){ if(mode == 0){ if(Sudden_Underflow) i = 1 + P - bbits; else i = denorm ? be + (Bias + (P-1) - 1 + 1) : 1 + P - bbits; }else{ j = ilim - 1; if(m5 >= j) m5 -= j; else{ s5 += j -= m5; b5 += j; m5 = 0; } if((i = ilim) < 0){ m2 -= i; i = 0; } } b2 += i; s2 += i; mhi = i2b(1); } if(m2 > 0 && s2 > 0){ i = m2 < s2 ? m2 : s2; b2 -= i; m2 -= i; s2 -= i; } if(b5 > 0){ if(leftright){ if (m5 > 0){ mhi = pow5mult(mhi, m5); b1 = mult(mhi, b); Bfree(b); b = b1; } if(j = b5 - m5) b = pow5mult(b, j); }else b = pow5mult(b, b5); } S = i2b(1); if (s5 > 0) S = pow5mult(S, s5); /* Check for special case that d is a normalized power of 2. */ if(mode == 0) { if(!word1(d) && !(word0(d) & Bndry_mask) && !Sudden_Underflow && word0(d) & Exp_mask){ /* The special case */ b2 += Log2P; s2 += Log2P; spec_case = 1; }else spec_case = 0; } /* Arrange for convenient computation of quotients: * shift left if necessary so divisor has 4 leading 0 bits. * * Perhaps we should just compute leading 28 bits of S once * and for all and pass them and a shift to quorem, so it * can do shifts and ors to compute the numerator for q. */ if(i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0x1f) i = 32 - i; if(i > 4){ i -= 4; b2 += i; m2 += i; s2 += i; }else if(i < 4){ i += 28; b2 += i; m2 += i; s2 += i; } if(b2 > 0) b = lshift(b, b2); if(s2 > 0) S = lshift(S, s2); if(k_check){ if(cmp(b,S) < 0){ k--; b = multadd(b, 10, 0); /* we botched the k estimate */ if (leftright) mhi = multadd(mhi, 10, 0); ilim = ilim1; } } if (ilim <= 0 && mode > 2){ if(ilim < 0 || cmp(b,S = multadd(S,5,0)) <= 0){ /* no digits, fcvt style */ no_digits: k = -1 - ndigits; goto ret; } one_digit: *s++ = '1'; k++; goto ret; } if(leftright){ if(m2 > 0) mhi = lshift(mhi, m2); /* Compute mlo -- check for special case * that d is a normalized power of 2. */ mlo = mhi; if(spec_case){ mhi = Balloc(mhi->k); Bcopy(mhi, mlo); mhi = lshift(mhi, Log2P); } for(i = 1;;i++){ dig = quorem(b,S) + '0'; /* Do we yet have the shortest decimal string * that will round to d? */ j = cmp(b, mlo); delta = diff(S, mhi); j1 = delta->sign ? 1 : cmp(b, delta); Bfree(delta); if (!ROUND_BIASED && j1 == 0 && !mode && !(word1(d) & 1)){ if (dig == '9') goto round_9_up; if (j > 0) dig++; *s++ = dig; goto ret; } if(j < 0 || j == 0 && !mode && (ROUND_BIASED || !(word1(d) & 1))){ if(j1 > 0){ b = lshift(b, 1); j1 = cmp(b, S); if ((j1 > 0 || j1 == 0 && dig & 1) && dig++ == '9') goto round_9_up; } *s++ = dig; goto ret; } if(j1 > 0){ if(dig == '9'){ /* possible if i == 1 */ round_9_up: *s++ = '9'; goto roundoff; } *s++ = dig + 1; goto ret; } *s++ = dig; if (i == ilim) break; b = multadd(b, 10, 0); if(mlo == mhi) mlo = mhi = multadd(mhi, 10, 0); else{ mlo = multadd(mlo, 10, 0); mhi = multadd(mhi, 10, 0); } } }else for(i = 1;; i++){ *s++ = dig = quorem(b,S) + '0'; if (i >= ilim) break; b = multadd(b, 10, 0); } /* Round off last digit */ b = lshift(b, 1); j = cmp(b, S); if(j > 0 || j == 0 && dig & 1){ roundoff: while(*--s == '9') if (s == s0){ k++; *s++ = '1'; goto ret; } ++*s++; }else{ while(*--s == '0'); s++; } ret: Bfree(S); if(mhi){ if(mlo && mlo != mhi) Bfree(mlo); Bfree(mhi); } ret1: Bfree(b); *s = 0; *decpt = k + 1; if (rve) *rve = s; return s0; } static int quorem(Bigint *b, Bigint *S) { int n; long borrow, y; unsigned long carry, q, ys; unsigned long *bx, *bxe, *sx, *sxe; long z; unsigned long si, zs; n = S->wds; if(b->wds < n) return 0; sx = S->x; sxe = sx + --n; bx = b->x; bxe = bx + n; q = *bxe / (*sxe + 1); /* ensure q <= true quotient */ if(q){ borrow = 0; carry = 0; do{ si = *sx++; ys = (si & 0xffff) * q + carry; zs = (si >> 16) * q + (ys >> 16); carry = zs >> 16; y = (*bx & 0xffff) - (ys & 0xffff) + borrow; borrow = y >> 16; Sign_Extend(borrow, y); z = (*bx >> 16) - (zs & 0xffff) + borrow; borrow = z >> 16; Sign_Extend(borrow, z); Storeinc(bx, z, y); }while(sx <= sxe); if(!*bxe){ bx = b->x; while(--bxe > bx && !*bxe) --n; b->wds = n; } } if(cmp(b, S) >= 0){ q++; borrow = 0; carry = 0; bx = b->x; sx = S->x; do{ si = *sx++; ys = (si & 0xffff) + carry; zs = (si >> 16) + (ys >> 16); carry = zs >> 16; y = (*bx & 0xffff) - (ys & 0xffff) + borrow; borrow = y >> 16; Sign_Extend(borrow, y); z = (*bx >> 16) - (zs & 0xffff) + borrow; borrow = z >> 16; Sign_Extend(borrow, z); Storeinc(bx, z, y); }while(sx <= sxe); bx = b->x; bxe = bx + n; if(!*bxe){ while(--bxe > bx && !*bxe) --n; b->wds = n; } } return q; }