.TH SEGATTACH 2 .SH NAME segattach, segdetach, segfree \- map/unmap a segment in virtual memory .SH SYNOPSIS .ta \w'\fLvoid* 'u .B int segattach(int attr, char *class, void *va, ulong len) .PP .B int segdetach(void *addr) .PP .B int segfree(void *va, ulong len) .PP .SH DESCRIPTION .I Segattach creates a new memory segment and adds it to the calling process's address space. Segments are identified by system-dependent classes. Segment classes .B memory (plain memory) and .B shared (shared memory) should be available on all systems. .PP Shared segments are inherited by the children of the attaching process and remain untouched across a .IR fork (2). An .IR exec (2) will release a shared segment if it overlaps the segments in the file being .IR exec'ed ; otherwise the segment will be inherited. .PP Some machines provide a segment class .BR lock . Lock segments allow access to special lock hardware provided by some multiprocessors, in particular the SGI Power Series machines. .PP Systems may also provide interfaces to special hardware devices like frame buffers through the .I segattach interface. Device memory mapped by this method is typically uncached by default. .PP If the specified .I class is unknown, .I segattach draws an error. .PP .I Attr specifies the new segment's attributes. The only attribute implemented on all classes of segment is .BR SG_RONLY , which allows only read access on the segment. Specific devices may implement attributes to control caching and allocation, but these will vary between devices. .PP .I Va and .I len specify the position of the segment in the process's address space. .I Va is rounded down to the nearest page boundary and .IB va + len is rounded up. The system does not permit segments to overlap. .PP .I Segdetach removes a segment from a process's address space. Memory used by the segment is freed. .I Addr may be any address within the bounds of the segment. .PP The system will not permit the text and stack segments to be detached from the address space. .PP .I Segfree allows specific areas of a segment's memory to be freed. .I Va and .I len are interpreted as in .I segattach but need not refer to the entire segment. .PP To select a virtual address to which a segment can be attached, the following algorithm is reliable. Read the .B segment file of the current process (see .IR proc (3)) to find the base of the stack segment. Subtract the size of the new segment and use that address. .PP The MIPS R2000 and R3000 have no hardware instructions to implement locks. The following method can be used to build them from software. First, try to .I segattach a segment of class .BR lock . If this succeeds, the machine is an SGI Power Series and the memory contains hardware locks. Each 4096-byte page has 64 .B long words at its beginning; each word implements a test-and-set semaphore when read; the low bit of the word is zero on success, one on failure. If the .I segattach fails, there is no hardware support but the operating system helps: Any .B COP3 instruction will be trapped by the kernel and interpreted as a test-and-set. In the trap, .B R1 points to a .BR long ; on return, .B R1 is greater or equal zero on success, negative on failure. The following assembly language implements such a test-and-set. .IP .EX .ta 8n +8n +8n +8n +8n +8n +8n /* * MIPS test and set */ TEXT tas(SB), $0 btas: MOVW sema+0(FP), R1 MOVB R0, 1(R1) NOR R0, R0, R0 /* NOP */ WORD $(023<<26) /* MFC3 R0, R0 */ BLTZ R1, btas RET .EE .SH SEE ALSO .IR segbrk (2), .IR segflush (2) .br .BR /proc/*/segment .SH DIAGNOSTICS These functions set .I errstr.