thalfshear-starter-rate.py - sphere - GPU-based 3D discrete element method algorithm with optional fluid coupling
 (HTM) git clone git://src.adamsgaard.dk/sphere
 (DIR) Log
 (DIR) Files
 (DIR) Refs
 (DIR) LICENSE
       ---
       thalfshear-starter-rate.py (1955B)
       ---
            1 #!/usr/bin/env python
            2 import sphere
            3 import numpy
            4 import sys
            5 
            6 # launch with:
            7 # $ python halfshear-starter-rate.py <DEVICE> <FLUID> <C_PHI> <C_V> <SIGMA_0> <VELOCITY FACTOR>
            8 
            9 device = int(sys.argv[1])
           10 wet = int(sys.argv[2])
           11 c_phi = float(sys.argv[3])
           12 c_v = float(sys.argv[4])
           13 sigma0 = float(sys.argv[5])
           14 velfac = float(sys.argv[6])
           15 
           16 #sim = sphere.sim('diffusivity-sigma0=' + str(sigma0) + '-c_phi=' + \
           17 #        str(c_phi) + '-c_grad_p=' + str(c_grad_p), fluid=True)
           18 if wet == 1:
           19     fluid = True
           20 else:
           21     fluid = False
           22     
           23 #sim = sphere.sim('diffusivity-sigma0=' + str(sigma0) +'-c_phi=1.0-c_grad_p=1.0',
           24 #        fluid=True)
           25 sim = sphere.sim('halfshear-sigma0=' + str(sigma0), fluid=False)
           26 print('Input: ' + sim.sid)
           27 sim.readlast()
           28 
           29 sim.fluid = fluid
           30 if fluid:
           31     sim.id('halfshear-sigma0=' + str(sigma0) + '-c_v=' + str(c_v) + \
           32             '-velfac=' + str(velfac) + '-shear')
           33 else:
           34     sim.id('halfshear-sigma0=' + str(sigma0) + \
           35             '-velfac=' + str(velfac) + '-shear')
           36 
           37 sim.checkerboardColors(nx=6,ny=3,nz=6)
           38 sim.cleanup()
           39 sim.adjustUpperWall()
           40 sim.zeroKinematics()
           41 
           42 sim.shear(1.0/20.0 * velfac)
           43 
           44 if fluid:
           45     #sim.num[2] *= 2
           46     #sim.L[2] *= 2.0
           47     sim.initFluid(mu = 1.787e-6, p = 600.0e3, hydrostatic = True)
           48     #sim.initFluid(mu = 17.87e-4, p = 1.0e5, hydrostatic = True)
           49     sim.setFluidBottomNoFlow()
           50     sim.setFluidTopFixedPressure()
           51     sim.setDEMstepsPerCFDstep(100)
           52     sim.setMaxIterations(2e5)
           53     sim.c_phi[0] = c_phi
           54     sim.c_v[0] = c_v
           55 
           56 sim.initTemporal(total = 20.0/velfac, file_dt = 0.01/velfac, epsilon=0.07)
           57 sim.w_sigma0[0] = sigma0
           58 sim.w_m[0] = numpy.abs(sigma0*sim.L[0]*sim.L[1]/sim.g[2])
           59 sim.mu_s[0] = 0.5
           60 sim.mu_d[0] = 0.5
           61 sim.setDampingNormal(0.0)
           62 sim.setDampingTangential(0.0)
           63 
           64 # Fix lowermost particles
           65 #dz = sim.L[2]/sim.num[2]
           66 #I = numpy.nonzero(sim.x[:,2] < 1.5*dz)
           67 #sim.fixvel[I] = 1
           68 
           69 sim.run(dry=True)
           70 sim.run(device=device)
           71 #sim.writeVTKall()
           72 #sim.visualize('walls')
           73 #sim.visualize('fluid-pressure')