thalfshear-darcy-stress-starter.py - sphere - GPU-based 3D discrete element method algorithm with optional fluid coupling
 (HTM) git clone git://src.adamsgaard.dk/sphere
 (DIR) Log
 (DIR) Files
 (DIR) Refs
 (DIR) LICENSE
       ---
       thalfshear-darcy-stress-starter.py (2339B)
       ---
            1 #!/usr/bin/env python
            2 import sphere
            3 import numpy
            4 import sys
            5 
            6 # launch with:
            7 # $ ipython halfshear-darcy-stress-starter.py <device> <fluid> <c_phi> <k_c> <sigma_0> <mu> <shear_stress>
            8 
            9 device = int(sys.argv[1])
           10 wet = int(sys.argv[2])
           11 c_phi = float(sys.argv[3])
           12 k_c = float(sys.argv[4])
           13 sigma0 = float(sys.argv[5])
           14 mu = float(sys.argv[6])
           15 shear_stress = float(sys.argv[7])
           16 
           17 if wet == 1:
           18     fluid = True
           19 else:
           20     fluid = False
           21     
           22 sim = sphere.sim('halfshear-sigma0=' + str(sigma0), fluid=False)
           23 print('Input: ' + sim.sid)
           24 sim.readlast()
           25 
           26 sim.fluid = fluid
           27 if fluid:
           28     sim.id('halfshear-darcy-sigma0=' + str(sigma0) + '-k_c=' + str(k_c) + \
           29             '-mu=' + str(mu) + '-ss=' + str(shear_stress) + '-shear')
           30 else:
           31     sim.id('halfshear-sigma0=' + str(sigma0) + '-ss=' + str(shear_stress) + \
           32             '-shear')
           33 
           34 sim.checkerboardColors(nx=6,ny=3,nz=6)
           35 sim.cleanup()
           36 sim.adjustUpperWall()
           37 sim.zeroKinematics()
           38 
           39 #sim.shear(0.0/20.0)
           40 #sim.shear(1.0/20.0 * velfac)
           41 sim.shear(shear_stress = shear_stress)
           42 K_q_real = 36.4e9
           43 K_w_real =  2.2e9
           44 K_q_sim  = 1.16e9
           45 K_w_sim  = K_w_real/K_q_real * K_q_sim
           46 
           47 if fluid:
           48     #sim.num[2] *= 2
           49     sim.num[:] /= 2
           50     #sim.L[2] *= 2.0
           51     #sim.initFluid(mu = 1.787e-6, p = 600.0e3, cfd_solver = 1)
           52     sim.initFluid(mu = mu, p = 0.0, cfd_solver = 1)
           53     sim.setFluidBottomNoFlow()
           54     sim.setFluidTopFixedPressure()
           55     #sim.setDEMstepsPerCFDstep(10)
           56     sim.setMaxIterations(2e5)
           57     sim.setPermeabilityPrefactor(k_c)
           58     sim.setFluidCompressibility(1.0/K_w_sim)
           59 
           60 sim.w_sigma0[0] = sigma0
           61 sim.w_m[0] = numpy.abs(sigma0*sim.L[0]*sim.L[1]/sim.g[2])
           62 
           63 #sim.setStiffnessNormal(36.4e9 * 0.1 / 2.0)
           64 #sim.setStiffnessTangential(36.4e9/3.0 * 0.1 / 2.0)
           65 sim.setStiffnessNormal(K_q_sim)
           66 sim.setStiffnessTangential(K_q_sim)
           67 sim.mu_s[0] = 0.5
           68 sim.mu_d[0] = 0.5
           69 sim.setDampingNormal(0.0)
           70 sim.setDampingTangential(0.0)
           71 #sim.deleteAllParticles()
           72 #sim.fixvel[:] = -1.0
           73 
           74 sim.initTemporal(total = 20.0, file_dt = 0.01, epsilon=0.07)
           75 #sim.initTemporal(total = 20.0, file_dt = 0.00001, epsilon=0.07)
           76 #sim.time_dt[0] *= 1.0e-2
           77 #sim.initTemporal(total = 1.0e-4, file_dt = 1.0e-5, epsilon=0.07)
           78 
           79 # Fix lowermost particles
           80 #dz = sim.L[2]/sim.num[2]
           81 #I = numpy.nonzero(sim.x[:,2] < 1.5*dz)
           82 #sim.fixvel[I] = 1
           83 
           84 sim.run(dry=True)
           85 sim.run(device=device)
           86 sim.writeVTKall()
           87 #sim.visualize('walls')
           88 #sim.visualize('fluid-pressure')