thalfshear-darcy-stress-mod-starter.py - sphere - GPU-based 3D discrete element method algorithm with optional fluid coupling
(HTM) git clone git://src.adamsgaard.dk/sphere
(DIR) Log
(DIR) Files
(DIR) Refs
(DIR) LICENSE
---
thalfshear-darcy-stress-mod-starter.py (2745B)
---
1 #!/usr/bin/env python
2 import sphere
3 import numpy
4 import sys
5
6 # launch with:
7 # $ ipython halfshear-darcy-stress-starter.py <device> <fluid> <c_phi> <k_c>
8 # <sigma_0> <mu> <shear_stress> <mod_A> <mod_f> <timefactor>
9
10 device = int(sys.argv[1])
11 wet = int(sys.argv[2])
12 c_phi = float(sys.argv[3])
13 k_c = float(sys.argv[4])
14 sigma0 = float(sys.argv[5])
15 mu = float(sys.argv[6])
16 shear_stress = float(sys.argv[7])
17 mod_A = float(sys.argv[8])
18 mod_f = float(sys.argv[9])
19 timefac = float(sys.argv[10])
20
21 if wet == 1:
22 fluid = True
23 else:
24 fluid = False
25
26 sim = sphere.sim('halfshear-sigma0=' + str(sigma0), fluid=False)
27 print('Input: ' + sim.sid)
28 sim.readlast()
29
30 sim.fluid = fluid
31 if fluid:
32 sim.id('halfshear-darcy-sigma0=' + str(sigma0) + '-k_c=' + str(k_c) +
33 '-mu=' + str(mu) + '-ss=' + str(shear_stress) + '-A=' + str(mod_A)
34 + '-f=' + str(mod_f))
35 else:
36 sim.id('halfshear-sigma0=' + str(sigma0) + '-ss=' + str(shear_stress) + \
37 '-shear')
38
39 sim.checkerboardColors(nx=6,ny=3,nz=6)
40 sim.cleanup()
41 sim.adjustUpperWall()
42 sim.zeroKinematics()
43
44 #sim.shear(0.0/20.0)
45 #sim.shear(1.0/20.0 * velfac)
46 sim.shear(shear_stress = shear_stress)
47 K_q_real = 36.4e9
48 K_w_real = 2.2e9
49 K_q_sim = 1.16e9
50 K_w_sim = K_w_real/K_q_real * K_q_sim
51
52 if fluid:
53 #sim.num[2] *= 2
54 sim.num[:] /= 2
55 #sim.L[2] *= 2.0
56 #sim.initFluid(mu = 1.787e-6, p = 600.0e3, cfd_solver = 1)
57 sim.initFluid(mu = mu*timefac, p = 0.0, cfd_solver = 1)
58 sim.setFluidBottomNoFlow()
59 sim.setFluidTopFixedPressure()
60 #sim.setDEMstepsPerCFDstep(10)
61 sim.setMaxIterations(2e5)
62 sim.setPermeabilityPrefactor(k_c)
63 sim.setFluidCompressibility(1.0/K_w_sim)
64 # the fluid modulation should be 180 degree out of phase with the wall
65 # modulation
66 sim.setFluidPressureModulation(A=mod_A, f=mod_f/timefac, phi=numpy.pi)
67
68 sim.w_sigma0[0] = sigma0
69 sim.w_m[0] = numpy.abs(sigma0*sim.L[0]*sim.L[1]/sim.g[2])
70
71 #sim.setStiffnessNormal(36.4e9 * 0.1 / 2.0)
72 #sim.setStiffnessTangential(36.4e9/3.0 * 0.1 / 2.0)
73 sim.setStiffnessNormal(K_q_sim)
74 sim.setStiffnessTangential(K_q_sim)
75 sim.mu_s[0] = 0.5
76 sim.mu_d[0] = 0.5
77 sim.setDampingNormal(0.0)
78 sim.setDampingTangential(0.0)
79 #sim.deleteAllParticles()
80 #sim.fixvel[:] = -1.0
81
82 sim.initTemporal(total = 20.0*timefac, file_dt = 0.01, epsilon=0.07)
83 #sim.initTemporal(total = 20.0, file_dt = 0.00001, epsilon=0.07)
84 #sim.time_dt[0] *= 1.0e-2
85 #sim.initTemporal(total = 1.0e-4, file_dt = 1.0e-5, epsilon=0.07)
86 sim.setTopWallNormalStressModulation(A=mod_A, f=mod_f/timefac)
87
88 # Fix lowermost particles
89 #dz = sim.L[2]/sim.num[2]
90 #I = numpy.nonzero(sim.x[:,2] < 1.5*dz)
91 #sim.fixvel[I] = 1
92
93 sim.run(dry=True)
94 sim.run(device=device)
95 sim.writeVTKall()
96 #sim.visualize('walls')
97 #sim.visualize('fluid-pressure')