thalfshear-darcy-strain.py - sphere - GPU-based 3D discrete element method algorithm with optional fluid coupling
 (HTM) git clone git://src.adamsgaard.dk/sphere
 (DIR) Log
 (DIR) Files
 (DIR) Refs
 (DIR) LICENSE
       ---
       thalfshear-darcy-strain.py (7005B)
       ---
            1 #!/usr/bin/env python
            2 import matplotlib
            3 matplotlib.use('Agg')
            4 matplotlib.rcParams.update({'font.size': 18, 'font.family': 'serif'})
            5 matplotlib.rc('text', usetex=True)
            6 matplotlib.rcParams['text.latex.preamble']=[r"\usepackage{amsmath}"]
            7 import shutil
            8 
            9 import os
           10 import numpy
           11 import sphere
           12 from permeabilitycalculator import *
           13 import matplotlib.pyplot as plt
           14 from matplotlib.ticker import MaxNLocator
           15 
           16 import seaborn as sns
           17 #sns.set(style='ticks', palette='Set2')
           18 #sns.set(style='ticks', palette='colorblind')
           19 sns.set(style='ticks', palette='Set2')
           20 sns.despine() # remove chartjunk
           21 
           22 sigma0_list = [20000.0, 80000.0]
           23 #cvals = ['dry', 1.0, 0.1, 0.01]
           24 #cvals = ['dry', 3.5e-13, 3.5e-15]
           25 cvals = ['dry', 3.5e-13, 3.5e-14, 3.5e-15]
           26 #cvals = ['dry', 1.0]
           27 #step = 1999
           28 
           29 for sigma0 in sigma0_list:
           30 
           31     sim = sphere.sim('halfshear-sigma0=' + str(sigma0) + '-shear')
           32     sim.readfirst(verbose=False)
           33 
           34 
           35     # particle z positions
           36     zpos_p = [[], [], [], []]
           37 
           38     # cell midpoint cell positions
           39     zpos_c = [[], [], [], []]
           40 
           41     # particle x displacements
           42     xdisp = [[], [], [], []]
           43     xdisp_mean = [[], [], [], []]
           44 
           45     s = 0
           46     for c in cvals:
           47 
           48         if c == 'dry':
           49             fluid = False
           50             sid = 'halfshear-sigma0=' + str(sigma0) + '-shear'
           51         else:
           52             fluid = True
           53             sid = 'halfshear-darcy-sigma0=' + str(sigma0) + '-k_c=' + str(c) + \
           54             '-mu=1.797e-06-velfac=1.0-shear'
           55 
           56         sim = sphere.sim(sid, fluid=fluid)
           57 
           58         if os.path.isfile('../output/' + sid + '.status.dat'):
           59 
           60             sim.readlast(verbose=False)
           61 
           62             zpos_c[s] = numpy.zeros(sim.num[2]*2)
           63             dz = sim.L[2]/(sim.num[2]*2)
           64             for i in numpy.arange(sim.num[2]*2):
           65                 zpos_c[s][i] = i*dz + 0.5*dz
           66 
           67             xdisp[s] = numpy.zeros(sim.np)
           68             xdisp_mean[s] = numpy.zeros(sim.num[2]*2)
           69 
           70 
           71             zpos_p[s][:] = sim.x[:,2]
           72 
           73             xdisp[s][:] = sim.xyzsum[:,0]
           74 
           75             #shear_strain[s] += sim.shearStrain()/nsteps_avg
           76 
           77             # calculate mean values of xdisp and f_pf
           78             for iz in numpy.arange(sim.num[2]*2):
           79                 z_bot = iz*dz
           80                 z_top = (iz+1)*dz
           81                 I = numpy.nonzero((zpos_p[s][:] >= z_bot) & (zpos_p[s][:] < z_top))
           82                 if len(I) > 0:
           83                     xdisp_mean[s][iz] = numpy.mean(xdisp[s][I])
           84 
           85             # normalize distance
           86             max_dist = numpy.nanmax(xdisp_mean[s])
           87             xdisp_mean[s] /= max_dist
           88 
           89         else:
           90             print(sid + ' not found')
           91         s += 1
           92 
           93 
           94     #fig = plt.figure(figsize=(8,4*(len(steps))+1))
           95     #fig = plt.figure(figsize=(8,5*(len(steps))+1))
           96     #fig = plt.figure(figsize=(8/2,6/2))
           97     fig = plt.figure(figsize=(3.74,3.47)) # 3.14 inch = 80 mm, 3.74 = 95 mm
           98     #fig = plt.figure(figsize=(8,6))
           99 
          100     ax = []
          101     #linetype = ['-', '--', '-.']
          102     #linetype = ['-', '-', '-', '-']
          103     linetype = ['-', '--', '-.', ':']
          104     #color = ['b','g','c','y']
          105     #color = ['k','g','c','y']
          106     color = ['y','g','c','k']
          107     #color = ['c','m','y','k']
          108     for s in numpy.arange(len(cvals)):
          109     #for s in numpy.arange(len(cvals)-1, -1, -1):
          110 
          111         ax.append(plt.subplot(111))
          112         #ax.append(plt.subplot(len(steps)*100 + 31 + s*3))
          113         #ax.append(plt.subplot(len(steps)*100 + 32 + s*3, sharey=ax[s*4+0]))
          114         #ax.append(plt.subplot(len(steps)*100 + 33 + s*3, sharey=ax[s*4+0]))
          115         #ax.append(ax[s*4+2].twiny())
          116 
          117         if cvals[s] == 'dry':
          118             legend = 'dry'
          119         elif cvals[s] == 3.5e-13:
          120             legend = 'wet, high permeability'
          121         elif cvals[s] == 3.5e-14:
          122             legend = 'wet, interm.\\ permeability'
          123         elif cvals[s] == 3.5e-15:
          124             legend = 'wet, low permeability'
          125         else:
          126             legend = 'wet, $k_c$ = ' + str(cvals[s]) + ' m$^2$'
          127 
          128         #ax[0].plot(xdisp[s], zpos_p[s], ',', color = '#888888')
          129         #ax[0].plot(xdisp[s], zpos_p[s], ',', color=color[s], alpha=0.5)
          130         ax[0].plot(xdisp_mean[s], zpos_c[s], linetype[s],
          131                 label=legend)#,
          132                 #color=color[s],
          133                 #linewidth=2.0)
          134 
          135         ax[0].set_ylabel('Vertical position $z$ [m]')
          136         #ax[0].set_xlabel('$\\boldsymbol{x}^x_\\text{p}$ [m]')
          137         ax[0].set_xlabel('Normalized horizontal movement')
          138 
          139         #ax[s*4+0].get_xaxis().set_major_locator(MaxNLocator(nbins=5))
          140         #ax[s*4+1].get_xaxis().set_major_locator(MaxNLocator(nbins=5))
          141         #ax[s*4+2].get_xaxis().set_major_locator(MaxNLocator(nbins=5))
          142 
          143         #plt.setp(ax[s*4+0].xaxis.get_majorticklabels(), rotation=90)
          144         #plt.setp(ax[s*4+1].xaxis.get_majorticklabels(), rotation=90)
          145         #plt.setp(ax[s*4+2].xaxis.get_majorticklabels(), rotation=90)
          146         #plt.setp(ax[s*4+3].xaxis.get_majorticklabels(), rotation=90)
          147 
          148         #if s == 0:
          149             #y = 0.95
          150         #if s == 1:
          151             #y = 0.55
          152 
          153         #strain_str = 'Shear strain $\\gamma = %.3f$' % (shear_strain[s])
          154         #fig.text(0.1, y, strain_str, horizontalalignment='left', fontsize=22)
          155         #ax[s*4+0].annotate(strain_str, xytext=(0,1.1), textcoords='figure fraction',
          156                 #horizontalalignment='left', fontsize=22)
          157         #plt.text(0.05, 1.06, strain_str, horizontalalignment='left', fontsize=22,
          158                 #transform=ax[s*4+0].transAxes)
          159         #ax[s*4+0].set_title(strain_str)
          160 
          161         #ax[s*4+0].grid()
          162         #ax[s*4+1].grid()
          163         #ax[s*4+2].grid()
          164         #ax1.legend(loc='lower right', prop={'size':18})
          165         #ax2.legend(loc='lower right', prop={'size':18})
          166 
          167     # remove box at top and right
          168     ax[0].spines['top'].set_visible(False)
          169     ax[0].spines['right'].set_visible(False)
          170     # remove ticks at top and right
          171     ax[0].get_xaxis().tick_bottom()
          172     ax[0].get_yaxis().tick_left()
          173     ax[0].get_xaxis().grid(False) # horizontal grid lines
          174     #ax[0].get_yaxis().grid(True, linestyle='--', linewidth=0.5) # vertical grid lines
          175     ax[0].get_xaxis().grid(True, linestyle=':', linewidth=0.5) # vertical grid lines
          176     ax[0].get_yaxis().grid(True, linestyle=':', linewidth=0.5) # vertical grid lines
          177 
          178     # reverse legend order
          179     handles, labels = ax[0].get_legend_handles_labels()
          180     ax[0].legend(handles[::-1], labels[::-1], loc='best')
          181 
          182     #legend_alpha=0.5
          183     #ax[0].legend(loc='lower right', prop={'size':18}, fancybox=True, framealpha=legend_alpha)
          184     #ax[0].legend(loc='best', prop={'size':18}, fancybox=True, framealpha=legend_alpha)
          185     #ax[0].legend(loc='best')
          186     #ax[0].grid()
          187     #ax[0].set_xlim([-0.05, 1.01])
          188     ax[0].set_xlim([-0.05, 1.05])
          189     #ax[0].set_ylim([0.0, 0.47])
          190     ax[0].set_ylim([0.20, 0.47])
          191     plt.tight_layout()
          192     plt.subplots_adjust(wspace = .05)
          193     plt.MaxNLocator(nbins=4)
          194 
          195     filename = 'halfshear-darcy-strain.pdf'
          196     if sigma0 == 80000.0:
          197         filename = 'halfshear-darcy-strain-N80.pdf'
          198     plt.savefig(filename)
          199     #shutil.copyfile(filename, '/Users/adc/articles/own/2/graphics/' + filename)
          200     shutil.copyfile(filename, '/home/adc/articles/own/2/graphics/' + filename)
          201     print(filename)