timprove plots - sphere - GPU-based 3D discrete element method algorithm with optional fluid coupling
(HTM) git clone git://src.adamsgaard.dk/sphere
(DIR) Log
(DIR) Files
(DIR) Refs
(DIR) LICENSE
---
(DIR) commit ebdb4c4ac6aa55ff50601a0df75884ccefee9b3a
(DIR) parent 42b7039c127fbf0f3ac1938530e333d450284af2
(HTM) Author: Anders Damsgaard <anders.damsgaard@geo.au.dk>
Date: Thu, 2 Oct 2014 19:54:09 +0200
improve plots
Diffstat:
M python/shear-results-pressures.py | 9 +++++----
M python/shear-results.py | 30 ++++++++++++++++++++++--------
2 files changed, 27 insertions(+), 12 deletions(-)
---
(DIR) diff --git a/python/shear-results-pressures.py b/python/shear-results-pressures.py
t@@ -20,8 +20,9 @@ sigma0 = float(sys.argv[1])
c_grad_p = float(sys.argv[2])
c_phi = 1.0
-sid = 'shear-sigma0=' + str(sigma0) + '-c_phi=' + \
- str(c_phi) + '-c_grad_p=' + str(c_grad_p) + '-hi_mu-lo_visc'
+#sid = 'shear-sigma0=' + str(sigma0) + '-c_phi=' + \
+# str(c_phi) + '-c_grad_p=' + str(c_grad_p) + '-hi_mu-lo_visc'
+sid = 'halfshear-sigma0=' + str(sigma0) + '-c=' + str(c_grad_p) + '-shear'
sim = sphere.sim(sid, fluid=True)
sim.readfirst(verbose=False)
t@@ -74,8 +75,8 @@ ax1.set_xlim([0, shear_strain[-1]])
ax1.set_ylim([zpos_c[0], sim.w_x[0]])
ax1.set_xlabel('Shear strain $\\gamma$ [-]')
ax1.set_ylabel('Vertical position $z$ [m]')
-#cb1 = plt.colorbar(im1, boundaries=[min_p, numpy.abs(min_p)])
-cb1 = plt.colorbar(cmap=cmap, norm=norm)
+#cb1 = plt.colorbar()
+cb1 = plt.colorbar(im1, cmap=cmap, norm=norm)
cb1.set_label('Deviatoric pressure $p_\\text{f}$ [kPa]')
cb1.solids.set_rasterized(True)
(DIR) diff --git a/python/shear-results.py b/python/shear-results.py
t@@ -16,9 +16,8 @@ import matplotlib.pyplot as plt
#sigma0_list = numpy.array([1.0e3, 2.0e3, 4.0e3, 10.0e3, 20.0e3, 40.0e3])
#sigma0 = 10.0e3
sigma0 = float(sys.argv[1])
-cvals = [1.0, 0.1]
-#cvals = [1.0]
-c_phi = 1.0
+#cvals = [1.0, 0.1]
+cvals = [1.0]
shear_strain = [[], [], []]
friction = [[], [], []]
t@@ -32,7 +31,8 @@ f_n_max = [[], [], []]
fluid=True
# dry shear
-sid = 'shear-sigma0=' + sys.argv[1] + '-hw'
+#sid = 'shear-sigma0=' + sys.argv[1] + '-hw'
+sid = 'halfshear-sigma0=' + sys.argv[1] + '-shear'
sim = sphere.sim(sid)
sim.readlast(verbose=False)
sim.visualize('shear')
t@@ -41,14 +41,23 @@ shear_strain[0] = sim.shear_strain
friction[0] = sim.tau/sim.sigma_eff
dilation[0] = sim.dilation
+f_n_mean[0] = numpy.zeros_like(shear_strain[0])
+f_n_max[0] = numpy.zeros_like(shear_strain[0])
+for i in numpy.arange(sim.status()):
+ sim.readstep(i, verbose=False)
+ sim.findNormalForces()
+ f_n_mean[0][i] = numpy.mean(sim.f_n_magn)
+ f_n_max[0][i] = numpy.max(sim.f_n_magn)
+
# wet shear
c = 1
for c in numpy.arange(1,len(cvals)+1):
c_grad_p = cvals[c-1]
- sid = 'shear-sigma0=' + str(sigma0) + '-c_phi=' + \
- str(c_phi) + '-c_grad_p=' + str(c_grad_p) + \
- '-hi_mu-lo_visc-hw'
+ #sid = 'shear-sigma0=' + str(sigma0) + '-c_phi=' + \
+ #str(c_phi) + '-c_grad_p=' + str(c_grad_p) + \
+ #'-hi_mu-lo_visc-hw'
+ sid = 'halfshear-sigma0=' + str(sigma0) + '-c=' + str(c_grad_p) + '-shear'
if os.path.isfile('../output/' + sid + '.status.dat'):
sim = sphere.sim(sid, fluid=fluid)
t@@ -93,6 +102,7 @@ for c in numpy.arange(1,len(cvals)+1):
#fig = plt.figure(figsize=(8,8)) # (w,h)
#fig = plt.figure(figsize=(8,12))
fig = plt.figure(figsize=(8,16))
+fig.subplots_adjust(hspace=0)
#plt.subplot(3,1,1)
#plt.ticklabel_format(style='sci', axis='y', scilimits=(0,0))
t@@ -103,6 +113,8 @@ ax3 = plt.subplot(413, sharex=ax1)
ax4 = plt.subplot(414, sharex=ax1)
ax1.plot(shear_strain[0], friction[0], label='dry')
ax2.plot(shear_strain[0], dilation[0], label='dry')
+ax4.plot(shear_strain[0], f_n_mean[0], '-', label='dry')
+ax4.plot(shear_strain[0], f_n_max[0], '--')
color = ['b','g','r']
for c in numpy.arange(1,len(cvals)+1):
t@@ -128,7 +140,7 @@ for c in numpy.arange(1,len(cvals)+1):
ax4.plot(shear_strain[c][1:], f_n_max[c][1:], '--' + color[c])
#label='$c$ = %.2f' % (cvals[c-1]), linewidth=2)
-ax3.set_xlabel('Shear strain $\\gamma$ [-]')
+ax4.set_xlabel('Shear strain $\\gamma$ [-]')
ax1.set_ylabel('Shear friction $\\tau/\\sigma\'$ [-]')
ax2.set_ylabel('Dilation $\\Delta h/(2r)$ [-]')
t@@ -139,10 +151,12 @@ ax4.set_ylabel('Particle contact force $||\\boldsymbol{f}_\\text{p}||$ [N]')
plt.setp(ax1.get_xticklabels(), visible=False)
plt.setp(ax2.get_xticklabels(), visible=False)
+plt.setp(ax3.get_xticklabels(), visible=False)
ax1.grid()
ax2.grid()
ax3.grid()
+ax4.grid()
legend_alpha=0.5
ax1.legend(loc='best', prop={'size':18}, fancybox=True, framealpha=legend_alpha)