tDo not generate diffusion/advection plots by default - sphere - GPU-based 3D discrete element method algorithm with optional fluid coupling
(HTM) git clone git://src.adamsgaard.dk/sphere
(DIR) Log
(DIR) Files
(DIR) Refs
(DIR) LICENSE
---
(DIR) commit ea99eb813e0a8f5e11d9f5878cafd4b3b6f6b709
(DIR) parent 60f837c2139f0dd664e1e009a6dec97be806cbcf
(HTM) Author: Anders Damsgaard <anders.damsgaard@geo.au.dk>
Date: Thu, 3 Apr 2014 12:29:14 +0200
Do not generate diffusion/advection plots by default
Diffstat:
M tests/cfd_tests.py | 4 ++--
1 file changed, 2 insertions(+), 2 deletions(-)
---
(DIR) diff --git a/tests/cfd_tests.py b/tests/cfd_tests.py
t@@ -181,11 +181,11 @@ orig.setFluidPressureModulation(A=1.0, f=1.0/orig.time_total[0])
orig.plotPrescribedFluidPressures()
orig.run(verbose=False)
py.plotConvergence()
-py.plotFluidDiffAdvPresZ()
+#py.plotFluidDiffAdvPresZ()
#py.writeVTKall()
for it in range(1,py.status()+1): # gradient should be smooth in all output files
py.readstep(it, verbose=False)
- py.plotFluidDiffAdvPresZ()
+ #py.plotFluidDiffAdvPresZ()
ideal_grad_p_z =\
numpy.linspace(py.p_f[0,0,0], py.p_f[0,0,-1], py.num[2])
compareNumpyArraysClose(numpy.zeros((1,py.num[2])),\