treturn vertical hydraulic conductivity - sphere - GPU-based 3D discrete element method algorithm with optional fluid coupling
(HTM) git clone git://src.adamsgaard.dk/sphere
(DIR) Log
(DIR) Files
(DIR) Refs
(DIR) LICENSE
---
(DIR) commit e45ccf746f5e6fc208262e43703f94532e54e5ee
(DIR) parent 220a48e1d79afa0ec97dba98f0fa4cdbe65a0131
(HTM) Author: Anders Damsgaard <anders.damsgaard@geo.au.dk>
Date: Wed, 13 Aug 2014 12:30:03 +0200
return vertical hydraulic conductivity
Diffstat:
M python/permeability-results.py | 4 ++--
M python/permeabilitycalculator.py | 2 +-
2 files changed, 3 insertions(+), 3 deletions(-)
---
(DIR) diff --git a/python/permeability-results.py b/python/permeability-results.py
t@@ -4,9 +4,9 @@ import matplotlib.pyplot as plt
from permeabilitycalculator import *
sids = [
- 'permeability-dp=1000.0',
'permeability-dp=1000.0-c_phi=1.0-c_grad_p=0.01',
'permeability-dp=1000.0-c_phi=1.0-c_grad_p=0.5',
+ 'permeability-dp=1000.0',
'permeability-dp=20000.0-c_phi=1.0-c_grad_p=0.01',
'permeability-dp=20000.0-c_phi=1.0-c_grad_p=0.1',
'permeability-dp=20000.0-c_phi=1.0-c_grad_p=0.5',
t@@ -28,6 +28,6 @@ for sid in sids:
fig = plt.figure()
plt.xlabel('Pressure gradient coefficient $c$ [-]')
plt.ylabel('Hydraulic conductivity $K$ [m/s]')
-plt.plot(c_grad_p, K)
+plt.plot(c_grad_p, K, '+')
plt.grid()
plt.savefig('c_grad_p-vs-K.png')
(DIR) diff --git a/python/permeabilitycalculator.py b/python/permeabilitycalculator.py
t@@ -37,7 +37,7 @@ class PermeabilityCalc:
self.K = -self.Q * self.dL / (self.A * self.dP)
def conductivity(self):
- return self.K[0]
+ return self.K[2]
def c_grad_p(self):
return self.sim.c_grad_p[0]