tadd min, mean and max pressures to shear strain plot - sphere - GPU-based 3D discrete element method algorithm with optional fluid coupling
(HTM) git clone git://src.adamsgaard.dk/sphere
(DIR) Log
(DIR) Files
(DIR) Refs
(DIR) LICENSE
---
(DIR) commit e4530ec4d724ea43f1e7ec7695c426c0021247db
(DIR) parent 279f64a789f5e9b141e0723092013014d6579d21
(HTM) Author: Anders Damsgaard <anders.damsgaard@geo.au.dk>
Date: Tue, 9 Sep 2014 13:31:11 +0200
add min, mean and max pressures to shear strain plot
Diffstat:
M python/shear-results.py | 46 +++++++++++++++++++++++++------
1 file changed, 38 insertions(+), 8 deletions(-)
---
(DIR) diff --git a/python/shear-results.py b/python/shear-results.py
t@@ -18,6 +18,9 @@ c_phi = 1.0
shear_strain = [[], [], []]
friction = [[], [], []]
dilation = [[], [], []]
+p_min = [[], [], []]
+p_mean = [[], [], []]
+p_max = [[], [], []]
fluid=True
t@@ -50,6 +53,17 @@ for c in numpy.arange(1,len(cvals)+1):
shear_strain[c] = sim.shear_strain
friction[c] = sim.tau/sim.sigma_eff
dilation[c] = sim.dilation
+
+ # fluid pressures
+ p_mean[c] = numpy.zeros_like(shear_strain[c])
+ p_min[c] = numpy.zeros_like(shear_strain[c])
+ p_max[c] = numpy.zeros_like(shear_strain[c])
+ for i in numpy.arange(sim.status()):
+ iz_top = int(sim.w_x[0]/(sim.L[2]/sim.num[2]))-1
+ p_mean[c][i] = numpy.mean(sim.p_f[:,:,0:iz_top])
+ p_min[c][i] = numpy.min(sim.p_f[:,:,0:iz_top])
+ p_max[c][i] = numpy.min(sim.p_f[:,:,0:iz_top])
+
else:
print(sid + ' not found')
t@@ -59,33 +73,49 @@ for c in numpy.arange(1,len(cvals)+1):
#sim.writeVTKall()
c += 1
-fig = plt.figure(figsize=(8,8))
+
+#fig = plt.figure(figsize=(8,8)) # (w,h)
+fig = plt.figure(figsize=(8,12))
#plt.subplot(3,1,1)
#plt.ticklabel_format(style='sci', axis='y', scilimits=(0,0))
-ax1 = plt.subplot(211)
-ax2 = plt.subplot(212, sharex=ax1)
+ax1 = plt.subplot(311)
+ax2 = plt.subplot(312, sharex=ax1)
+ax3 = plt.subplot(313, sharex=ax1)
ax1.plot(shear_strain[0], friction[0], label='dry')
ax2.plot(shear_strain[0], dilation[0], label='dry')
+color = ['b','g','r']
for c in numpy.arange(1,len(cvals)+1):
+
ax1.plot(shear_strain[c][1:], friction[c][1:], \
label='$c$ = %.2f' % (cvals[c-1]))
+
ax2.plot(shear_strain[c][1:], dilation[c][1:], \
label='$c$ = %.2f' % (cvals[c-1]))
- #plt.plot(dpdz[c], K[c], 'o-', label='$c$ = %.2f' % (cvals[c]))
- #plt.semilogx(dpdz[c], K[c], 'o-', label='$c$ = %.2f' % (cvals[c]))
- #plt.semilogy(dpdz[c], K[c], 'o-', label='$c$ = %.2f' % (cvals[c]))
- #plt.loglog(dpdz[c], K[c], 'o-', label='$c$ = %.2f' % (cvals[c]))
-ax2.set_xlabel('Shear strain [-]')
+
+ ax3.plot(shear_strain[c][1:], p_max[c][1:], '--' + color[c])
+ ax3.plot(shear_strain[c][1:], p_mean[c][1:], '-' + color[c], \
+ label='$c$ = %.2f' % (cvals[c-1]))
+ ax3.plot(shear_strain[c][1:], p_min[c][1:], '--' + color[c])
+
+ax3.set_xlabel('Shear strain $\\gamma$ [-]')
+
ax1.set_ylabel('Shear friction $\\tau/\\sigma\'$ [-]')
ax2.set_ylabel('Dilation $\\Delta h/(2r)$ [-]')
+ax3.set_ylabel('Fluid pressure $p_\\text{f}$ [Pa]')
+
plt.setp(ax1.get_xticklabels(), visible=False)
+plt.setp(ax2.get_xticklabels(), visible=False)
+
ax1.grid()
ax2.grid()
+ax3.grid()
+
ax1.legend(loc='lower right', prop={'size':18})
ax2.legend(loc='lower right', prop={'size':18})
+ax3.legend(loc='lower right', prop={'size':18})
plt.tight_layout()
filename = 'shear-10kPa-stress-dilation.pdf'