tAdded grid lines to all visualization plots - sphere - GPU-based 3D discrete element method algorithm with optional fluid coupling
(HTM) git clone git://src.adamsgaard.dk/sphere
(DIR) Log
(DIR) Files
(DIR) Refs
(DIR) LICENSE
---
(DIR) commit ac23d92904b93e4a0eb9f55647bfa3beab303e2d
(DIR) parent c5ad70759dc4bc6966ef60af7a46ab062d4613f7
(HTM) Author: Anders Damsgaard <adc@geo.au.dk>
Date: Thu, 29 Nov 2012 11:16:45 +0100
Added grid lines to all visualization plots
Diffstat:
M python/sphere.py | 15 +++++++++++++++
1 file changed, 15 insertions(+), 0 deletions(-)
---
(DIR) diff --git a/python/sphere.py b/python/sphere.py
t@@ -1111,48 +1111,56 @@ def visualize(project, method = 'energy', savefig = True, outformat = 'png'):
ax1.set_xlabel('Time [s]')
ax1.set_ylabel('Total potential energy [J]')
ax1.plot(t, Epot, '+-')
+ ax1.grid()
# Kinetic energy
ax2 = plt.subplot2grid((2,5),(0,1))
ax2.set_xlabel('Time [s]')
ax2.set_ylabel('Total kinetic energy [J]')
ax2.plot(t, Ekin, '+-')
+ ax2.grid()
# Rotational energy
ax3 = plt.subplot2grid((2,5),(0,2))
ax3.set_xlabel('Time [s]')
ax3.set_ylabel('Total rotational energy [J]')
ax3.plot(t, Erot, '+-')
+ ax3.grid()
# Total energy
ax4 = plt.subplot2grid((2,5),(0,3))
ax4.set_xlabel('Time [s]')
ax4.set_ylabel('Total energy [J]')
ax4.plot(t, Esum, '+-')
+ ax4.grid()
# Shear energy rate
ax5 = plt.subplot2grid((2,5),(1,0))
ax5.set_xlabel('Time [s]')
ax5.set_ylabel('Frictional dissipation rate [W]')
ax5.plot(t, Es_dot, '+-')
+ ax5.grid()
# Shear energy
ax6 = plt.subplot2grid((2,5),(1,1))
ax6.set_xlabel('Time [s]')
ax6.set_ylabel('Total frictional dissipation [J]')
ax6.plot(t, Es, '+-')
+ ax6.grid()
# Visc_n energy rate
ax7 = plt.subplot2grid((2,5),(1,2))
ax7.set_xlabel('Time [s]')
ax7.set_ylabel('Viscous dissipation rate [W]')
ax7.plot(t, Ev_dot, '+-')
+ ax7.grid()
# Visc_n energy
ax8 = plt.subplot2grid((2,5),(1,3))
ax8.set_xlabel('Time [s]')
ax8.set_ylabel('Total viscous dissipation [J]')
ax8.plot(t, Ev, '+-')
+ ax8.grid()
# Combined view
t@@ -1163,6 +1171,7 @@ def visualize(project, method = 'energy', savefig = True, outformat = 'png'):
ax9.plot(t, Ekin, '+-b')
ax9.plot(t, Erot, '+-r')
ax9.legend(('$\sum E_{pot}$','$\sum E_{kin}$','$\sum E_{rot}$'), 'upper right', shadow=True)
+ ax9.grid()
elif method == 'walls':
t@@ -1202,6 +1211,7 @@ def visualize(project, method = 'energy', savefig = True, outformat = 'png'):
ax1.plot(t, wpos, '+-', label="upper wall")
ax1.plot(t, maxpos, '+-', label="heighest particle")
ax1.legend()
+ ax1.grid()
#ax2 = plt.subplot2grid((2,2),(1,0))
#ax2.set_xlabel('Time [s]')
t@@ -1213,12 +1223,14 @@ def visualize(project, method = 'energy', savefig = True, outformat = 'png'):
ax2.set_xlabel('log deviatoric stress [kPa]')
ax2.set_ylabel('Void ratio [-]')
ax2.plot(logstress, voidratio, '+-')
+ ax2.grid()
# linear plot of time vs. wall velocity
ax3 = plt.subplot2grid((2,2),(0,1))
ax3.set_xlabel('Time [s]')
ax3.set_ylabel('Velocity [m/s]')
ax3.plot(t, wvel, '+-')
+ ax3.grid()
# linear plot of time vs. deviatoric stress
ax4 = plt.subplot2grid((2,2),(1,1))
t@@ -1227,6 +1239,7 @@ def visualize(project, method = 'energy', savefig = True, outformat = 'png'):
ax4.plot(t, wdevs, '+-', label="$\sigma_0$")
ax4.plot(t, wforce/(sb.L[0]*sb.L[1]), '+-', label="$\sigma'$")
ax4.legend(loc=4)
+ ax4.grid()
elif method == 'shear':
t@@ -1271,12 +1284,14 @@ def visualize(project, method = 'energy', savefig = True, outformat = 'png'):
ax1.plot(xdisp, sigma_def, '+-b', label="$\sigma_0")
ax1.plot(xdisp, tau, '+-r')
ax1.legend()
+ ax1.grid()
# Plot dilation
ax2 = plt.subplot2grid((2,1),(1,0))
ax2.set_xlabel('Shear distance [m]')
ax2.set_ylabel('Dilation [m]')
ax2.plot(xdisp, dilation, '+-')
+ ax2.grid()
else :
# Write values to textfile