tcorrected grid boundary check, debugging cfd - sphere - GPU-based 3D discrete element method algorithm with optional fluid coupling
(HTM) git clone git://src.adamsgaard.dk/sphere
(DIR) Log
(DIR) Files
(DIR) Refs
(DIR) LICENSE
---
(DIR) commit 90c2fb7d69cb5dfcfdf6f426af69b9ecf80c38de
(DIR) parent 86fdfad131a636d5ce80131892b66d157250f0c5
(HTM) Author: Anders Damsgaard <anders.damsgaard@geo.au.dk>
Date: Wed, 18 Jun 2014 08:58:08 +0200
corrected grid boundary check, debugging cfd
Diffstat:
M python/sphere.py | 3 ++-
M tests/cfd_tests.py | 10 ++++++++++
M tests/cfd_tests_neumann.py | 12 ++++++++----
3 files changed, 20 insertions(+), 5 deletions(-)
---
(DIR) diff --git a/python/sphere.py b/python/sphere.py
t@@ -1783,7 +1783,8 @@ class sim:
self.num[2] = numpy.ceil((self.L[2]-self.origo[2])/cellsize_min)
#if (self.num.any() < 4):
- if (self.num[0] < 4 or self.num[1] < 4 or self.num[2] < 4):
+ #if (self.num[0] < 4 or self.num[1] < 4 or self.num[2] < 4):
+ if (self.num[0] < 3 or self.num[1] < 3 or self.num[2] < 3):
raise Exception("Error: The grid must be at least 3 cells in each "
+ "direction\nGrid: x={}, y={}, z={}\n".format(\
self.num[0], self.num[1], self.num[2])
(DIR) diff --git a/tests/cfd_tests.py b/tests/cfd_tests.py
t@@ -34,6 +34,16 @@ compareNumpyArrays(ones, py.p_f, "Conservation of pressure:")
it = numpy.loadtxt("../output/" + orig.sid + "-conv.log")
compare(it[:,1].sum(), 0.0, "Convergence rate (1/2):\t")
+# Fluid flow should be very small
+if ((numpy.abs(py.v_f[:,:,:,:]) < 1.0e-6).all()):
+ print("Flow field:\t\t" + passed())
+else:
+ print("Flow field:\t\t" + failed())
+ print(numpy.min(py.v_f))
+ print(numpy.mean(py.v_f))
+ print(numpy.max(py.v_f))
+ raise Exception("Failed")
+
# Add pressure gradient
# This test passes with BETA=0.0 and tolerance=1.0e-9
orig.p_f[:,:,-1] = 1.1
(DIR) diff --git a/tests/cfd_tests_neumann.py b/tests/cfd_tests_neumann.py
t@@ -14,7 +14,8 @@ orig = sphere.sim("neumann", fluid = True)
cleanup(orig)
orig.defaultParams(mu_s = 0.4, mu_d = 0.4)
orig.defineWorldBoundaries([0.4, 0.4, 1], dx = 0.1)
-orig.initFluid(mu = 8.9e-4)
+#orig.initFluid(mu = 8.9e-4)
+orig.initFluid(mu = 0.0)
orig.initTemporal(total = 0.5, file_dt = 0.05, dt = 1.0e-4)
py = sphere.sim(sid = orig.sid, fluid = True)
orig.bc_bot[0] = 1 # No-flow BC at bottom (Neumann)
t@@ -25,13 +26,16 @@ py.readlast(verbose = False)
ones = numpy.ones((orig.num))
py.readlast(verbose = False)
compareNumpyArraysClose(ones, py.p_f, "Conservation of pressure:",
- tolerance = 1.0e-1)
+ tolerance = 1.0e-3)
# Fluid flow along z should be very small
-if ((numpy.abs(py.v_f[:,:,:,2]) < 1.0e-4).all()):
+if ((numpy.abs(py.v_f[:,:,:,:]) < 1.0e-6).all()):
print("Flow field:\t\t" + passed())
else:
print("Flow field:\t\t" + failed())
+ print(numpy.min(py.v_f))
+ print(numpy.mean(py.v_f))
+ print(numpy.max(py.v_f))
raise Exception("Failed")
print('''# Neumann bottom, Dirichlet top BC.
t@@ -52,7 +56,7 @@ ideal_grad_p_z = numpy.linspace(
orig.p_f[0,0,0] + orig.L[2]*orig.rho_f*numpy.abs(orig.g[2]),
orig.p_f[0,0,-1], orig.num[2])
compareNumpyArraysClose(ideal_grad_p_z, py.p_f[0,0,:],
- "Pressure gradient:\t", tolerance=1.0e3)
+ "Pressure gradient:\t", tolerance=1.0e2)
# Fluid flow along z should be very small
if ((numpy.abs(py.v_f[:,:,:,2]) < 5.0e-2).all()):