tInterpret results from permeability{1-3}.py - sphere - GPU-based 3D discrete element method algorithm with optional fluid coupling
(HTM) git clone git://src.adamsgaard.dk/sphere
(DIR) Log
(DIR) Files
(DIR) Refs
(DIR) LICENSE
---
(DIR) commit 77bce7ca2f3aa916e57ae62e837a9257248549db
(DIR) parent fb03b34bb82f5d8cfac1c1f5d0c87961afe57dca
(HTM) Author: Anders Damsgaard <anders.damsgaard@geo.au.dk>
Date: Mon, 18 Aug 2014 11:56:27 +0200
Interpret results from permeability{1-3}.py
Diffstat:
A python/permeability-results-c=1.py | 47 +++++++++++++++++++++++++++++++
1 file changed, 47 insertions(+), 0 deletions(-)
---
(DIR) diff --git a/python/permeability-results-c=1.py b/python/permeability-results-c=1.py
t@@ -0,0 +1,47 @@
+#!/usr/bin/env python
+import numpy
+import sphere
+from permeabilitycalculator import *
+import matplotlib.pyplot as plt
+
+sigma0_list = numpy.array([1.0e3, 2.0e3, 4.0e3, 10.0e3, 20.0e3, 40.0e3])
+
+sids = []
+for sigma0 in sigma0_list:
+ sids.append('permeability-dp=' + str(sigma0))
+
+K = numpy.empty(len(sids))
+dpdz = numpy.empty_like(K)
+Q = numpy.empty_like(K)
+i = 0
+
+for sid in sids:
+ pc = PermeabilityCalc(sid, plot_evolution=False)
+ K[i] = pc.conductivity()
+ pc.findPressureGradient()
+ pc.findCrossSectionalFlux()
+ dpdz[i] = pc.dPdL[2]
+ Q[i] = pc.Q[2]
+ i += 1
+
+# produce VTK files
+#for sid in sids:
+ #sim = sphere.sim(sid, fluid=True)
+ #sim.writeVTKall()
+
+fig = plt.figure()
+
+plt.subplot(2,1,1)
+plt.xlabel('Pressure gradient $\\Delta p/\\Delta z$ [Pa m$^{-1}$]')
+plt.ylabel('Hydraulic conductivity $K$ [ms$^{-1}$]')
+plt.plot(dpdz, K, '+')
+plt.grid()
+
+plt.subplot(2,1,2)
+plt.xlabel('Pressure gradient $\\Delta p/\\Delta z$ [Pa m$^{-1}$]')
+plt.ylabel('Hydraulic flux $Q$ [m$^3$s$^{-1}$]')
+plt.plot(dpdz, Q, '+')
+plt.grid()
+
+plt.tight_layout()
+plt.savefig('permeability-dpdz-vs-K.png')