timproved figure - sphere - GPU-based 3D discrete element method algorithm with optional fluid coupling
 (HTM) git clone git://src.adamsgaard.dk/sphere
 (DIR) Log
 (DIR) Files
 (DIR) Refs
 (DIR) LICENSE
       ---
 (DIR) commit 71624f8de6086d863b18639b703d4d28e32516ef
 (DIR) parent 4424ab8f7731d8c7bedbaeb93fbfffaaa6cf6b6d
 (HTM) Author: Anders Damsgaard <anders.damsgaard@geo.au.dk>
       Date:   Tue, 14 Apr 2015 20:03:07 +0200
       
       improved figure
       
       Diffstat:
         A python/halfshear-darcy-strength-di… |     460 +++++++++++++++++++++++++++++++
       
       1 file changed, 460 insertions(+), 0 deletions(-)
       ---
 (DIR) diff --git a/python/halfshear-darcy-strength-dilation.py b/python/halfshear-darcy-strength-dilation.py
       t@@ -0,0 +1,460 @@
       +#!/usr/bin/env python
       +import matplotlib
       +matplotlib.use('Agg')
       +matplotlib.rcParams.update({'font.size': 18, 'font.family': 'serif'})
       +matplotlib.rc('text', usetex=True)
       +matplotlib.rcParams['text.latex.preamble']=[r"\usepackage{amsmath}"]
       +import shutil
       +
       +import os
       +import sys
       +import numpy
       +import sphere
       +from permeabilitycalculator import *
       +import matplotlib.pyplot as plt
       +
       +import seaborn as sns
       +#sns.set(style='ticks', palette='Set2')
       +sns.set(style='ticks', palette='colorblind')
       +#sns.set(style='ticks', palette='muted')
       +#sns.set(style='ticks', palette='pastel')
       +sns.despine() # remove right and top spines
       +
       +pressures = True
       +zflow = False
       +contact_forces = False
       +smooth_friction = True
       +smooth_window = 30
       +
       +#sigma0_list = numpy.array([1.0e3, 2.0e3, 4.0e3, 10.0e3, 20.0e3, 40.0e3])
       +sigma0 = 20000.0
       +#k_c_vals = [3.5e-13, 3.5e-15]
       +k_c = 3.5e-15
       +
       +k_c_vals = ['dry', 3.5e-13, 3.5e-14, 3.5e-15]
       +
       +mu_f = 1.797e-06
       +
       +velfac = 1.0
       +
       +# return a smoothed version of in. The returned array is smaller than the
       +# original input array
       +def smooth(x, window_len=10, window='hanning'):
       +    """smooth the data using a window with requested size.
       +    
       +    This method is based on the convolution of a scaled window with the signal.
       +    The signal is prepared by introducing reflected copies of the signal 
       +    (with the window size) in both ends so that transient parts are minimized
       +    in the begining and end part of the output signal.
       +    
       +    input:
       +        x: the input signal 
       +        window_len: the dimension of the smoothing window
       +        window: the type of window from 'flat', 'hanning', 'hamming', 'bartlett', 'blackman'
       +            flat window will produce a moving average smoothing.
       +
       +    output:
       +        the smoothed signal
       +        
       +    example:
       +
       +    import numpy as np    
       +    t = np.linspace(-2,2,0.1)
       +    x = np.sin(t)+np.random.randn(len(t))*0.1
       +    y = smooth(x)
       +    
       +    see also: 
       +    
       +    numpy.hanning, numpy.hamming, numpy.bartlett, numpy.blackman, numpy.convolve
       +    scipy.signal.lfilter
       + 
       +    TODO: the window parameter could be the window itself if an array instead of a string   
       +    """
       +
       +    if x.ndim != 1:
       +        raise ValueError, "smooth only accepts 1 dimension arrays."
       +
       +    if x.size < window_len:
       +        raise ValueError, "Input vector needs to be bigger than window size."
       +
       +    if window_len < 3:
       +        return x
       +
       +    if not window in ['flat', 'hanning', 'hamming', 'bartlett', 'blackman']:
       +        raise ValueError, "Window is on of 'flat', 'hanning', 'hamming', 'bartlett', 'blackman'"
       +
       +    s=numpy.r_[2*x[0]-x[window_len:1:-1], x, 2*x[-1]-x[-1:-window_len:-1]]
       +    #print(len(s))
       +
       +    if window == 'flat': #moving average
       +        w = numpy.ones(window_len,'d')
       +    else:
       +        w = getattr(numpy, window)(window_len)
       +    y = numpy.convolve(w/w.sum(), s, mode='same')
       +    return y[window_len-1:-window_len+1]
       +
       +
       +smooth_window = 10
       +
       +
       +shear_strain = [[], [], [], []]
       +friction = [[], [], [], []]
       +dilation = [[], [], [], []]
       +p_min = [[], [], [], []]
       +p_mean = [[], [], [], []]
       +p_max = [[], [], [], []]
       +f_n_mean = [[], [], [], []]
       +f_n_max  = [[], [], [], []]
       +v_f_z_mean  = [[], [], [], []]
       +
       +fluid=True
       +
       +for c in numpy.arange(0,len(k_c_vals)):
       +    k_c = k_c_vals[c]
       +
       +    if k_c == 'dry':
       +        sid = 'halfshear-sigma0=' + str(sigma0) + '-shear'
       +        fluid = False
       +    else:
       +        sid = 'halfshear-darcy-sigma0=' + str(sigma0) + '-k_c=' + str(k_c) + \
       +                '-mu=' + str(mu_f) + '-velfac=' + str(velfac) + '-shear'
       +        fluid = True
       +    #sid = 'halfshear-sigma0=' + str(sigma0) + '-c_v=' + str(c_v) +\
       +            #'-c_a=0.0-velfac=1.0-shear'
       +    if os.path.isfile('../output/' + sid + '.status.dat'):
       +
       +        sim = sphere.sim(sid, fluid=fluid)
       +        n = sim.status()
       +        #n = 20
       +        shear_strain[c] = numpy.zeros(n)
       +        friction[c] = numpy.zeros_like(shear_strain[c])
       +        dilation[c] = numpy.zeros_like(shear_strain[c])
       +
       +        # fluid pressures and particle forces
       +        if fluid:
       +            p_mean[c]   = numpy.zeros_like(shear_strain[c])
       +            p_min[c]    = numpy.zeros_like(shear_strain[c])
       +            p_max[c]    = numpy.zeros_like(shear_strain[c])
       +        if contact_forces:
       +            f_n_mean[c] = numpy.zeros_like(shear_strain[c])
       +            f_n_max[c]  = numpy.zeros_like(shear_strain[c])
       +
       +        for i in numpy.arange(n):
       +
       +            sim.readstep(i, verbose=False)
       +
       +            shear_strain[c][i] = sim.shearStrain()
       +            friction[c][i] = sim.shearStress('effective')/sim.currentNormalStress('defined')
       +            dilation[c][i] = sim.w_x[0]
       +
       +            if fluid and pressures:
       +                iz_top = int(sim.w_x[0]/(sim.L[2]/sim.num[2]))-1
       +                p_mean[c][i] = numpy.mean(sim.p_f[:,:,0:iz_top])/1000
       +                p_min[c][i]  = numpy.min(sim.p_f[:,:,0:iz_top])/1000
       +                p_max[c][i]  = numpy.max(sim.p_f[:,:,0:iz_top])/1000
       +
       +            if contact_forces:
       +                sim.findNormalForces()
       +                f_n_mean[c][i] = numpy.mean(sim.f_n_magn)
       +                f_n_max[c][i]  = numpy.max(sim.f_n_magn)
       +
       +        if fluid and zflow:
       +            v_f_z_mean[c] = numpy.zeros_like(shear_strain[c])
       +            for i in numpy.arange(n):
       +                    v_f_z_mean[c][i] = numpy.mean(sim.v_f[:,:,:,2])
       +
       +        dilation[c] =\
       +                (dilation[c] - dilation[c][0])/(numpy.mean(sim.radius)*2.0)
       +
       +    else:
       +        print(sid + ' not found')
       +
       +    # produce VTK files
       +    #for sid in sids:
       +        #sim = sphere.sim(sid, fluid=True)
       +        #sim.writeVTKall()
       +
       +
       +if zflow or pressures:
       +    #fig = plt.figure(figsize=(8,10))
       +    #fig = plt.figure(figsize=(3.74, 2*3.74))
       +    fig = plt.figure(figsize=(2*3.74, 2*3.74))
       +else:
       +    fig = plt.figure(figsize=(8,8)) # (w,h)
       +#fig = plt.figure(figsize=(8,12))
       +#fig = plt.figure(figsize=(8,16))
       +
       +#plt.subplot(3,1,1)
       +#plt.ticklabel_format(style='sci', axis='y', scilimits=(0,0))
       +
       +for c in numpy.arange(0,len(k_c_vals)):
       +
       +    if zflow or pressures:
       +        ax1 = plt.subplot(3, len(k_c_vals), 1+c)
       +        ax2 = plt.subplot(3, len(k_c_vals), 5+c, sharex=ax1)
       +        if c > 0:
       +            ax3 = plt.subplot(3, len(k_c_vals), 9+c, sharex=ax1)
       +    else:
       +        ax1 = plt.subplot(211)
       +        ax2 = plt.subplot(212, sharex=ax1)
       +    #ax3 = plt.subplot(413, sharex=ax1)
       +    #ax4 = plt.subplot(414, sharex=ax1)
       +    #alpha = 0.5
       +    alpha = 1.0
       +    #ax1.plot(shear_strain[0], friction[0], label='dry', linewidth=1, alpha=alpha)
       +    #ax2.plot(shear_strain[0], dilation[0], label='dry', linewidth=1)
       +    #ax4.plot(shear_strain[0], f_n_mean[0], '-', label='dry', color='blue')
       +    #ax4.plot(shear_strain[0], f_n_max[0], '--', color='blue')
       +
       +    #color = ['b','g','r','c']
       +    #color = ['g','r','c']
       +    color = sns.color_palette()
       +    #for c, mu_f in enumerate(mu_f_vals):
       +    #for c in numpy.arange(len(mu_f_vals)-1, -1, -1):
       +    k_c = k_c_vals[c]
       +
       +    fluid = True
       +    if k_c == 'dry':
       +        label = 'dry'
       +        fluid = False
       +    elif numpy.isclose(k_c, 3.5e-13, atol=1.0e-16):
       +        label = 'high permeability'
       +    elif numpy.isclose(k_c, 3.5e-14, atol=1.0e-16):
       +        label = 'interm. permeability'
       +    elif numpy.isclose(k_c, 3.5e-15, atol=1.0e-16):
       +        label = 'low permeability'
       +    else:
       +        label = str(k_c)
       +
       +    # unsmoothed
       +    ax1.plot(shear_strain[c][1:], friction[c][1:], \
       +            label=label, linewidth=1,
       +            alpha=0.2, color='gray')
       +            #alpha=alpha, color=color[c])
       +
       +    # smoothed
       +    ax1.plot(shear_strain[c][1:], smooth(friction[c], smooth_window)[1:], \
       +            label=label, linewidth=1,
       +            alpha=alpha, color=color[c])
       +
       +
       +    ax2.plot(shear_strain[c], dilation[c], \
       +            label=label, linewidth=1,
       +            color=color[c])
       +
       +    if zflow:
       +        ax3.plot(shear_strain[c], v_f_z_mean[c],
       +            label=label, linewidth=1)
       +
       +    if fluid and pressures:
       +        #ax3.plot(shear_strain[c], p_max[c], '-', color=color[c], alpha=0.5)
       +
       +        ax3.plot(shear_strain[c], p_mean[c], '-', color=color[c], \
       +                label=label, linewidth=1)
       +
       +        #ax3.plot(shear_strain[c], p_min[c], '-', color=color[c], alpha=0.5)
       +
       +
       +        ax3.fill_between(shear_strain[c], p_min[c], p_max[c], 
       +                where=p_min[c]<=p_max[c], facecolor=color[c], edgecolor='None',
       +                interpolate=True, alpha=0.5)
       +
       +        #ax4.plot(shear_strain[c][1:], f_n_mean[c][1:], '-' + color[c],
       +                #label='$c$ = %.2f' % (cvals[c-1]), linewidth=2)
       +        #ax4.plot(shear_strain[c][1:], f_n_max[c][1:], '--' + color[c])
       +            #label='$c$ = %.2f' % (cvals[c-1]), linewidth=2)
       +
       +
       +
       +    #ax4.set_xlabel('Shear strain $\\gamma$ [-]')
       +    if fluid and (zflow or pressures):
       +        ax3.set_xlabel('Shear strain $\\gamma$ [-]')
       +    else:
       +        ax2.set_xlabel('Shear strain $\\gamma$ [-]')
       +
       +    if c == 0:
       +        ax1.set_ylabel('Shear friction $\\tau/\\sigma_0$ [-]')
       +        #ax1.set_ylabel('Shear stress $\\tau$ [kPa]')
       +        ax2.set_ylabel('Dilation $\\Delta h/(2r)$ [-]')
       +
       +    if c == 1:
       +        if zflow:
       +            ax3.set_ylabel('$\\boldsymbol{v}_\\text{f}^z h$ [ms$^{-1}$]')
       +        if pressures:
       +            ax3.set_ylabel('Fluid pressure $\\bar{p}_\\text{f}$ [kPa]')
       +        #ax4.set_ylabel('Particle contact force $||\\boldsymbol{f}_\\text{p}||$ [N]')
       +
       +    #ax1.set_xlim([200,300])
       +    #ax3.set_ylim([595,608])
       +
       +    plt.setp(ax1.get_xticklabels(), visible=False)
       +    if fluid and (zflow or pressures):
       +        plt.setp(ax2.get_xticklabels(), visible=False)
       +    #plt.setp(ax2.get_xticklabels(), visible=False)
       +    #plt.setp(ax3.get_xticklabels(), visible=False)
       +
       +    '''
       +    ax1.grid()
       +    ax2.grid()
       +    if zflow or pressures:
       +        ax3.grid()
       +    #ax4.grid()
       +    '''
       +
       +    if c == 0: # left
       +        # remove box at top and right
       +        ax1.spines['top'].set_visible(False)
       +        ax1.spines['bottom'].set_visible(False)
       +        ax1.spines['right'].set_visible(False)
       +        #ax1.spines['left'].set_visible(True)
       +        # remove ticks at top and right
       +        ax1.get_xaxis().set_ticks_position('none')
       +        ax1.get_yaxis().set_ticks_position('none')
       +        ax1.get_yaxis().tick_left()
       +
       +        # remove box at top and right
       +        ax2.spines['top'].set_visible(False)
       +        ax2.spines['right'].set_visible(False)
       +        ax2.spines['bottom'].set_visible(True)
       +        # remove ticks at top and right
       +        ax2.get_xaxis().set_ticks_position('none')
       +        ax2.get_yaxis().set_ticks_position('none')
       +        ax2.get_yaxis().tick_left()
       +        ax2.get_xaxis().tick_bottom()
       +
       +        '''
       +        # remove box at top and right
       +        ax3.spines['top'].set_visible(False)
       +        ax3.spines['left'].set_visible(False)
       +        ax3.spines['bottom'].set_visible(False)
       +        ax3.spines['right'].set_visible(False)
       +        # remove ticks at top and right
       +        ax3.get_xaxis().set_ticks_position('none')
       +        ax3.get_yaxis().set_ticks_position('none')
       +        plt.setp(ax3.get_xticklabels(), visible=False)
       +        plt.setp(ax3.get_yticklabels(), visible=False)
       +        '''
       +
       +    elif c == len(k_c_vals)-1: # right
       +        # remove box at top and right
       +        ax1.spines['top'].set_visible(False)
       +        ax1.spines['bottom'].set_visible(False)
       +        ax1.spines['right'].set_visible(True)
       +        ax1.spines['left'].set_visible(False)
       +        # remove ticks at top and right
       +        ax1.get_xaxis().set_ticks_position('none')
       +        ax1.get_yaxis().set_ticks_position('none')
       +        ax1.get_yaxis().tick_right()
       +
       +        # remove box at top and right
       +        ax2.spines['top'].set_visible(False)
       +        ax2.spines['right'].set_visible(True)
       +        ax2.spines['bottom'].set_visible(False)
       +        ax2.spines['left'].set_visible(False)
       +        # remove ticks at top and right
       +        ax2.get_xaxis().set_ticks_position('none')
       +        ax2.get_yaxis().set_ticks_position('none')
       +        #ax2.get_yaxis().tick_left()
       +        ax2.get_yaxis().tick_right()
       +
       +        # remove box at top and right
       +        ax3.spines['top'].set_visible(False)
       +        ax3.spines['right'].set_visible(True)
       +        ax3.spines['left'].set_visible(False)
       +        # remove ticks at top and right
       +        ax3.get_xaxis().set_ticks_position('none')
       +        ax3.get_yaxis().set_ticks_position('none')
       +        ax3.get_xaxis().tick_bottom()
       +        ax3.get_yaxis().tick_right()
       +
       +    else: # middle
       +        # remove box at top and right
       +        ax1.spines['top'].set_visible(False)
       +        ax1.spines['bottom'].set_visible(False)
       +        ax1.spines['right'].set_visible(False)
       +        ax1.spines['left'].set_visible(False)
       +        # remove ticks at top and right
       +        ax1.get_xaxis().set_ticks_position('none')
       +        ax1.get_yaxis().set_ticks_position('none')
       +        #ax1.get_yaxis().tick_left()
       +        plt.setp(ax1.get_yticklabels(), visible=False)
       +
       +        # remove box at top and right
       +        ax2.spines['top'].set_visible(False)
       +        ax2.spines['right'].set_visible(False)
       +        ax2.spines['bottom'].set_visible(False)
       +        ax2.spines['left'].set_visible(False)
       +        # remove ticks at top and right
       +        ax2.get_xaxis().set_ticks_position('none')
       +        ax2.get_yaxis().set_ticks_position('none')
       +        #ax2.get_yaxis().tick_left()
       +        plt.setp(ax2.get_yticklabels(), visible=False)
       +
       +        # remove box at top and right
       +        ax3.spines['top'].set_visible(False)
       +        ax3.spines['right'].set_visible(False)
       +        ax3.spines['left'].set_visible(False)
       +        # remove ticks at top and right
       +        ax3.get_xaxis().set_ticks_position('none')
       +        ax3.get_yaxis().set_ticks_position('none')
       +        ax3.get_xaxis().tick_bottom()
       +        #ax3.get_yaxis().tick_left()
       +        plt.setp(ax3.get_yticklabels(), visible=False)
       +        if c == 1:
       +            ax3.get_yaxis().tick_left()
       +            ax3.spines['left'].set_visible(True)
       +
       +
       +    # vertical grid lines
       +    ax1.get_xaxis().grid(True, linestyle=':', linewidth=0.5)
       +    ax2.get_xaxis().grid(True, linestyle=':', linewidth=0.5)
       +    if fluid:
       +        ax3.get_xaxis().grid(True, linestyle=':', linewidth=0.5)
       +
       +
       +    # horizontal grid lines
       +    ax1.get_yaxis().grid(True, linestyle=':', linewidth=0.5)
       +    ax2.get_yaxis().grid(True, linestyle=':', linewidth=0.5)
       +    if fluid:
       +        ax3.get_yaxis().grid(True, linestyle=':', linewidth=0.5)
       +
       +    ax1.set_title(label)
       +        #ax1.legend(loc='best')
       +    #legend_alpha=0.5
       +    #ax1.legend(loc='upper right', prop={'size':18}, fancybox=True,
       +            #framealpha=legend_alpha)
       +    #ax2.legend(loc='lower right', prop={'size':18}, fancybox=True,
       +            #framealpha=legend_alpha)
       +    #if zflow or pressures:
       +        #ax3.legend(loc='upper right', prop={'size':18}, fancybox=True,
       +                #framealpha=legend_alpha)
       +    #ax4.legend(loc='best', prop={'size':18}, fancybox=True,
       +            #framealpha=legend_alpha)
       +
       +    #ax1.set_xlim([0.0, 0.09])
       +    #ax2.set_xlim([0.0, 0.09])
       +    #ax2.set_xlim([0.0, 0.2])
       +
       +    #ax1.set_ylim([-7, 45])
       +    ax1.set_xlim([0.0, 1.0])
       +    ax1.set_ylim([0.0, 1.0])
       +    ax2.set_ylim([0.0, 1.0])
       +    if fluid:
       +        ax3.set_ylim([-200., 200.])
       +
       +    #ax1.set_ylim([0.0, 1.0])
       +    #if pressures:
       +        #ax3.set_ylim([-1400, 900])
       +        #ax3.set_ylim([-200, 200])
       +        #ax3.set_xlim([0.0, 0.09])
       +
       +#plt.tight_layout()
       +#plt.subplots_adjust(hspace=0.05)
       +plt.subplots_adjust(hspace=0.15)
       +#filename = 'shear-' + str(int(sigma0/1000.0)) + 'kPa-stress-dilation.pdf'
       +filename = 'halfshear-darcy-rate.pdf'
       +#print(os.getcwd() + '/' + filename)
       +plt.savefig(filename)
       +shutil.copyfile(filename, '/home/adc/articles/own/2/graphics/' + filename)
       +plt.close()
       +print(filename)