tadd test with adaptive fluid grid - sphere - GPU-based 3D discrete element method algorithm with optional fluid coupling
(HTM) git clone git://src.adamsgaard.dk/sphere
(DIR) Log
(DIR) Files
(DIR) Refs
(DIR) LICENSE
---
(DIR) commit 4991fee6551790c302a74f6973c4e48e2c74070a
(DIR) parent 7ada8e0ef70cb73ae963b190a53ffad6687df1a6
(HTM) Author: Anders Damsgaard Christensen <adc@geo.au.dk>
Date: Fri, 9 Sep 2016 10:38:27 -0700
add test with adaptive fluid grid
Diffstat:
A python/adaptive-grid-shear-test.py | 159 +++++++++++++++++++++++++++++++
1 file changed, 159 insertions(+), 0 deletions(-)
---
(DIR) diff --git a/python/adaptive-grid-shear-test.py b/python/adaptive-grid-shear-test.py
t@@ -0,0 +1,159 @@
+#!/usr/bin/env python
+
+# Import sphere functionality
+import sphere
+
+### EXPERIMENT SETUP ###
+initialization = False
+consolidation = True
+shearing = True
+fluid = True
+rendering = False
+plots = True
+
+# Number of particles
+np = 1e4
+
+# Common simulation id
+sim_id = "adapt-grid"
+
+# Deviatoric stress [Pa]
+devslist = [80e3]
+#devs = 0
+
+### INITIALIZATION ###
+
+# New class
+init = sphere.sim(np = np, nd = 3, nw = 0, sid = sim_id + "-init")
+
+# Save radii
+init.generateRadii(mean = 0.02)
+
+# Use default params
+init.defaultParams(gamma_n = 100.0, mu_s = 0.6, mu_d = 0.6)
+init.setYoungsModulus(7.0e9)
+
+# Add gravity
+init.g[2] = -9.81
+
+# Periodic x and y boundaries
+init.periodicBoundariesXY()
+
+# Initialize positions in random grid (also sets world size)
+hcells = np**(1.0/3.0)
+init.initRandomGridPos(gridnum = [hcells, hcells, 1e9])
+
+# Set duration of simulation
+init.initTemporal(total = 5.0)
+
+if (initialization == True):
+
+ # Run sphere
+ init.run(dry = True)
+ init.run()
+
+ if (plots == True):
+ # Make a graph of energies
+ init.visualize('energy')
+
+ init.writeVTKall()
+
+ if (rendering == True):
+ # Render images with raytracer
+ init.render(method = "angvel", max_val = 0.3, verbose = False)
+
+
+
+# For each normal stress, consolidate and subsequently shear the material
+for devs in devslist:
+
+ ### CONSOLIDATION ###
+
+ # New class
+ cons = sphere.sim(np = init.np, nw = 1, sid = sim_id + "-cons-devs{}".format(devs))
+
+ # Read last output file of initialization step
+ lastf = init.status()
+ cons.readbin("../output/" + sim_id + "-init.output{:0=5}.bin".format(lastf), verbose=False)
+
+ # Periodic x and y boundaries
+ cons.periodicBoundariesXY()
+
+ if fluid:
+ # set fluid and solver properties
+ cons.initFluid(mu=2.080e-7, p=0.0, cfd_solver=1)
+ cons.setFluidTopFixedPressure()
+ cons.setFluidBottomNoFlow()
+ cons.setMaxIterations(2e5)
+ cons.setPermeabilityPrefactor(2.0e-16)
+ cons.setFluidCompressibility(2.2e9)
+
+ # Setup consolidation experiment
+ cons.consolidate(normal_stress = devs)
+ cons.adaptiveGrid()
+
+ # Set duration of simulation
+ cons.initTemporal(total = 1.5)
+
+ if (consolidation == True):
+
+ # Run sphere
+ cons.run(dry = True) # show values, don't run
+ cons.run() # run
+
+ if (plots == True):
+ # Make a graph of energies
+ cons.visualize('energy')
+ cons.visualize('walls')
+
+ cons.writeVTKall()
+
+ if (rendering == True):
+ # Render images with raytracer
+ cons.render(method = "pres", max_val = 2.0*devs, verbose = False)
+
+
+ ### SHEARING ###
+
+ # New class
+ shear = sphere.sim(np = cons.np, nw = cons.nw, sid = sim_id + "-shear-devs{}".format(devs))
+
+ # Read last output file of initialization step
+ lastf = cons.status()
+ shear.readbin("../output/" + sim_id + "-cons-devs{}.output{:0=5}.bin".format(devs, lastf), verbose = False)
+
+ # Periodic x and y boundaries
+ shear.periodicBoundariesXY()
+
+ if fluid:
+ # set fluid and solver properties
+ shear.initFluid(mu=2.080e-7, p=0.0, cfd_solver=1)
+ shear.setFluidTopFixedPressure()
+ shear.setFluidBottomNoFlow()
+ shear.setMaxIterations(2e5)
+ shear.setPermeabilityPrefactor(2.0e-16)
+ shear.setFluidCompressibility(2.2e9)
+
+ # Setup shear experiment
+ shear.shear(shear_strain_rate = 0.05)
+ shear.adaptiveGrid()
+
+ # Set duration of simulation
+ shear.initTemporal(total = 20.0)
+
+ if (shearing == True):
+
+ # Run sphere
+ shear.run(dry = True)
+ shear.run()
+
+ if (plots == True):
+ # Make a graph of energies
+ shear.visualize('energy')
+ shear.visualize('shear')
+
+ shear.writeVTKall()
+
+ if (rendering == True):
+ # Render images with raytracer
+ shear.render(method = "pres", max_val = 2.0*devs, verbose = False)