tSet all fluid parameters in initFluid - sphere - GPU-based 3D discrete element method algorithm with optional fluid coupling
(HTM) git clone git://src.adamsgaard.dk/sphere
(DIR) Log
(DIR) Files
(DIR) Refs
(DIR) LICENSE
---
(DIR) commit 46da6614cd60cb329d7e0551e117db6fa605f2a0
(DIR) parent 5e502c54037b1909100ab6f31da4f783bf7455f3
(HTM) Author: Anders Damsgaard <anders.damsgaard@geo.au.dk>
Date: Wed, 26 Mar 2014 16:06:56 +0100
Set all fluid parameters in initFluid
Diffstat:
M python/sphere.py | 23 +++++++++++++++++++++--
1 file changed, 21 insertions(+), 2 deletions(-)
---
(DIR) diff --git a/python/sphere.py b/python/sphere.py
t@@ -2267,7 +2267,7 @@ class sim:
self.time_file_dt[0] = file_dt
self.time_step_count[0] = 0
- def initFluid(self, mu = 8.9e-4):
+ def initFluid(self, mu = 8.9e-4, rho = 1.0e3):
'''
Initialize the fluid arrays and the fluid viscosity. The default value
of ``mu`` equals the dynamic viscosity of water at 25 degrees Celcius.
t@@ -2275,8 +2275,12 @@ class sim:
:param mu: The fluid dynamic viscosity [kg/(m*s)]
:type mu: float
+ :param rho: The fluid density [kg/(m^3)]
+ :type rho: float
'''
- self.mu = numpy.asarray(mu)
+ self.mu = numpy.ones(1, dtype=numpy.float64) * mu
+ self.rho_f = numpy.ones(1, dtype=numpy.float64) * rho
+
self.p_f = numpy.ones((self.num[0], self.num[1], self.num[2]),
dtype=numpy.float64)
self.v_f = numpy.zeros((self.num[0], self.num[1], self.num[2], self.nd),
t@@ -2286,6 +2290,21 @@ class sim:
self.dphi = numpy.zeros((self.num[0], self.num[1], self.num[2]),
dtype=numpy.float64)
+ self.p_mod_A = numpy.zeros(1, dtype=numpy.float64) # Amplitude [Pa]
+ self.p_mod_f = numpy.zeros(1, dtype=numpy.float64) # Frequency [Hz]
+ self.p_mod_phi = numpy.zeros(1, dtype=numpy.float64) # Shift [rad]
+
+ self.bc_bot = numpy.zeros(1, dtype=numpy.int32)
+ self.bc_top = numpy.zeros(1, dtype=numpy.int32)
+ self.free_slip_bot = numpy.ones(1, dtype=numpy.int32)
+ self.free_slip_top = numpy.ones(1, dtype=numpy.int32)
+
+ self.gamma = numpy.array(0.0)
+ self.theta = numpy.array(1.0)
+ self.beta = numpy.array(0.0)
+ self.tolerance = numpy.array(1.0e-8)
+ self.maxiter = numpy.array(1e4)
+
def defaultParams(self,
mu_s = 0.4,
mu_d = 0.4,