tadd script to analyze peak and ultimate shear friction values - sphere - GPU-based 3D discrete element method algorithm with optional fluid coupling
 (HTM) git clone git://src.adamsgaard.dk/sphere
 (DIR) Log
 (DIR) Files
 (DIR) Refs
 (DIR) LICENSE
       ---
 (DIR) commit 00f5e0875755ad2b080b0bb70d4090450f336c49
 (DIR) parent f6e31138270bf4cb5bd9c7a1682cfcf9d027bcd1
 (HTM) Author: Anders Damsgaard <anders.damsgaard@geo.au.dk>
       Date:   Wed,  8 Oct 2014 12:18:41 +0200
       
       add script to analyze peak and ultimate shear friction values
       
       Diffstat:
         A python/shear-results-strength.py    |      41 +++++++++++++++++++++++++++++++
       
       1 file changed, 41 insertions(+), 0 deletions(-)
       ---
 (DIR) diff --git a/python/shear-results-strength.py b/python/shear-results-strength.py
       t@@ -0,0 +1,41 @@
       +#!/usr/bin/env python
       +import sphere
       +import numpy
       +
       +'''
       +Print a table of peak and ultimate shear strengths of the material
       +'''
       +
       +baseid = 'halfshear-sigma0=20000.0'
       +
       +
       +
       +
       +def print_strengths(sid, fluid=False, c=0.0):
       +    sim = sphere.sim(sid, fluid=fluid)
       +
       +    sim.readfirst(verbose=False)
       +    sim.visualize('shear')
       +
       +    friction = sim.tau[1:]/sim.sigma_eff[1:]
       +    tau_peak = numpy.max(friction)
       +    tau_ultimate = numpy.average(friction[-500:-1])
       +
       +    if fluid:
       +        print('%.2f \t %.3f \t %.3f' % (c, tau_peak, tau_ultimate))
       +    else:
       +        print('dry \t %.3f \t %.3f' % (tau_peak, tau_ultimate))
       +
       +    return friction
       +
       +
       +
       +
       +# print header
       +print('$c$ [-] \t Peak \\tau/\\sigma\' [-] \t Ultimate \\tau/\\sigma\' [-]')
       +f = print_strengths(baseid + '-shear', fluid=False)
       +f = print_strengths(baseid + '-c=1.0-shear', fluid=True, c=1.0)
       +f = print_strengths(baseid + '-c=0.1-shear', fluid=True, c=0.1)
       +
       +
       +