tarith3.3 - plan9port - [fork] Plan 9 from user space
 (HTM) git clone git://src.adamsgaard.dk/plan9port
 (DIR) Log
 (DIR) Files
 (DIR) Refs
 (DIR) README
 (DIR) LICENSE
       ---
       tarith3.3 (4396B)
       ---
            1 .TH ARITH3 3
            2 .SH NAME
            3 add3, sub3, neg3, div3, mul3, eqpt3, closept3, dot3, cross3, len3, dist3, unit3, midpt3, lerp3, reflect3, nearseg3, pldist3, vdiv3, vrem3, pn2f3, ppp2f3, fff2p3, pdiv4, add4, sub4 \- operations on 3-d points and planes
            4 .SH SYNOPSIS
            5 .PP
            6 .B
            7 #include <draw.h>
            8 .PP
            9 .B
           10 #include <geometry.h>
           11 .PP
           12 .B
           13 Point3 add3(Point3 a, Point3 b)
           14 .PP
           15 .B
           16 Point3 sub3(Point3 a, Point3 b)
           17 .PP
           18 .B
           19 Point3 neg3(Point3 a)
           20 .PP
           21 .B
           22 Point3 div3(Point3 a, double b)
           23 .PP
           24 .B
           25 Point3 mul3(Point3 a, double b)
           26 .PP
           27 .B
           28 int eqpt3(Point3 p, Point3 q)
           29 .PP
           30 .B
           31 int closept3(Point3 p, Point3 q, double eps)
           32 .PP
           33 .B
           34 double dot3(Point3 p, Point3 q)
           35 .PP
           36 .B
           37 Point3 cross3(Point3 p, Point3 q)
           38 .PP
           39 .B
           40 double len3(Point3 p)
           41 .PP
           42 .B
           43 double dist3(Point3 p, Point3 q)
           44 .PP
           45 .B
           46 Point3 unit3(Point3 p)
           47 .PP
           48 .B
           49 Point3 midpt3(Point3 p, Point3 q)
           50 .PP
           51 .B
           52 Point3 lerp3(Point3 p, Point3 q, double alpha)
           53 .PP
           54 .B
           55 Point3 reflect3(Point3 p, Point3 p0, Point3 p1)
           56 .PP
           57 .B
           58 Point3 nearseg3(Point3 p0, Point3 p1, Point3 testp)
           59 .PP
           60 .B
           61 double pldist3(Point3 p, Point3 p0, Point3 p1)
           62 .PP
           63 .B
           64 double vdiv3(Point3 a, Point3 b)
           65 .PP
           66 .B
           67 Point3 vrem3(Point3 a, Point3 b)
           68 .PP
           69 .B
           70 Point3 pn2f3(Point3 p, Point3 n)
           71 .PP
           72 .B
           73 Point3 ppp2f3(Point3 p0, Point3 p1, Point3 p2)
           74 .PP
           75 .B
           76 Point3 fff2p3(Point3 f0, Point3 f1, Point3 f2)
           77 .PP
           78 .B
           79 Point3 pdiv4(Point3 a)
           80 .PP
           81 .B
           82 Point3 add4(Point3 a, Point3 b)
           83 .PP
           84 .B
           85 Point3 sub4(Point3 a, Point3 b)
           86 .SH DESCRIPTION
           87 These routines do arithmetic on points and planes in affine or projective 3-space.
           88 Type
           89 .B Point3
           90 is
           91 .IP
           92 .EX
           93 .ta 6n
           94 typedef struct Point3 Point3;
           95 struct Point3{
           96         double x, y, z, w;
           97 };
           98 .EE
           99 .PP
          100 Routines whose names end in
          101 .B 3
          102 operate on vectors or ordinary points in affine 3-space, represented by their Euclidean
          103 .B (x,y,z)
          104 coordinates.
          105 (They assume
          106 .B w=1
          107 in their arguments, and set
          108 .B w=1
          109 in their results.)
          110 .TF reflect3
          111 .TP
          112 Name
          113 Description
          114 .TP
          115 .B add3
          116 Add the coordinates of two points.
          117 .TP
          118 .B sub3
          119 Subtract coordinates of two points.
          120 .TP
          121 .B neg3
          122 Negate the coordinates of a point.
          123 .TP
          124 .B mul3
          125 Multiply coordinates by a scalar.
          126 .TP
          127 .B div3
          128 Divide coordinates by a scalar.
          129 .TP
          130 .B eqpt3
          131 Test two points for exact equality.
          132 .TP
          133 .B closept3
          134 Is the distance between two points smaller than 
          135 .IR eps ?
          136 .TP
          137 .B dot3
          138 Dot product.
          139 .TP
          140 .B cross3
          141 Cross product.
          142 .TP
          143 .B len3
          144 Distance to the origin.
          145 .TP
          146 .B dist3
          147 Distance between two points.
          148 .TP
          149 .B unit3
          150 A unit vector parallel to
          151 .IR p .
          152 .TP
          153 .B midpt3
          154 The midpoint of line segment 
          155 .IR pq .
          156 .TP
          157 .B lerp3
          158 Linear interpolation between 
          159 .I p
          160 and
          161 .IR q .
          162 .TP
          163 .B reflect3
          164 The reflection of point
          165 .I p
          166 in the segment joining 
          167 .I p0
          168 and
          169 .IR p1 .
          170 .TP
          171 .B nearseg3
          172 The closest point to 
          173 .I testp
          174 on segment
          175 .IR "p0 p1" .
          176 .TP
          177 .B pldist3
          178 The distance from 
          179 .I p
          180 to segment
          181 .IR "p0 p1" .
          182 .TP
          183 .B vdiv3
          184 Vector divide \(em the length of the component of 
          185 .I a
          186 parallel to
          187 .IR b ,
          188 in units of the length of
          189 .IR b .
          190 .TP
          191 .B vrem3
          192 Vector remainder \(em the component of 
          193 .I a
          194 perpendicular to
          195 .IR b .
          196 Ignoring roundoff, we have 
          197 .BR "eqpt3(add3(mul3(b, vdiv3(a, b)), vrem3(a, b)), a)" .
          198 .PD
          199 .PP
          200 The following routines convert amongst various representations of points
          201 and planes.  Planes are represented identically to points, by duality;
          202 a point
          203 .B p
          204 is on a plane
          205 .B q
          206 whenever
          207 .BR p.x*q.x+p.y*q.y+p.z*q.z+p.w*q.w=0 .
          208 Although when dealing with affine points we assume
          209 .BR p.w=1 ,
          210 we can't make the same assumption for planes.
          211 The names of these routines are extra-cryptic.  They contain an
          212 .B f
          213 (for `face') to indicate a plane,
          214 .B p
          215 for a point and
          216 .B n
          217 for a normal vector.
          218 The number
          219 .B 2
          220 abbreviates the word `to.'
          221 The number
          222 .B 3
          223 reminds us, as before, that we're dealing with affine points.
          224 Thus
          225 .B pn2f3
          226 takes a point and a normal vector and returns the corresponding plane.
          227 .TF reflect3
          228 .TP
          229 Name
          230 Description
          231 .TP
          232 .B pn2f3
          233 Compute the plane passing through
          234 .I p
          235 with normal
          236 .IR n .
          237 .TP
          238 .B ppp2f3
          239 Compute the plane passing through three points.
          240 .TP
          241 .B fff2p3
          242 Compute the intersection point of three planes.
          243 .PD
          244 .PP
          245 The names of the following routines end in
          246 .B 4
          247 because they operate on points in projective 4-space,
          248 represented by their homogeneous coordinates.
          249 .TP
          250 pdiv4
          251 Perspective division.  Divide
          252 .B p.w
          253 into
          254 .IR p 's
          255 coordinates, converting to affine coordinates.
          256 If
          257 .B p.w
          258 is zero, the result is the same as the argument.
          259 .TP
          260 add4
          261 Add the coordinates of two points.
          262 .PD
          263 .TP
          264 sub4
          265 Subtract the coordinates of two points.
          266 .SH SOURCE
          267 .B \*9/src/libgeometry
          268 .SH "SEE ALSO
          269 .MR matrix (3)