tssa-discretization.tex - pism - [fork] customized build of PISM, the parallel ice sheet model (tillflux branch)
 (HTM) git clone git://src.adamsgaard.dk/pism
 (DIR) Log
 (DIR) Files
 (DIR) Refs
 (DIR) LICENSE
       ---
       tssa-discretization.tex (4682B)
       ---
            1 \documentclass{amsart}
            2 \usepackage[margin=1in]{geometry}
            3 \usepackage{underscore}
            4 \date{Time-stamp: "ssa-discretization.tex, saved on Mon, Apr 18, 2011 at 12:16pm"}
            5 
            6 % Read in formulas generated by Maxima:
            7 \input{formulas.tex}
            8 
            9 \begin{document}
           10 \title{On computing coefficients in a discretization of SSA equations}
           11 \author{C. Khroulev}
           12 \maketitle
           13 
           14 The SSA equations (ignoring basal drag) are
           15 \begin{align}
           16 -\left[ 2\bar\nu H\left( 2u_{x} + v_{y}\right)\right]_{x} - \left[\bar\nu
           17   H\left(u_{y}+v_{x} \right) \right]_{y} &= - \rho gH h_{x} \label{SSA1} \\
           18 -\left[ \bar\nu H\left( u_{y} + v_{x} \right)\right]_{x} - \left[2\bar\nu
           19   H\left(u_{x}+2v_{y}  \right) \right]_{y} &= -\rho gH h_{y} \label{SSA2}
           20 \end{align}
           21 
           22 We use centered finite differences to create a discretization of these
           23 equations. For outer derivatives, these differences are centered at the current
           24 $(i,j)$ point and use staggered grid locations. Hence $\bar \nu H$ is evaluated on the staggered grid.
           25 
           26 The one-sided differences below are, in fact, centered with the center at the
           27 staggered grid location.
           28 
           29 \medskip
           30 The four terms of the discretization of left hand side of the \eqref{SSA1} are
           31 given below\footnote{These formulas are not as pretty as they should be because
           32 they are automatically generated using Maxima.}.
           33 \begin{eqnarray*}
           34   \lhsI
           35 \end{eqnarray*}
           36 
           37 The discretization of the left hand side of \eqref{SSA2} is the sum of the following.
           38 \begin{eqnarray*}
           39   \lhsII
           40 \end{eqnarray*}
           41 
           42 Here
           43 \begin{itemize}
           44 \item $w_{i+\frac12,j}$ is a constant equal to $1$ if the face at $(i+\frac12,j)$ is
           45   an interface between two ice-filled cells and $0$ if it is an interface
           46   between ice-filled and ice-free cells.
           47 
           48   This allows us to drop one of four terms in left hand sides of equations
           49   \eqref{SSA1} and \eqref{SSA2} to implement the calving front boundary
           50   condition.
           51 
           52 \item $\delta_{+x}f_{i,j} = f_{i+1,j}-f_{i,j}$, $\delta_{-x}f_{i,j} =
           53   f_{i,j}-f_{i-1,j}$, and $\Delta_{x}f_{i,j} = f_{i+1,j}-f_{i-1,j}$, and
           54   similarly for $y$.
           55 \item Note that the $y$-derivative at $(i+\frac12,j)$ is computed as the
           56   average of two centered differences using regular grid points.
           57 \item $N := \bar \nu H$.
           58 \item $c_{w}$ is the value of $N$ at the western face of the current cell;
           59   $c_{e}$, $c_{n}$ and $c_{s}$ are shortcuts for $N$ at the east, north and
           60   south faces.
           61 \end{itemize}
           62 
           63 The next issue we need to handle is the fact that at the ice front some values
           64 used in the discretization above are not available. To resolve this, we rewrite
           65 $\Delta_{x}f_{i,j}$ as $\Delta_{x}f_{i,j} = \delta_{+x}f_{i,j} +
           66 \delta_{-x}f_{i,j}$ and add ``weights'' $w_{\cdot,\cdot}$:
           67 
           68 \begin{equation}
           69   \label{eq:1}
           70   \Delta_{x}f_{i,j} = w_{i+\frac12,j}\delta_{+x}f_{i,j} + w_{i-\frac12,j}\delta_{-x}f_{i,j}
           71 \end{equation}
           72 where $w_{\cdot,\cdot}$ is defined above.
           73 
           74 If one of $w_{\cdot,j}$ in equation \eqref{eq:1} is zero and another is one,
           75 this centered difference becomes a one-sided one.
           76 
           77 Now we can write a discretization that works both in the interior and at
           78 the ice margin by ``switching'' from a second-order centered difference in the
           79 interior to first-order, ice-inward one-sided differences at the margin.
           80 
           81 This yields (for the left hand side of equation \eqref{SSA1}):
           82 \begin{eqnarray*}
           83   \lhsIII
           84 \end{eqnarray*}
           85 which is almost incomprehensible.
           86 
           87 \newpage
           88 \section{Coefficients for the shelf interior (computed using Maxima)}
           89 \label{sec:shelf-interior}
           90 
           91 \begin{table}[h]
           92   \centering
           93   \begin{tabular}{r||c|c|c}
           94     \CUfirstInterior
           95   \end{tabular}
           96  \caption{$u$, first equation}
           97  \label{tab:u-interior-i}
           98 \end{table}
           99 
          100 \begin{table}[h]
          101   \centering
          102   \begin{tabular}{r||c|c|c}
          103     \CUsecondInterior
          104   \end{tabular}
          105  \caption{$u$, second equation}
          106  \label{tab:u-interior-ii}
          107 \end{table}
          108 
          109 \begin{table}[h]
          110   \centering
          111   \begin{tabular}{r||c|c|c}
          112     \CVfirstInterior
          113   \end{tabular}
          114  \caption{$v$, first equation}
          115  \label{tab:v-interior-i}
          116 \end{table}
          117 
          118 \begin{table}[h]
          119   \centering
          120   \begin{tabular}{r||c|c|c}
          121     \CVsecondInterior
          122   \end{tabular}
          123  \caption{$v$, second equation}
          124  \label{tab:v-interior-ii}
          125 \end{table}
          126 
          127 \newpage
          128 \section{At the ice margin}
          129 \label{sec:at-ice-margin}
          130 
          131 \begin{table}[h]
          132   \centering
          133   \begin{tabular}{r||c|c|c}
          134     \CUfirstMargin
          135   \end{tabular}
          136  \caption{$u$, first equation}
          137  \label{tab:u-margin-i}
          138 \end{table}
          139 
          140 Unknown $u$ in the second equation:
          141 \begin{eqnarray*}
          142   \CUsecondMargin
          143 \end{eqnarray*}
          144 
          145 \newpage
          146 
          147 Unknown $v$ in the first equation:
          148 \begin{eqnarray*}
          149   \CVfirstMargin
          150 \end{eqnarray*}
          151 
          152 \begin{table}[h]
          153   \centering
          154   \begin{tabular}{r||c|c|c}
          155     \CVsecondMargin
          156   \end{tabular}
          157  \caption{$v$, second equation}
          158  \label{tab:v-margin-ii}
          159 \end{table}
          160 
          161 \end{document}