tssafd-cfbc.rst - pism - [fork] customized build of PISM, the parallel ice sheet model (tillflux branch)
 (HTM) git clone git://src.adamsgaard.dk/pism
 (DIR) Log
 (DIR) Files
 (DIR) Refs
 (DIR) LICENSE
       ---
       tssafd-cfbc.rst (9030B)
       ---
            1 .. include:: ../global.txt
            2 
            3 Calving front stress boundary condition
            4 =======================================
            5 
            6 .. contents::
            7 
            8 .. only:: html
            9 
           10    .. math::
           11 
           12       \newcommand{\diff}[2]{\frac{\partial #1}{\partial #2}}
           13       \newcommand{\n}{\mathbf{n}}
           14       \newcommand{\nx}{\n_{x}}
           15       \newcommand{\ny}{\n_{y}}
           16       \newcommand{\nz}{\n_{z}}
           17       \newcommand{\psw}{p_{\text{ocean}}}
           18       \newcommand{\pmelange}{p_{\text{melange}}}
           19       \newcommand{\pice}{p_{\text{ice}}}
           20       \newcommand{\rhoi}{\rho_{\text{ice}}}
           21       \newcommand{\rhosw}{\rho_{\text{ocean}}}
           22       \newcommand{\zs}{z_{\text{s}}}
           23       \newcommand{\td}[1]{t^{D}_{#1}}
           24       \newcommand{\D}{\displaystyle}
           25       \newcommand{\dx}{\Delta x}
           26       \newcommand{\dy}{\Delta y}
           27       \newcommand{\viscosity}{\nu}
           28       \newcommand{\partI}{(2\tilde N_{xx} + \tilde N_{yy})}
           29       \newcommand{\partII}{(\tilde N_{xy})}
           30 
           31 .. raw:: latex
           32 
           33    \providecommand{\diff}[2]{\frac{\partial #1}{\partial #2}}
           34    \providecommand{\n}{\mathbf{n}}
           35    \providecommand{\nx}{\n_{x}}
           36    \providecommand{\ny}{\n_{y}}
           37    \providecommand{\nz}{\n_{z}}
           38    \providecommand{\psw}{p_{\text{ocean}}}
           39    \providecommand{\pmelange}{p_{\text{melange}}}
           40    \providecommand{\pice}{p_{\text{ice}}}
           41    \providecommand{\rhoi}{\rho_{\text{ice}}}
           42    \providecommand{\rhosw}{\rho_{\text{ocean}}}
           43    \providecommand{\zs}{z_{\text{s}}}
           44    \providecommand{\td}[1]{t^{D}_{#1}}
           45    \providecommand{\D}{\displaystyle}
           46    \providecommand{\dx}{\Delta x}
           47    \providecommand{\dy}{\Delta y}
           48    \providecommand{\viscosity}{\nu}
           49    \providecommand{\partI}{(2\tilde N_{xx} + \tilde N_{yy})}
           50    \providecommand{\partII}{(\tilde N_{xy})}
           51 
           52 Notation
           53 --------
           54 
           55 .. csv-table::
           56    :name: tab-cfbc-notation
           57    :header: Variable, Meaning
           58 
           59    `h`,          ice top surface elevation
           60    `b`,          ice bottom surface elevation
           61    `H = h - b`,  ice thickness
           62    `\zs`,        sea level elevation
           63    `g`,          acceleration due to gravity
           64    `\rhoi`,      ice density
           65    `\rhosw`,     sea water density
           66    `\viscosity`, vertically-averaged viscosity of ice
           67    `\n`,         normal vector
           68    `B(T)`,       ice hardness
           69    `\pice`,      pressure due to the weight of a column of ice
           70    `\psw`,       pressure due to the weight of a column of seawater
           71    `D`,          strain rate tensor
           72    `d_{e}`,      effective strain rate
           73    `t`,          Cauchy stress tensor
           74    `t^{D}`,      deviatoric stress tensor; note `\td{ij} = t_{ij} + p \delta_{ij}`
           75 
           76 Calving front stress boundary condition
           77 ---------------------------------------
           78 
           79 In the 3D case the calving front stress boundary condition (:cite:`GreveBlatter2009`, equation
           80 (6.19)) reads
           81 
           82 .. math::
           83 
           84    \left.t\right|_{\text{cf}} \cdot \n = -\psw \n.
           85 
           86 Expanded in component form, and evaluating the left-hand side at the calving front and
           87 assuming that the calving front face is vertical (`\nz = 0`), this gives
           88 
           89 .. math::
           90 
           91    \begin{array}{rcrcl}
           92      (\td{xx} - p) \nx &+& \td{xy} \ny &=& -\psw \nx,\\
           93      \td{xy} \nx &+& (\td{yy} - p) \ny &=& -\psw  \ny,\\
           94      \td{xz} \nx &+& \td{yz} \ny &=& 0.
           95    \end{array}
           96 
           97 
           98 Because we seek boundary conditions for the SSA stress balance, in which the
           99 vertically-integrated forms of the stresses `\td{xx},\td{xy},\td{yy}` are balanced
          100 separately from the shear stresses `\td{xz},\td{yz}`, the third of the above equations can
          101 be omitted from the remaining analysis.
          102 
          103 Let `\pice=\rhoi g (h-z)`. In the hydrostatic approximation, `t_{zz}=-\pice`
          104 (:cite:`GreveBlatter2009`, equation (5.59)). Next, since `\td{}` has trace zero,
          105 
          106 .. math::
          107 
          108    p &= p - \td{xx} - \td{yy} - \td{zz}
          109 
          110    &= - t_{zz} - \td{xx} - \td{yy}
          111 
          112    &= \pice - \td{xx} - \td{yy}.
          113 
          114 Thus
          115 
          116 .. math::
          117    :label: ssafd-cfbc-1
          118 
          119    \begin{array}{rcrcl}
          120      (2\td{xx} + \td{yy}) \nx &+& \td{xy} \ny &=& (\pice - \psw) \nx,\\
          121      \td{xy} \nx &+& (2\td{yy} + \td{xx}) \ny &=& (\pice - \psw) \ny.\\
          122    \end{array}
          123 
          124 Now, using the "viscosity form" of the flow law
          125 
          126 .. math::
          127 
          128    \td{} &= 2\viscosity\, D,
          129 
          130    \viscosity &= \frac 12 B(T) d_{e}^{1/n-1}
          131 
          132 and the fact that in the shallow shelf approximation `u` and `v` are depth-independent, we
          133 can define the membrane stress `N` as the vertically-integrated deviatoric stress
          134 
          135 .. math::
          136 
          137    N_{ij} = \int_{b}^{h} t^{D}_{ij} dz = 2\, \bar \viscosity\, H\, D_{ij}.
          138 
          139 Here `\bar \viscosity` is the vertically-averaged effective viscosity.
          140 
          141 Integrating :eq:`ssafd-cfbc-1` with respect to `z`, we get
          142 
          143 .. math::
          144    :label: ssafd-cfbc-3
          145 
          146    \begin{array}{rcrcl}
          147      (2N_{xx} + N_{yy}) \nx &+& N_{xy} \ny &=& \displaystyle \int_{b}^{h}(\pice - \psw) dz\, \nx,\\
          148      N_{xy} \nx &+& (2N_{yy} + N_{xx}) \ny &=& \displaystyle \int_{b}^{h}(\pice - \psw) dz\, \ny.
          149    \end{array}
          150 
          151 
          152 Shallow shelf approximation
          153 ---------------------------
          154 
          155 The shallow shelf approximation written in terms of `N_{ij}` is
          156 
          157 .. math::
          158    :label: ssafd-cfbc-2
          159 
          160    \begin{array}{rcrcl}
          161      \D \diff{}{x}(2N_{xx} + N_{yy}) &+& \D \diff{N_{xy}}{y} &=& \D \rho g H \diff{h}{x},\\
          162      \D \diff{N_{xy}}{x} &+& \D \diff{}{y}(2N_{yy} + N_{xx}) &=& \D \rho g H \diff{h}{y}.
          163    \end{array}
          164 
          165 Implementing the calving front boundary condition
          166 -------------------------------------------------
          167 
          168 We use centered finite difference approximations in the discretization of the SSA
          169 :eq:`ssafd-cfbc-2`. Consider the first equation:
          170 
          171 .. math::
          172    :label: ssafd-cfbc-4
          173 
          174    \diff{}{x}(2N_{xx} + N_{yy}) + \D \diff{N_{xy}}{y} = \D \rho g H \diff{h}{x}.
          175 
          176 Let `\tilde F` be an approximation of `F` using a finite-difference scheme. Then the first
          177 SSA equation is approximated by
          178 
          179 .. math::
          180 
          181    \frac1{\dx}\left(\partI_{i+\frac12,j} - \partI_{i-\frac12,j}\right) +
          182    \frac1{\dy}\left(\partII_{i,j+\frac12} - \partII_{i,j-\frac12}\right) =
          183    \rho g H \frac{h_{i+\frac12,j} - h_{i-\frac12,j}}{\dx}.
          184 
          185 
          186 Now, assume that the cell boundary (face) at `i+\frac12,j` is at the
          187 calving front. Then `\n = (1,0)` and from :eq:`ssafd-cfbc-3` we have
          188 
          189 .. math::
          190    :label: ssafd-cfbc-vertintbdry
          191 
          192    2N_{xx} + N_{yy} = \int_{b}^{h}(\pice - \psw) dz.
          193 
          194 We call the right-hand side of :eq:`ssafd-cfbc-vertintbdry` the "pressure difference term."
          195 
          196 In forming the matrix approximation of the SSA :cite:`BBssasliding`,
          197 :cite:`Winkelmannetal2011`, instead of assembling a matrix row corresponding to the
          198 generic equation :eq:`ssafd-cfbc-4` we use
          199 
          200 .. math::
          201 
          202    \frac1{\dx}\left(\left[\int_{b}^{h}(\pice - \psw) dz\right]_{i+\frac12,j} - \partI_{i-\frac12,j}\right) +
          203    \frac1{\dy}\left(\partII_{i,j+\frac12} - \partII_{i,j-\frac12}\right) =
          204    \rho g H \frac{h_{i+\frac12,j} - h_{i-\frac12,j}}{\dx}.
          205 
          206 Moving terms that do not depend on the velocity field to the
          207 right-hand side, we get
          208 
          209 .. math::
          210 
          211    \frac1{\dx}\left(- \partI_{i-\frac12,j}\right) +
          212    \frac1{\dy}\left(\partII_{i,j+\frac12} - \partII_{i,j-\frac12}\right) =
          213    \rho g H \frac{h_{i+\frac12,j} - h_{i-\frac12,j}}{\dx} + \left[\frac{\int_{b}^{h}(\psw - \pice) dz}{\dx}\right]_{i+\frac12,j}.
          214 
          215 
          216 The second equation and other cases (`\n = (-1,0)`, etc) are treated similarly.
          217 
          218 Evaluating the "pressure difference term"
          219 -----------------------------------------
          220 
          221 For `z \in [b, h]` the modeled pressures are
          222 
          223 .. math::
          224 
          225    \begin{array}{ll}
          226    \psw &=
          227      \begin{cases}
          228        0, & z > \zs,\\
          229        \rhosw\, g (\zs - z), & z \le \zs,
          230      \end{cases}\\
          231    \pice &= \rhoi\, g (h - z).
          232    \end{array}
          233 
          234 Depending on the local geometry `b` is either prescribed (grounded case) or is a function
          235 of the ice thickness and sea level elevation.
          236 
          237 Floating case
          238 ^^^^^^^^^^^^^
          239 
          240 Using the flotation thickness relation `\rhoi H = \rhosw (\zs - b)`, which applies to
          241 floating ice given that `b` here denotes the base elevation of the floating ice, we have
          242 
          243 .. math::
          244 
          245    \int_{b}^{h}(\pice - \psw) dz =
          246    \frac{1}{2}\, g\, \rhoi \left(H^2 - \frac{\rhoi}{\rhosw} H^2\right)
          247 
          248 Grounded below sea level
          249 ^^^^^^^^^^^^^^^^^^^^^^^^
          250 
          251 Because `b` denotes both the base elevation of the grounded ice, and the bedrock
          252 elevation, here `\rhoi H \ge \rhosw (\zs - b)`. The integral simplifies to
          253 
          254 .. math::
          255 
          256    \int_{b}^{h}(\pice - \psw) dz =
          257    \frac{1}{2}\, g\, \rhoi \left(H^2-\frac{\rhosw}{\rhoi}\, \left(\zs-b\right)^2\right)
          258 
          259 
          260 This, in fact, applies in both floating and grounded-below-sea-level cases.
          261 
          262 Grounded above sea level
          263 ^^^^^^^^^^^^^^^^^^^^^^^^
          264 
          265 In this case `\psw = 0`, so
          266 
          267 .. math::
          268 
          269    \int_{b}^{h}(\pice - \psw) dz = \frac{1}{2}\, g\, \rhoi\, H^2
          270 
          271 
          272 Modeling melange back-pressure
          273 ------------------------------
          274 
          275 Let `\pmelange` be the additional melange back-pressure. Then `\psw \le \psw + \pmelange
          276 \le \pice`. Put another way,
          277 
          278 .. math::
          279    :label: ssafd-cfbc-13
          280 
          281    0 \le \pmelange \le \pice - \psw.
          282 
          283 Let `\lambda` be the "melange back-pressure fraction" (or "relative melange pressure")
          284 ranging from `0` to `1`, so that
          285 
          286 .. math::
          287    :label: ssafd-cfbc-14
          288 
          289    \pmelange = \lambda \cdot (\pice - \psw).
          290 
          291 Then the modified pressure difference term is
          292 
          293 .. math::
          294    :label: ssafd-cfbc-15
          295 
          296    \int_{b}^{h}(\pice - (\psw + \pmelange)) dz &= \int_{b}^{h}(\pice - (\psw + \lambda(\pice - \psw)))\, dz
          297 
          298    &= (1 - \lambda) \int_{b}^{h} (\pice - \psw)\, dz.