tmelange.rst - pism - [fork] customized build of PISM, the parallel ice sheet model (tillflux branch)
(HTM) git clone git://src.adamsgaard.dk/pism
(DIR) Log
(DIR) Files
(DIR) Refs
(DIR) LICENSE
---
tmelange.rst (2186B)
---
1 .. include:: ../../../global.txt
2
3 .. _sec-model-melange-pressure:
4
5 Modeling melange back-pressure
6 ------------------------------
7
8 Equation :eq:`eq-cfbc` above, describing the stress boundary condition for ice shelves,
9 can be written in terms of velocity components:
10
11 .. include:: ../../../math-definitions.txt
12
13 .. math::
14 :label: eq-cfbc-uv
15
16 2 \nu H (2u_x + u_y) \nx + 2 \nu H (u_y + v_x) \ny &= \displaystyle \int_{b}^{h}(\pice - \psw) dz\, \nx,
17
18 2 \nu H (u_y + v_x) \nx + 2 \nu H (2v_y + u_x) \ny &= \displaystyle \int_{b}^{h}(\pice - \psw) dz\, \ny.
19
20 Here `\nu` is the vertically-averaged ice viscosity, `b` is the ice base elevation, `h` is
21 the ice top surface elevation, and `\psw` and `\pice` are pressures of the column of sea
22 water and ice, respectively.
23
24 We call the integral on the right hand side of :eq:`eq-cfbc-uv` the "pressure difference
25 term". To model the effect of melange :cite:`Amundsonetal2010` on the stress boundary
26 condition, we assume that the melange back-pressure `\pmelange` does not exceed `\pice -
27 \psw`. Therefore we introduce `\lambda \in [0,1]` (the melange back pressure fraction)
28 such that
29
30 .. math::
31
32 \pmelange = \lambda (\pice - \psw).
33
34 Then melange pressure is added to the ordinary ocean pressure so that the pressure
35 difference term scales with `\lambda`:
36
37 .. math::
38 :label: eq-cfbc-3
39
40 \int_{b}^{h}(\pice - (\psw + \pmelange))\, dz &= \int_{b}^{h}(\pice - (\psw + \lambda(\pice - \psw)))\, dz
41
42 &= (1 - \lambda) \int_{b}^{h} (\pice - \psw)\, dz.
43
44 This formula replaces the integral on the right hand side of :eq:`eq-cfbc-uv`.
45
46 The resulting stress boundary condition at the shelf front is
47
48 .. math::
49 :label: eq-cfbc-mbp
50
51 2 \nu H (2u_x + u_y) \nx + 2 \nu H (u_y + v_x) \ny &= \displaystyle (1 - \lambda) \int_{b}^{h}(\pice - \psw) dz\, \nx,
52
53 2 \nu H (u_y + v_x) \nx + 2 \nu H (2v_y + u_x) \ny &= \displaystyle (1 - \lambda) \int_{b}^{h}(\pice - \psw) dz\, \ny.
54
55 By default, `\lambda` is set to zero, but PISM implements a scalar time-dependent "melange
56 back pressure fraction offset" forcing in which `\lambda` can be read from a file. Please
57 see the :ref:`Climate Forcing Manual <sec-ocean-frac-mbp>` for details.