trheology.rst - pism - [fork] customized build of PISM, the parallel ice sheet model (tillflux branch)
 (HTM) git clone git://src.adamsgaard.dk/pism
 (DIR) Log
 (DIR) Files
 (DIR) Refs
 (DIR) LICENSE
       ---
       trheology.rst (10225B)
       ---
            1 .. include:: ../../../global.txt
            2 
            3 .. _sec-rheology:
            4 
            5 Ice rheology
            6 ------------
            7 
            8 .. contents::
            9 
           10 The "rheology" of a viscous fluid refers to the relation between the applied stress and
           11 the resulting deformation, the strain rate. The models of ice rheology available in PISM
           12 are all isotropic :cite:`Paterson`. A rheology in this class is described by a "flow law",
           13 which is, in the most general case in PISM, a function `F(\sigma,T,\omega,P,d)` in the
           14 "constitutive relation" form
           15 
           16 .. math::
           17    :label: eq-constitutive
           18 
           19    D_{ij} = F(\sigma,T,\omega,P,d)\, \sigma_{ij}'.
           20 
           21 Here `D_{ij}` is the strain rate tensor, `\sigma_{ij}'` is the stress deviator tensor, `T`
           22 is the ice temperature, `\omega` is the liquid water fraction, `P` is the pressure, `d` is
           23 the grain size, and `\sigma^2 = \frac{1}{2} \|\sigma_{ij}'\|_F = \frac{1}{2} \sigma_{ij}'
           24 \sigma_{ij}'` defines the second invariant `\sigma` of the stress deviator tensor.
           25 
           26 Form :eq:`eq-constitutive` of the flow law is used in the SIA, but the "viscosity" form of
           27 a flow law, found by inverting the constitutive relation :eq:`eq-constitutive`, is needed
           28 for ice shelf and ice stream (SSA) flow :cite:`BBssasliding`:
           29 
           30 .. math::
           31    :label: eq-viscosityform
           32 
           33    \sigma_{ij}' = 2 \nu(D,T,\omega,P,d)\,D_{ij}
           34 
           35 Here `\nu(D,T,\omega,P,d)` is the "effective viscosity" and `D^2 = \frac{1}{2}
           36 D_{ij} D_{ij}`.
           37 
           38 Most of the flow laws in PISM are of Glen-Nye single-power type.  For example,
           39 
           40 .. math::
           41    :label: eq-glen
           42 
           43    F(\sigma,T) = A(T) \sigma^{n-1}
           44 
           45 is the common temperature-dependent Glen law :cite:`PatersonBudd`, :cite:`BBL` (which has no
           46 dependence on liquid water fraction, pressure, or grain size). If the ice softness
           47 `A(T)=A_0` is constant then the law is isothermal, whereas if there is dependence on
           48 temperature then `A(T)` is usually a generalization of "Arrhenius" form
           49 
           50 .. math::
           51 
           52    A(T) = A \exp(-Q/(R T)).
           53 
           54 The more elaborate Goldsby-Kohlstedt law :cite:`GoldsbyKohlstedt` is a function
           55 `F(\sigma,T,P,d)`, but in this case the function `F` cannot be factored into a
           56 product of a function of `T,P,d` and a single power of `\sigma`, as in form
           57 :eq:`eq-glen`.
           58 
           59 There is only one choice for the flow law which takes full advantage of the enthalpy mode
           60 of PISM, which is the thermodynamical modeling (i.e. conservation of energy) default.
           61 Namely the Glen-Paterson-Budd-Lliboutry-Duval flow law
           62 :cite:`AschwandenBuelerKhroulevBlatter`, :cite:`LliboutryDuval1985`, :cite:`PatersonBudd`,
           63 which is a function `F(\sigma,T,\omega,P)`. This law is the only one in the literature
           64 where the ice softness depends on both the temperature and the liquid water fraction, so
           65 it parameterizes the (observed) softening of pressure-melting-temperature ice as its
           66 liquid fraction increases. One can use this default polythermal law or one may choose
           67 among a number of "cold ice" laws listed in :numref:`tab-flowlaw` which do not use the
           68 liquid water fraction.
           69 
           70 All flow law parameters can be changed using configuration parameters; see section
           71 :ref:`sec-pism-defaults` and the implementation of flow laws in the `Source Code Browser
           72 <pism-browser_>`_. Note that different flow laws have different numbers of parameters, but
           73 all have at least two parameters (e.g. `A_0` and `n` in ``isothermal_glen``). One can
           74 create a new, and reasonably arbitrarily, scalar function `F` by modifying source code;
           75 see source files in ``src/base/rheology/``.
           76 
           77 Choosing the flow laws for SIA and SSA stress balances
           78 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
           79 
           80 Command-line options :opt:`-sia_flow_law` and :opt:`-ssa_flow_law` choose which flow law
           81 is used by the SIA and SSA stress balances, respectively. Allowed arguments are listed in
           82 :numref:`tab-flowlaw` below. Viscosity form :eq:`eq-viscosityform` is not known for the
           83 Goldsby-Kohlstedt law :cite:`GoldsbyKohlstedt`, so option "``-ssa_flow_law gk``" is an
           84 error.
           85 
           86 .. list-table:: Single-power flow laws. Choose the ice rheology using ``-sia_flow_law``
           87                 and ``-ssa_flow_law`` and one of the names in this table. Flow law choices
           88                 other than ``gpbld`` do not use the liquid water fraction `\omega`
           89                 but only the temperature `T`.
           90    :name: tab-flowlaw
           91    :header-rows: 1
           92    :widths: 1,3
           93 
           94    * - Name
           95      - Comments and References
           96 
           97    * - ``gpbld``
           98      - Glen-Paterson-Budd-Lliboutry-Duval law :cite:`LliboutryDuval1985`, the enthalpy-based
           99        default in PISM :cite:`AschwandenBuelerKhroulevBlatter`. Extends the Paterson-Budd law
          100        (below) to positive liquid water fraction. If `A_{c}(T)` is from Paterson-Budd then
          101        this law returns
          102 
          103           `A(T,\omega) = A_{c}(T) (1 + C \omega),`
          104 
          105        where `\omega` is the liquid water fraction, `C` is a configuration parameter
          106        :config:`flow_law.gpbld.water_frac_coeff` [default `C=181.25`\], and `\omega` is
          107        capped at level :config:`flow_law.gpbld.water_frac_observed_limit`.
          108 
          109    * - ``pb``
          110      - Paterson-Budd law, the cold-mode default. Fixed Glen exponent `n=3`. Has a split
          111        "Arrhenius" term `A(T) = A \exp(-Q/RT^*)` where
          112 
          113           `A = 3.615 \times 10^{-13}\, \text{s}^{-1}\, \text{Pa}^{-3},`
          114           `Q = 6.0 \times 10^4\, \text{J}\, \text{mol}^{-1}`
          115 
          116        if `T^* < 263` K and
          117        
          118           `A = 1.733 \times 10^{3}\, \text{s}^{-1}\, \text{Pa}^{-3},`
          119           `Q = 13.9 \times 10^4\, \text{J}\, \text{mol}^{-1}`
          120 
          121        if `T^* > 263` K.
          122 
          123        Here `T^*` is pressure-adjusted temperature :cite:`PatersonBudd`.
          124 
          125    * - ``arr``
          126      - *Cold* part of Paterson-Budd. Regardless of temperature, the `A` and `Q` values for
          127        `T^*<263` K in the Paterson-Budd law apply. This is the flow law used in the
          128        thermomechanically-coupled exact solutions run by ``pismv -test F`` and
          129        ``pismv -test G`` :cite:`BBL`, :cite:`BB`.
          130 
          131    * - ``arrwarm``
          132      - *Warm* part of Paterson-Budd. Regardless of temperature, the `A` and `Q` values for
          133        `T^*>263` K in Paterson-Budd apply.
          134 
          135    * - ``hooke``
          136      - Hooke law with
          137 
          138           `A(T) = A \exp(-Q/(RT^*) + 3C (T_r - T^*)^\kappa).`
          139 
          140        Fixed Glen exponent `n=3` and constants as in :cite:`Hooke`, :cite:`PayneBaldwin`.
          141 
          142    * - ``isothermal_glen``
          143      - The isothermal Glen flow law. Here `F(\sigma) = A_0 \sigma^{n-1}` with inverse
          144        `\nu(D) = \frac{1}{2} B_0 D^{(1-n)/(2n)}` where `A_0` is the ice softness and
          145        `B_0=A_0^{-1/n}` is the ice hardness.
          146 
          147    * - ``gk``
          148      - This law has a combination of exponents from `n=1.8` to `n=4`
          149        :cite:`GoldsbyKohlstedt`. It can only be used by the SIA stress balance. Because it has
          150        more than one power, option ``-sia_n`` has no effect, though ``-sia_e`` works as
          151        expected. This law does not use the liquid water fraction, but only the
          152        temperature.
          153 
          154 Choose enhancement factor and exponent
          155 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
          156 
          157 An enhancement factor can be added to any flow law through a runtime option. Single-power
          158 laws also permit control of the flow law exponent through a runtime option.
          159 
          160 Options :opt:`-sia_e` and :opt:`-ssa_e` set flow enhancement factors for the SIA and SSA
          161 respectively. Option ``-sia_e`` sets "`e`" in `D_{ij} = e\, F(\sigma,T,\omega,P,d)\,
          162 \sigma_{ij}',` in equation :eq:`eq-constitutive`. Option ``-ssa_e`` sets "`e`" in the
          163 viscosity form so that `\sigma_{ij}' = e^{-1/n}\, 2\, \nu(D,T,\omega,P,d)\, D_{ij}.`
          164 
          165 Options :opt:`-sia_n` and :opt:`-ssa_n` set the exponent when a single-power flow law is
          166 used (see :numref:`tab-flowlaw`). Simply changing to a different value from the default
          167 `n=3` is not recommended without a corresponding change to the enhancement factor,
          168 however. This is because the coefficient and the power are non-trivially linked when a
          169 power law is fit to experimental data :cite:`CuffeyPaterson`, :cite:`PatersonBudd`.
          170 
          171 Here is a possible approach to adjusting both the enhancement factor and the exponent.
          172 Suppose `\sigma_0` is preferred as a scale (reference) for the driving stress that
          173 appears in both SIA and SSA models. Typically this is on the order of one bar or
          174 `10^5` Pa. Suppose one wants the same amount of deformation `D_0` at this
          175 reference driving stress as one changes from the old exponent `n_{old}` to the new
          176 exponent `n_{new}`. That is, suppose one wants both
          177 
          178 .. math::
          179 
          180    D_0 = E_{old}\, A\, \sigma_0^{n_{old}} \qquad \text{and} \qquad D_0
          181    = E_{new}\, A\, \sigma_0^{n_{new}}
          182 
          183 to be true with a new enhancement factor `E_{new}`. Eliminating `D_0` and
          184 solving for the new enhancement factor gives
          185 
          186 .. math::
          187    :label: eq-renewexponent
          188 
          189    E_{new} = E_{old}\, \sigma_0^{n_{old} - n_{new}}.
          190 
          191 It follows, for example, that if one has a run with values
          192 
          193 .. code-block:: none
          194 
          195    -sia_e 3.0 -sia_n 3.0
          196 
          197 then a new run with exponent `n=6.0` and the same deformation at the reference
          198 driving stress of `10^5` Pa will use
          199 
          200 .. code-block:: none
          201 
          202    -sia_e 3.0e-15 -sia_n 6.0
          203 
          204 because `E_{new} = 3.0 \sigma_0^{3-6} = 3.0 \times (10^5)^{-3}` from equation
          205 :eq:`eq-renewexponent`.
          206 
          207 A corresponding formula applies to ``-ssa_e`` if the ``-ssa_n`` value changes.
          208 
          209 .. list-table:: For all flow laws, an enhancement factor can be added by a runtime option.
          210                 For the single-power flow laws in :numref:`tab-flowlaw`, the (Glen)
          211                 exponent can be controlled by a runtime option.
          212    :name: tab-enhancementandexponent
          213    :header-rows: 1
          214    :widths: 1,2,2
          215 
          216    * - Option
          217      - Configuration parameter
          218      - Comments
          219 
          220    * - :opt:`-sia_e` (1.0)
          221      - ``stress_balance.sia.enhancement_factor``
          222      - Note (see the supplement of :cite:`AschwandenAdalgeirsdottirKhroulev`) used `3.0`
          223        for Greenland ice sheet simulations while :cite:`Martinetal2011` used `4.5` for
          224        simulations of the Antarctic ice sheet with PISM-PIK.
          225 
          226    * - :opt:`-sia_n` (3.0)
          227      - ``stress_balance.sia.Glen_exponent``
          228      - See text and eqn :eq:`eq-renewexponent` to also set ``-sia_e`` if ``-sia_n`` changes.
          229 
          230    * - :opt:`-ssa_e` (1.0)
          231      - ``stress_balance.ssa.enhancement_factor``
          232      - Note :cite:`Martinetal2011` used `0.512` for simulations of the Antarctic ice sheet with
          233        PISM-PIK.
          234 
          235    * - :opt:`-ssa_n` (3.0)
          236      - ``stress_balance.ssa.Glen_exponent``
          237      - See text and eqn :eq:`eq-renewexponent` to also set ``-ssa_e`` if ``-ssa_n``
          238        changes.