tpism_python.py - pism-exp-gsw - ice stream and sediment transport experiments
(HTM) git clone git://src.adamsgaard.dk/pism-exp-gsw
(DIR) Log
(DIR) Files
(DIR) Refs
(DIR) README
(DIR) LICENSE
---
tpism_python.py (2829B)
---
1 #!/usr/bin/env python3
2
3 # Copyright (C) 2009-2015, 2018 the PISM Authors
4
5 # @package pism_python
6 # \author the PISM authors
7 # \brief Creates "from scratch" a boring dataset with the right format
8 # to use as a PISM bootstrapping file.
9 # \details Example use of Python for this purpose.
10 #
11 # Usage, including a minimal PISM call to bootstrap from this file:
12 #
13 # \verbatim $ pism_python.py # creates foo.nc \endverbatim
14 # \verbatim $ pismr -i foo.nc -bootstrap -Mx 41 -My 41 -Mz 21 -Lz 4000 -Mbz 5 -Lbz 500 -y 1 \endverbatim
15
16 import sys
17 import time
18 import numpy as np
19
20 # try different netCDF modules
21 try:
22 from netCDF4 import Dataset as CDF
23 except:
24 print("netCDF4 is not installed!")
25 sys.exit(1)
26
27 # set up the grid:
28 Lx = 1e6
29 Ly = 1e6
30 Mx = 51
31 My = 71
32 x = np.linspace(-Lx, Lx, Mx)
33 y = np.linspace(-Ly, Ly, My)
34
35 # create dummy fields
36 [xx, yy] = np.meshgrid(x, y) # if there were "ndgrid" in numpy we would use it
37 acab = np.zeros((Mx, My))
38 artm = np.zeros((Mx, My)) + 273.15 + 10.0 # 10 degrees Celsius
39 topg = 1000.0 + 200.0 * (xx + yy) / max(Lx, Ly) # change "1000.0" to "0.0" to test
40 # flotation criterion, etc.
41 thk = 3000.0 * (1.0 - 3.0 * (xx ** 2 + yy ** 2) / Lx ** 2)
42 thk[thk < 0.0] = 0.0
43
44 # Output filename
45 ncfile = 'foo.nc'
46
47 # Write the data:
48 nc = CDF(ncfile, "w", format='NETCDF3_CLASSIC') # for netCDF4 module
49
50 # Create dimensions x and y
51 nc.createDimension("x", size=Mx)
52 nc.createDimension("y", size=My)
53
54 x_var = nc.createVariable("x", 'f4', dimensions=("x",))
55 x_var.units = "m"
56 x_var.long_name = "easting"
57 x_var.standard_name = "projection_x_coordinate"
58 x_var[:] = x
59
60 y_var = nc.createVariable("y", 'f4', dimensions=("y",))
61 y_var.units = "m"
62 y_var.long_name = "northing"
63 y_var.standard_name = "projection_y_coordinate"
64 y_var[:] = y
65
66 fill_value = np.nan
67
68
69 def def_var(nc, name, units, fillvalue):
70 # dimension transpose is standard: "float thk(y, x)" in NetCDF file
71 var = nc.createVariable(name, 'f', dimensions=("y", "x"), fill_value=fillvalue)
72 var.units = units
73 return var
74
75
76 bed_var = def_var(nc, "topg", "m", fill_value)
77 bed_var.standard_name = "bedrock_altitude"
78 bed_var[:] = topg
79
80 thk_var = def_var(nc, "thk", "m", fill_value)
81 thk_var.standard_name = "land_ice_thickness"
82 thk_var[:] = thk
83
84 acab_var = def_var(nc, "climatic_mass_balance", "m year-1", fill_value)
85 acab_var.standard_name = "land_ice_surface_specific_mass_balance"
86 acab_var[:] = acab
87
88 artm_var = def_var(nc, "ice_surface_temp", "K", fill_value)
89 artm_var[:] = artm
90
91 # set global attributes
92 nc.Conventions = "CF-1.4"
93 historysep = ' '
94 historystr = time.asctime() + ': ' + historysep.join(sys.argv) + '\n'
95 setattr(nc, 'history', historystr)
96
97 nc.close()
98 print(' PISM-bootable NetCDF file %s written' % ncfile)
99 print(' for example, run:')
100 print(' $ pismr -i foo.nc -bootstrap -Mx 41 -My 41 -Mz 21 -Lz 4000 -Mbz 5 -Lbz 500 -y 1')