tremoved redundant curly braces - numeric - C++ library with numerical algorithms
(HTM) git clone git://src.adamsgaard.dk/numeric
(DIR) Log
(DIR) Files
(DIR) Refs
(DIR) LICENSE
---
(DIR) commit 5a9cff5d2c3330ff6abc15165b23c09102d040aa
(DIR) parent fd223ef5d4bd236655a1a2d1341ce2552aebfec4
(HTM) Author: Anders Damsgaard Christensen <adc@geo.au.dk>
Date: Wed, 23 Jan 2013 09:54:32 +0100
removed redundant curly braces
Diffstat:
M matrixmul/c-arrofarrs.c | 13 ++++++-------
M matrixmul/c-linarr.c | 3 +--
M matrixmul/cpp-linvectors.cpp | 3 +--
3 files changed, 8 insertions(+), 11 deletions(-)
---
(DIR) diff --git a/matrixmul/c-arrofarrs.c b/matrixmul/c-arrofarrs.c
t@@ -6,12 +6,11 @@ void matrixMult(double** A, double** B, double** C, unsigned int N)
unsigned int i, j, k;
double sum;
#pragma omp parallel for private (j,k,sum) shared(A,B,C,N) default(none)
- for (i = 0; i<N; i++) {
- for (j = 0; j<N; j++) {
+ for (i = 0; i<N; ++i) {
+ for (j = 0; j<N; ++j) {
sum = 0.0;
- for (k = 0; k<N; k++) {
+ for (k = 0; k<N; k++)
sum += A[i][k] * B[k][j];
- }
C[i][j] = sum;
}
}
t@@ -36,14 +35,14 @@ int main(int argc, char* argv[])
B = (double**) malloc(N * sizeof(double*));
C = (double**) malloc(N * sizeof(double*));
- for (i = 0; i < N; i++) {
+ for (i = 0; i < N; ++i) {
A[i] = (double*) malloc(N * sizeof(double));
B[i] = (double*) malloc(N * sizeof(double));
C[i] = (double*) malloc(N * sizeof(double));
}
- for (i = 0; i < N; i++) {
- for (j = 0; j < N; j++) {
+ for (i = 0; i < N; ++i) {
+ for (j = 0; j < N; ++j) {
A[i][j] = 2.0;
B[i][j] = (double) N*j + i;
}
(DIR) diff --git a/matrixmul/c-linarr.c b/matrixmul/c-linarr.c
t@@ -9,9 +9,8 @@ void matrixMult(double* A, double* B, double* C, unsigned int N)
for (i = 0; i<N; i++) {
for (j = 0; j<N; j++) {
sum = 0.0;
- for (k = 0; k<N; k++) {
+ for (k = 0; k<N; k++)
sum += A[k*N+i] * B[j*N+k];
- }
C[j*N+i] = sum;
}
}
(DIR) diff --git a/matrixmul/cpp-linvectors.cpp b/matrixmul/cpp-linvectors.cpp
t@@ -11,9 +11,8 @@ void matrixMult(vector<double>& A, vector<double>& B, vector<double>& C, unsigne
for (i = 0; i<N; i++) {
for (j = 0; j<N; j++) {
sum = 0.0;
- for (k = 0; k<N; k++) {
+ for (k = 0; k<N; k++)
sum += A[k*N+i] * B[j*N+k];
- }
C[j*N+i] = sum;
}
}