tremove legacy sediment model, solve for N_c instead of P_c - granular-channel-hydro - subglacial hydrology model for sedimentary channels
 (HTM) git clone git://src.adamsgaard.dk/granular-channel-hydro
 (DIR) Log
 (DIR) Files
 (DIR) Refs
 (DIR) README
 (DIR) LICENSE
       ---
 (DIR) commit d0ec40ca4dde58229f1c40d4fc0d3789a3d679a2
 (DIR) parent 736f50c0a19c6d0ab65821b49e60a0fc010e0f84
 (HTM) Author: Anders Damsgaard <andersd@riseup.net>
       Date:   Wed,  8 Mar 2017 17:23:29 -0800
       
       remove legacy sediment model, solve for N_c instead of P_c
       
       Diffstat:
         M 1d-channel.py                       |     102 ++++++--------------------------
       
       1 file changed, 17 insertions(+), 85 deletions(-)
       ---
 (DIR) diff --git a/1d-channel.py b/1d-channel.py
       t@@ -27,7 +27,7 @@ Ls = 1e3            # Model length [m]
        total_days = 60.    # Total simulation time [d]
        t_end = 24.*60.*60.*total_days  # Total simulation time [s]
        tol_Q = 1e-3        # Tolerance criteria for the normalized max. residual for Q
       -tol_P_c = 1e-3      # Tolerance criteria for the norm. max. residual for P_c
       +tol_N_c = 1e-3      # Tolerance criteria for the norm. max. residual for N_c
        max_iter = 1e2*Ns   # Maximum number of solver iterations before failure
        print_output_convergence = False  # Display convergence statistics during run
        safety = 0.01        # Safety factor ]0;1] for adaptive timestepping
       t@@ -44,8 +44,8 @@ sand_fraction = 0.5  # Initial volumetric fraction of sand relative to gravel
        D_g = 1.       # Mean grain size in gravel fraction (> 2 mm)
        D_s = 0.01     # Mean grain size in sand fraction (<= 2 mm)
        
       -# Water source term [m/s]
       -m_dot = 2.5e-8
       +Q_terminus = 0.01/2.      # Desired water flux at terminus [m^3/s]
       +m_dot = Q_terminus/Ls  # Water source term [m/s]
        
        mu_w = 1.787e-3  # Water viscosity [Pa*s]
        friction_factor = 0.1  # Darcy-Weisbach friction factor [-]
       t@@ -88,7 +88,6 @@ W = S/numpy.tan(numpy.deg2rad(theta))  # Assuming no channel floor wedge
        Q = numpy.zeros_like(S)      # Water flux in channel segments [m^3/s]
        Q_s = numpy.zeros_like(S)    # Sediment flux in channel segments [m^3/s]
        N_c = numpy.zeros_like(S)    # Effective pressure in channel segments [Pa]
       -P_c = numpy.zeros_like(S)    # Water pressure in channel segments [Pa]
        e_dot = numpy.zeros_like(S)  # Sediment erosion rate in channel segments [m/s]
        d_dot = numpy.zeros_like(S)  # Sediment deposition rate in chan. segments [m/s]
        c_bar = numpy.zeros_like(S)  # Vertically integrated sediment concentration [-]
       t@@ -126,70 +125,6 @@ def channel_shear_stress(Q, S):
            return 1./8.*friction_factor*rho_w*u_bar**2.
        
        
       -def channel_erosion_rate(tau):
       -    # Parker 1979, Walder and Fowler 1994
       -    # return K_e*v_s*(tau - tau_c).clip(min=0.)/(g*(rho_s - rho_w)*d15)**(3./2)
       -
       -    # Carter et al 2017
       -    # return K_e*v_s/alpha*(tau - tau_c).clip(min=0.) / \
       -        # (g*(rho_s - rho_w)*d15)**(3./2.)
       -
       -    # Ng 2000
       -    return 0.092*(tau/(2.*(rho_s - rho_w)*g*d15))**(3./2.)
       -
       -
       -def channel_deposition_rate_kernel(tau, c_bar, ix):
       -    # Parker 1979, Walder and Fowler 1994
       -    # return K_d*v_s*c_bar[ix]*(g*(rho_s - rho_w)*d15/tau[ix])**0.5
       -
       -    # Carter et al. 2017
       -    return K_d*v_s/alpha*c_bar[ix]*(g*(rho_s - rho_w)*d15/tau[ix])**0.5
       -
       -
       -def channel_deposition_rate_kernel_ng(c_bar, ix):
       -    # Ng 2000
       -    h = W[ix]/2.*numpy.tan(numpy.deg2rad(theta))
       -    epsilon = numpy.sqrt((psi[ix] - (P_c[ix] - P_c[ix - 1])/ds[ix])
       -                         / (rho_w*friction_factor))*h**(3./2.)
       -    return v_s/epsilon*c_bar[ix]
       -
       -
       -def channel_deposition_rate(tau, c_bar, d_dot, Ns):
       -    # Parker 1979, Walder and Fowler 1994
       -    # Find deposition rate from upstream to downstream, margin at is=0
       -
       -    '''
       -    print("\n## Before loop:")
       -    print(c_bar)
       -    print(d_dot)
       -    print('')
       -    '''
       -
       -    # No sediment deposition at upstream end
       -    c_bar[0] = 0.
       -    d_dot[0] = 0.
       -    for ix in numpy.arange(1, Ns - 1):
       -
       -        # Net erosion in upstream cell
       -        # c_bar[ix] = numpy.maximum((e_dot[ix-1]-d_dot[ix-1])*dt*ds[ix-1], 0.)
       -        c_bar[ix] = c_bar[ix - 1] + \
       -            numpy.maximum(
       -                W[ix - 1]*ds[ix - 1]*rho_s/rho_w *
       -                (e_dot[ix - 1] - d_dot[ix - 1])/Q[ix - 1], 0.)
       -
       -        d_dot[ix] = channel_deposition_rate_kernel(tau, c_bar, ix)
       -        # d_dot[ix] = channel_deposition_rate_kernel_ng(c_bar, ix)
       -
       -    '''
       -    print("\n## After loop:")
       -    print(c_bar)
       -    print(d_dot)
       -    print('')
       -    '''
       -
       -    return d_dot, c_bar
       -
       -
        def channel_sediment_flux_sand(tau, W, f_s, D_s):
            # Parker 1979, Wilcock 1997, 2001, Egholm 2013
            # tau: Shear stress by water flow
       t@@ -305,40 +240,40 @@ def flux_solver(m_dot, ds):
        
        def pressure_solver(psi, f, Q, S):
            # Iteratively find new water pressures
       -    # dP_c/ds = psi - f*rho_w*g*Q^2/S^{8/3}  (Kingslake and Ng 2013)
       +    # dN_c/ds = f*rho_w*g*Q^2/S^{8/3} - psi  (Kingslake and Ng 2013)
        
            it = 0
            max_res = 1e9  # arbitrary large value
       -    while max_res > tol_P_c or it < Ns:
       +    while max_res > tol_N_c or it < Ns:
        
       -        P_c_old = P_c.copy()
       +        N_c_old = N_c.copy()
        
                # P_downstream = P_upstream + dP
       -        # P_c[1:] = P_c[:-1] \
       +        # N_c[1:] = N_c[:-1] \
                    # + psi[:-1]*ds[:-1] \
                    # - f[:-1]*rho_w*g*Q[:-1]**2./(S[:-1]**(8./3.))*ds[:-1] \
        
                # Dirichlet BC (fixed pressure) at terminus
       -        P_c[-1] = 0.
       +        N_c[-1] = 0.
        
                # P_upstream = P_downstream - dP
       -        P_c[:-1] = P_c[1:] \
       -            - psi[:-1]*ds[:-1] \
       -            + f[:-1]*rho_w*g*Q[:-1]**2./(S[:-1]**(8./3.))*ds[:-1]
       +        N_c[:-1] = N_c[1:] \
       +            + psi[:-1]*ds[:-1] \
       +            - f[:-1]*rho_w*g*Q[:-1]**2./(S[:-1]**(8./3.))*ds[:-1]
                    # + psi[:-1]*ds[:-1] \
                    # - f[:-1]*rho_w*g*Q[:-1]**2./(S[:-1]**(8./3.))*ds[:-1]
        
       -        max_res = numpy.max(numpy.abs((P_c - P_c_old)/(P_c + 1e-16)))
       +        max_res = numpy.max(numpy.abs((N_c - N_c_old)/(N_c + 1e-16)))
        
                if print_output_convergence:
                    print('it = {}: max_res = {}'.format(it, max_res))
        
                if it >= max_iter:
                    raise Exception('t = {}, step = {}:'.format(time, step) +
       -                            'Iterative solution not found for P_c')
       +                            'Iterative solution not found for N_c')
                it += 1
        
       -    return P_c
       +    return N_c
        
        
        def plot_state(step, time, S_, S_max_, title=True):
       t@@ -351,7 +286,7 @@ def plot_state(step, time, S_, S_max_, title=True):
            # ax_Pa.plot(s/1000., N/1000., '--r', label='$N$')
            ax_Pa.plot(s_c/1000., N_c/1e6, '-k', label='$N$')
            ax_Pa.plot(s_c/1000., H_c*rho_i*g/1e6, '--r', label='$P_i$')
       -    ax_Pa.plot(s_c/1000., P_c/1e6, ':y', label='$P_c$')
       +    #ax_Pa.plot(s_c/1000., P_c/1e6, ':y', label='$P_c$')
        
            ax_m3s = ax_Pa.twinx()  # axis with m3/s as y-axis unit
            ax_m3s.plot(s_c/1000., Q, '.-b', label='$Q$')
       t@@ -486,11 +421,8 @@ while time <= t_end:
                # Find hydraulic roughness
                f = channel_hydraulic_roughness(manning, S, W, theta)
        
       -        # Find new water pressures consistent with the flow law
       -        P_c = pressure_solver(psi, f, Q, S)
       -
       -        # Find new effective pressure in channel segments
       -        N_c = rho_i*g*H_c - P_c
       +        # Find new effective pressures consistent with the flow law
       +        N_c = pressure_solver(psi, f, Q, S)
        
                # Find new maximum normalized residual value
                max_res = numpy.max(numpy.abs((S - S_prev_it)/(S + 1e-16)))